1044

УТВЕРЖДАЮ

Начальник ГЦИ СИ "Воентест"

32 ГНИИИ МО РФ

В.Н. Храменков

2005 г.

20" / 10

ИНСТРУКЦИЯ

КОМПЛЕКС БОРТОВОЙ ИЗМЕРИТЕЛЬНЫЙ «БИК-НАТИ»

Методика поверки

Введение

Настоящая методика поверки (МП) устанавливает порядок проведения и оформления результатов поверки измерительных каналов (ИК) подсистем комплекса:

подсистемы измерения напряжения постоянного тока;

подсистемы измерения частоты (периода) сигнала;

подсистемы измерения напряжений постоянного тока, соответствующих значениям механических напряжений.

1. ОПЕРАЦИИ И СРЕДСТВА ПОВЕРКИ

При проведении поверки ИК подсистем выполняются операции, указанные в таблице 1.

Таблица 1

	Номер	Проведение операции	
Наименование операции	пункта ме-	первичная	периодиче-
	тодики по-	поверка	ская по-
	верки		верка
1	2	3	4
1 Внешний осмотр		да	да
2 Опробование		да	да
3 Определение погрешности ИК подсистемы		да	да
измерения напряжений постоянного тока			
4 Определение погрешности ИК подсистемы		да	да
измерения частоты (периода) сигнала			
5 Определение погрешности ИК подсистемы		да	да
измерения напряжений постоянного тока, соот-			
ветствующих значениям механических напря-			
жений			
6 Оформление результатов поверки		да	да

При проведении поверки используются средства измерений, приведенные в таблице 2. Таблица 2.

Номер	Наименование и тип (условное обозначение) основного или вспомогатель-		
пункта	ного средства поверки; обозначение нормативного документа, регламенти-		
документа	рующего технические требования, и (или) метрологические и основные ха-		
по поверке	рактеристики средства поверки		
п.5.3.1	Источник питания постоянного тока Б5-43А: выходное напряжение от 0,01		
	до 9,99 B; погрешность установки напряжения не более ± 0,1 B.		
п.5.3.1,	Вольтметр универсальный В7-54: диапазон измерений от 0,01 мВ до 700 В,		
п.5.3.3	от 10 Γ ц до 1 $M\Gamma$ ц; погрешность измерения напряжения не более \pm 1 %.		
п.5.3.2	Генератор сигналов низкочастотный Г3-122: диапазон частот от 0,001 Гц до		
	$2*10^6$ Гц; погрешность установки частоты не более $\pm 0,1$ Гц.		
п.5.3.3	Прибор универсальный измерительный Р4833-М1: диапазон измерений		
	(0,01-9999,99) Ом; класс точности 0,5.		

При проведении поверки допускается применять другие средства измерений, удовлетворяющие по точности и диапазону измерения требованиям настоящей методики.

При поверке должны использоваться средства измерений утвержденных типов.

Используемые при поверке рабочий эталон и вспомогательные средства должны быть поверены и иметь действующие свидетельства о поверке.

2. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

При проведении поверки ИК подсистем необходимо соблюдать требования техники безопасности, предусмотренные «Правилами технической эксплуатации электроустановок потребителей», «Правилами техники безопасности при эксплуатации электроустановок потребителей» (изд.3), ГОСТ 12.2.007.0-75, ГОСТ 12.1.019-79, ГОСТ 12.2.091-94 и требования безопасности указанные в технической документации на применяемые эталоны и вспомогательное оборудование.

Кроме того, необходимо соблюдать следующие требования:

- к работе по выполнению поверки (калибровки) допускаются лица не моложе 18 лет, прошедшие аттестацию по технике безопасности и промышленной санитарии, ознакомленные с эксплуатационной документацией на комплекс и с настоящей методикой;
- электроизмерительные приборы, используемые в качестве средств поверки, должны быть заземлены, блоки питания должны иметь предохранители номинальной величины;
- работы по выполнению поверки СИ должны проводится по согласованию с лицами, ответственными за эксплуатацию комплекса.

3. УСЛОВИЯ ПОВЕРКИ

Условия окружающей среды в помещении:

- атмосферное давление, мм рт.ст. (кПа).....от 720 до 780 (96...104). Питание:

Примечание. При проведении поверочных работ условия окружающей среды средств поверки (рабочих эталонов) должны соответствовать требованиям, указанным в их руководстве по эксплуатации.

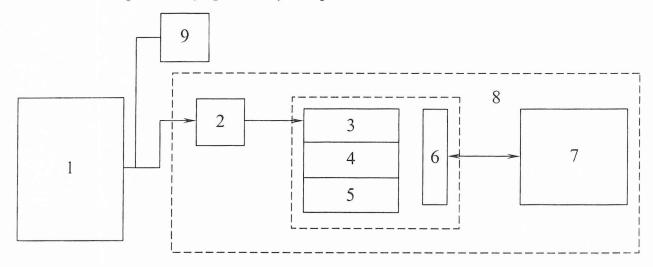
4. ПОДГОТОВКА К ПОВЕРКЕ

При подготовке к поверке проводят следующие работы:

- проверить комплектность эксплуатационной документации комплекса;
- проверить наличие поверочных клейм, а также свидетельств о поверке на эталонные и вспомогательные средства поверки;
- подготовить к работе все приборы и аппаратуру согласно руководства по их эксплуатации;
- собрать схемы поверки ИК подсистем в соответствии с блок-схемами, приведенными в разделе 5, и проверить целостность электрических цепей;
- обеспечить оперативную связь оператора у монитора с оператором, задающим контрольные значения эталонных сигналов на входе ИК подсистем;
 - включить питание рабочих СИ и аппаратуры комплекса;
- создать, проконтролировать и записать в протокол поверки условия проведения поверки.

5. ПРОВЕДЕНИЕ ПОВЕРКИ

5.1. Внешний осмотр

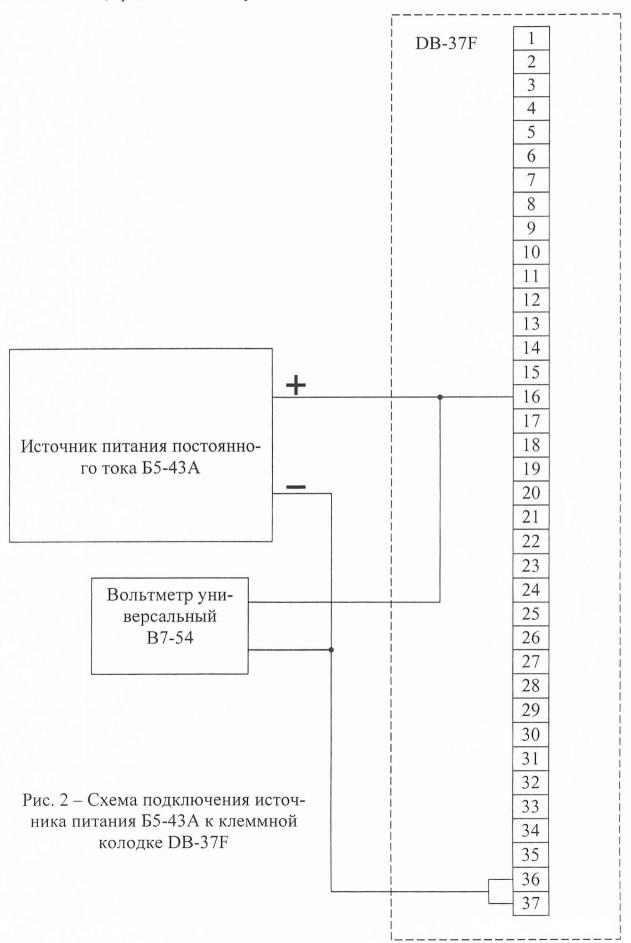

При внешнем осмотре необходимо убедиться, что все элементы, входящие в комплекс, не имеют внешних повреждений, которые могут влиять на его работу, при этом должно быть обеспечено надежное крепление соединителей и разъемов и качественное заземление.

5.2. Опробование функционирования ИК

При опробовании функционирования ИК необходимо с помощью эталонов подать на вход ИК минимальное контрольное значение эталонного физического параметра или имити-

рующего сигнала, а также значения равные 0.5 верхнего предела измерений параметра (ВП) и ВП и наблюдать результат измерений на экране монитора.

- 5.3 Определение погрешности ИК подсистемы измерения напряжений постоянного тока
 - 5.3.1 Собрать схему приведенную на рис.1



- 1 источник питания постоянного тока Б5-43А;
- 2 клеммная колодка DB-37;
- 3 модуль LC-111DP;
- 4 модуль LC-451;
- 5 модуль LC-212F;
- 6 крейт-контроллер LC-014;
- 7 персональный компьютер;
- 8 бортовой измерительный комплекс «БИК-НАТИ»;
- 9 вольтметр универсальный В7-54.

Рис.1 – схема поверки подсистемы измерения напряжения на базе модуля LC-111DP

5.3.2 Подготовить "БИК-НАТИ" к работе:

5.3.2.1 Подключить источник питания Б5-43A к клеммной колодке DB-37F в соответствии со схемой, представленной на рис. 2.

- 5.3.2.2 Проверить, не соединяя клеммную колодку с крейтом, выходное напряжение с источника питания, которое не должно превышать 10 В.
 - 5.3.2.3 Подключить и проверить заземление компьютера, крейта, клеммной колодки.
 - 5.3.2.4 Подсоединить кабели клеммной колодки к крейту.
 - 5.3.2.5 Подсоединить кабель крейта к компьютеру.
 - 5.3.2.6 Подсоединить ключ HASP в разъем USB компьютера.
 - 5.3.2.7 Включить компьютер.
 - 5.3.2.8. Включить крейт.
- 5.3.2.9 Запустить программное обеспечение «БИК-НАТИ» (Паспорт бортового измерительного комплекса с модульной системой измерения на базе крейт-контроллера и персонального компьютера, ПС 1066.БИК.00.00, пп 5.2-5.13).
- 5.3.3 Подать на вход первого измерительного канала напряжение минус 10 В на контакты 16 (+) и 36, 37 (-) клеммной колодки DB-37F.
 - 5.3.4 Вольтметром В7-54 измерить напряжение на выходе источника питания Б5-43А.
 - 5.3.5 Зарегистрировать показания БИК.
- 5.3.6 Используя функцию «Экспорт в Excel» программного обеспечения "БИК-НАТИ", экспортировать данные в файл с произвольным именем.
- 5.3.7 Вычислить среднее арифметическое значение каждого массива данных, используя формулу:

$$\overline{x}_{AU\Pi}^{"} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_{AU\Pi i}^{"} \qquad (1),$$

где х АШПі – значения исходного массива данных.

- 5.3.8 Повторить операции п.п (2.1.3...2.1.7) 25 раз.
- 5.3.9 Полученные средние значения $\overline{x}^{"}$ выстраиваются в вариационный ряд.
- 5.3.10 Вычислить среднее арифметическое значение по формуле:

$$\overline{x}_{AU\Pi}' = \frac{1}{n} \cdot \sum_{i=1}^{n} x'_{AU\Pi i} \qquad (2),$$

где $X_{AU\Pi i}^{'}$ – усредненные значения исходного массива данных.

5.3.11 Вычислить оценку среднего квадратического отклонения неисправленных результатов измерений по формуле:

$$\sigma_{AU\Pi} = \pm \sqrt{D} = \pm \sqrt{\frac{\sum_{i=1}^{n} (x_{AU\Pi_i} - \overline{x}_{AU\Pi_i})^2}{n-1}}$$
(3)

5.3.12 Используя правило «трех сигм», определить верхнюю и нижнюю границы результатов измерений, вне которых содержатся значения погрешностей, принимаемые за грубые.

$$\overline{x}_{AU\Pi} - 3\sigma_{AU\Pi} \le \overline{x}_{AU\Pi} \le \overline{x}_{AU\Pi} + 3\sigma_{AU\Pi}$$
 (4)

- 5.3.13 Используя неравенство (4) исключить из ряда измерения, содержащие грубые ошибки.
 - 5.3.14 Выстроить новый вариационный ряд.
- 5.3.15 Определить среднее арифметическое значение по формуле (5) и занести его в таблицу 3:

$$\overline{x}_{AU\Pi} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_{AU\Pi i} \qquad (5)$$

где ХАШПі - значения данных с исключенными грубыми погрешностями.

5.3.16 Определить среднее квадратическое отклонение исправленных результатов измерений по формуле:

$$\sigma_{AUII} = \pm \sqrt{D} = \pm \sqrt{\frac{\sum_{i=1}^{n} (x_{AUIIi} - \overline{x}_{AUIIi})^2}{n-1}}$$
 (6).

5.3.17 Определить среднее квадратическое отклонение ($\sigma_{\it BII}$)задания напряжения на источнике питания 55-43A по формуле:

$$\sigma_{E\Pi} = \pm \sqrt{D} = \pm \sqrt{\frac{\sum_{i=1}^{n} (x_{E\Pi i} - \overline{x}_{E\Pi i})^2}{n-1}}$$
 (7)

5.3.18 Определить суммарное среднее квадратическое отклонение по формуле:

$$\sigma_{\Sigma} = \sqrt{\sigma_{AU\Pi}^2 + \sigma_{B\Pi}^2} \qquad (8).$$

5.3.19 Определить границы доверительного интервала погрешности измерений напряжения по формуле:

$$\pm \Delta = t_p \cdot \sigma_{\Sigma} \qquad (9).$$

где $t_p = 2,063$ - коэффициент Стьюдента при n = 25 и доверительной вероятности P = 0.95.

5.3.20 Определить относительную погрешность измерений по формуле и занести ее в таблицу 3:

$$\delta = \frac{\Delta}{x_{BH}} \cdot 100\% \qquad (10),$$

где $\mathcal{X}_{\it БП}$ - действительное значение напряжения с источника питания постоянного тока Б5-43A.

5.3.21 Повторить действия по п.п. 5.3.3 - 5.3.20 для других значений напряжений, приведенных в таблице 3.

Таблица 3

таолица 3		,		
Наименование	Клеммы под-	Входной сиг-	Измеренное	Относительная по-
параметра	ключения	нал, В	значение, В	грешность измере-
				ния, %
		минус 10		
		минус 8		
		минус 6		
Напряжение постоянного тока		минус 4		
		минус 2		
		0		
		2		
		4		
		6		
		8		
		10		

Примечание: для установки значения напряжения постоянного тока необходимо отсоединить кабели «+» и «-» от источника питания постоянного тока Б5-43А и соединить их между собой.

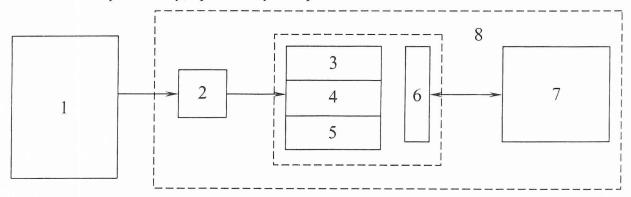
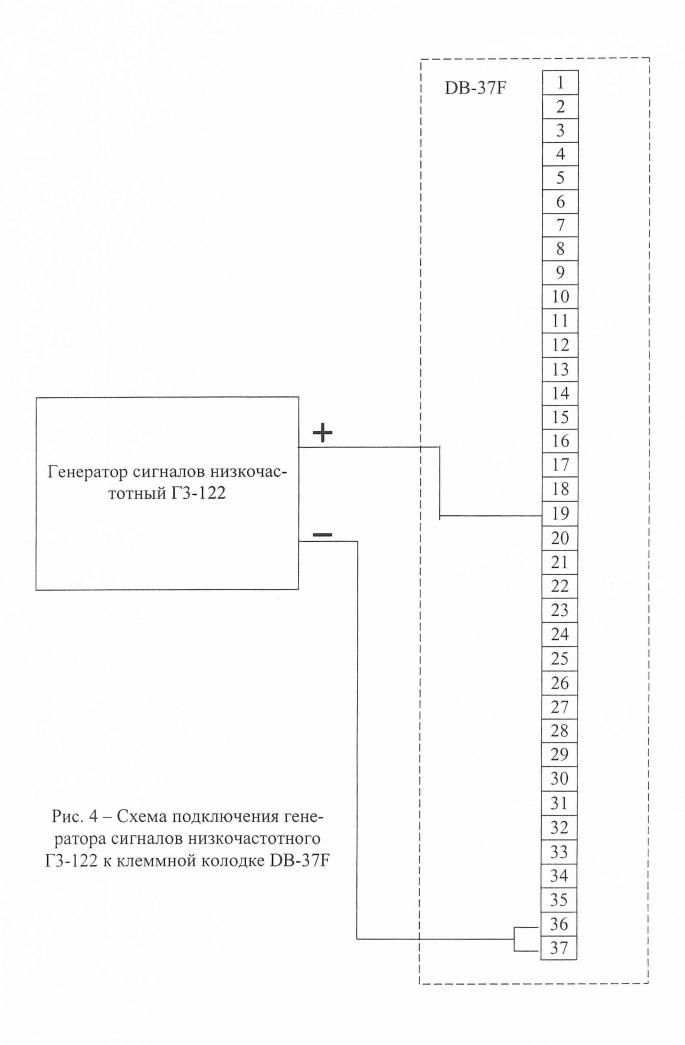

5.3.22 Повторить действия по п.п. 5.3.2.1 – 5.3.21 для других каналов, руководствуясь при подключении поверочной аппаратуры данными, приведенными в таблице 4.

Таблица 4

Таблица 4	
Номер канала	Номера контактов на клеммной колодке DB- 37F
1	16 (+), 36 (-), 37 (-)
2	15 (+), 36 (-), 37 (-)
3	14 (+), 36 (-), 37 (-)
4	13 (+), 36 (-), 37 (-)
5	12 (+), 36 (-), 37 (-)
6	11 (+), 36 (-), 37 (-)
7	10 (+), 36 (-), 37 (-)
8	9 (+), 36 (-), 37 (-)
9	8 (+), 36 (-), 37 (-)
10	7 (+), 36 (-), 37 (-)
11	6 (+), 36 (-), 37 (-)
12	5 (+), 36 (-), 37 (-)
13	4 (+), 36 (-), 37 (-)
14	3 (+), 36 (-), 37 (-)
15	2 (+), 36 (-), 37 (-)
16	1 (+), 36 (-), 37 (-)
17	35 (+), 36 (-), 37 (-)
18	34 (+), 36 (-), 37 (-)
19	33 (+), 36 (-), 37 (-)
20	32 (+), 36 (-), 37 (-)
21	31 (+), 36 (-), 37 (-)
22	30 (+), 36 (-), 37 (-)
23	29 (+), 36 (-), 37 (-)
24	28 (+), 36 (-), 37 (-)
25	27 (+), 36 (-), 37 (-)
26	26 (+), 36 (-), 37 (-)
27	25 (+), 36 (-), 37 (-)
28	24 (+), 36 (-), 37 (-)
29	23 (+), 36 (-), 37 (-)
30	22 (+), 36 (-), 37 (-)
31	21 (+), 36 (-), 37 (-)
32	20 (+), 36 (-), 37 (-)

Результаты поверки ИК подсистемы считать положительными, если максимальные значения относительной погрешности измерений напряжения постоянного тока не превысили допустимого значения $\pm 1,0$ %. В противном случае система бракуется, и модуль LC-111DP отправляется в ремонт.


- 5.4 Определение погрешности ИК подсистемы измерения частоты (периода) сигнала
- 5.4.1 Собрать схему, приведенную на рис.3.

- 1 генератор сигналов низкочастотный Г3-122;
- 2 клеммная колодка DB-37;
- 3 модуль LC-111DP;
- 4 модуль LC-451;
- 5 модуль LC-212F;
- 6 крейт-контроллер LC-014;
- 7 персональный компьютер;
- 8 бортовой измерительный комплекс «БИК-НАТИ».

Рис.3 – схема проверки LC-451

- 5.4.2 Подготовить «БИК-НАТИ» к работе:
- 5.4.2.1 Подключить генератор сигналов низкочастотный Г3-122 к клеммной колодке DB-37F в соответствии со схемой, представленной на рис. 4.

- 5.4.2.2 Подключить и проверить заземление компьютера, крейта, клеммной колодки.
- 5.4.2.3 Подсоединить кабели клеммной колодки к крейту.
- 5.4.2.4 Подсоединить кабель крейта к компьютеру.
- 5.4.2.5 Подсоединить ключ HASP в разъем USB компьютера.
- 5.4.2.6 Включить компьютер.
- 5.4.2.7. Включить крейт.
- 5.4.2.8 Запустить программное обеспечение «БИК-НАТИ» (Паспорт бортового измерительного комплекса с модульной системой измерения на базе крейт-контроллера и персонального компьютера, ПС 1066.БИК.00.00, пп 5.2-5.13).
- 5.4.3 Подать на вход первого измерительного канала синусоидальный сигнал с частотой 10 Γ ц с амплитудой меньше по модулю 5 B на контакты 19 (+) и 36, 37 (-) клеммной колодки DB-37F.
 - 5.4.4 Зарегистрировать показания БИК.
- 5.4.5 Используя функцию «Экспорт в Excel» программного обеспечения «БИК-НАТИ», экспортировать данные в файл с произвольным именем.
- 5.4.6 Вычислить среднее арифметическое значение каждого массива данных, используя формулу:

$$\overline{x}_{AU\Pi}^{"} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_{AU\Pi i}^{"} \qquad (1),$$

где $X^{''}_{AU\Pi i}$ – значения исходного массива данных.

- 5.4.7 Повторить операции п.п (2.1.3...2.1.7) 25 раз.
- 5.4.8 Полученные средние значения $\overline{x}^{"}$ выстраиваются в вариационный ряд.
- 5.4.9 Вычислить среднее арифметическое значение по формуле:

$$\overline{x}_{AUII}' = \frac{1}{n} \cdot \sum_{i=1}^{n} x'_{AUIIi} \qquad (2)$$

где $X^{'}_{AU\Pi i}$ – усредненные значения исходного массива данных.

5.4.10 Вычислить оценку среднеквадратического отклонения неисправленных результатов измерений по формуле:

$$\sigma_{AU\Pi}' = \pm \sqrt{D} = \pm \sqrt{\frac{\sum_{i=1}^{n} (x_{AU\Pi_{i}}' - \overline{x}_{AU\Pi_{i}}')^{2}}{n-1}}$$
 (3)

5.4.11 Используя правило "трех сигм", определить верхнюю и нижнюю границы результатов измерений, вне которых содержатся значения погрешностей, принимаемые за грубые.

$$\overline{x}_{AU\Pi} - 3\sigma_{AU\Pi} \le \overline{x}_{AU\Pi} \le \overline{x}_{AU\Pi} + 3\sigma_{AU\Pi}$$
 (4)

- 5.4.12 Используя неравенство (4) исключить из ряда измерения, содержащие грубые ошибки
 - 5.4.13 Выстроить новый вариационный ряд.
- 5.4.14 Определить среднее арифметическое значение по формуле (5) и занести его в таблицу 5:

$$\overline{x}_{AU\Pi} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_{AU\Pi i} \qquad (5)$$

где $X_{AU\Pi i}$ - значения данных с исключенными грубыми погрешностями.

5.4.15 Определить среднее квадратическое отклонение исправленных результатов измерений по формуле:

$$\sigma_{AU\Pi} = \pm \sqrt{D} = \pm \sqrt{\frac{\sum_{i=1}^{n} (x_{AU\Pi i} - \overline{x}_{AU\Pi i})^{2}}{n-1}}$$
 (6)

5.4.16 Определить доверительный интервал погрешности измерения напряжения по формуле:

$$\pm \Delta = t_p \cdot \sigma_{AIIII} \qquad (7),$$

где $t_p=2,063$ - коэффициент Стьюдента при n=25 и доверительной вероятности P=0,95.

5.4.17 Определить относительную погрешность измерения по формуле (8) и занести ее в таблицу 5:

$$\delta = \frac{\Delta}{x} \cdot 100\% \qquad (8),$$

где ${\mathcal X}$ - действительное значение частотного сигнала с генератора сигналов Г3-122.

5.4.18 Повторить действия по п.п. 5.4.3-5.4.17 для других значений частот синусои-дального сигнала, приведенных в таблице 5.

Таблица 5

аолица 5			
енование Клеммы	под- Входной сиг-	- Измеренное	Относительная по-
раметра ключе	ния нал, Гц	значение, Гц	грешность измере-
			ния, %
1 2	3	4	5
	1		
19 (+) и	36, 37 100		
(-)	1000		
(1 кан	ал) 50000		
	250000		
го сигнала (-)	<u>1000</u> ал) <u>50000</u>		

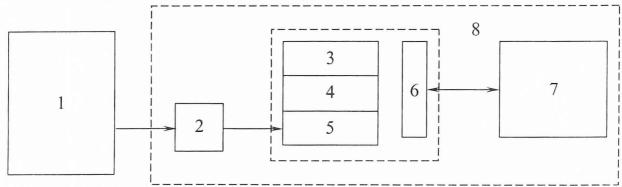
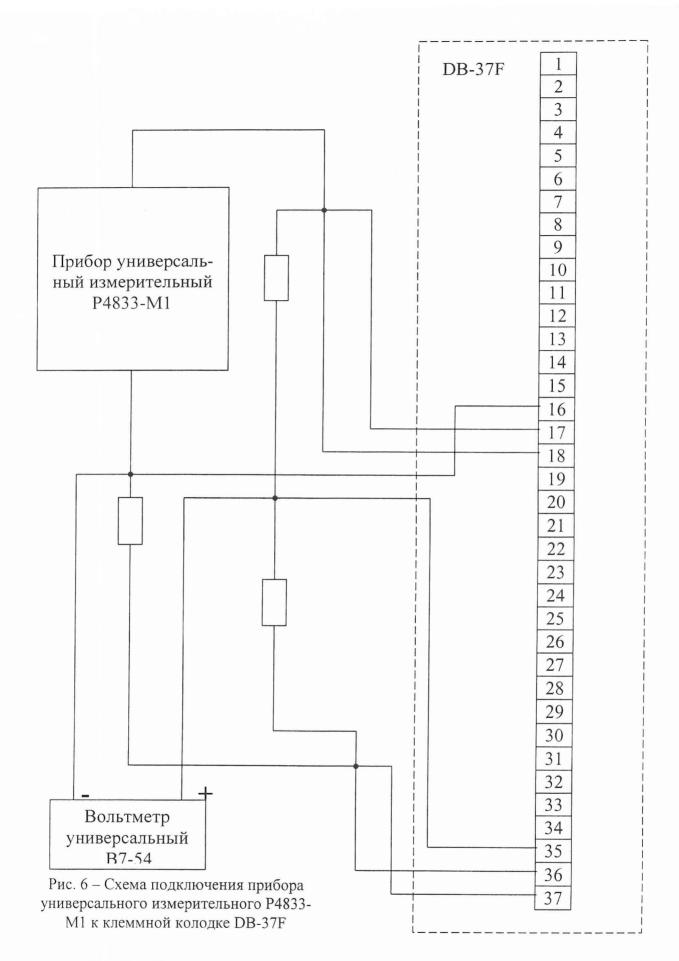

5.4.19 Повторить действия по п.п. 5.4.2.1 - 5.4.18 для других каналов, руководствуясь при подключении поверочной аппаратуры данными, приведенными в таблице 6.

Таблица 6

Номер канала	Номера контактов на клеммной колодке DB-37F	
1	19 (+), 36 (-), 37 (-)	
2	17 (+), 36 (-), 37 (-)	
3	15 (+), 36 (-), 37 (-)	
4	13 (+), 36 (-), 37 (-)	
5	7 (+), 36 (-), 37 (-)	
6	5 (+), 36 (-), 37 (-)	
7	3 (+), 36 (-), 37 (-)	
8	1 (+), 36 (-), 37 (-)	

Результаты поверки ИК подсистемы считать положительными, если максимальные значения относительной погрешности измерений частоты синусоидального сигнала находятся в пределах $\pm 1,0$ %. В противном случае система бракуется, и модуль LC-451 отправляется в ремонт.


- 5.5 Определение погрешности ИК подсистемы измерения напряжений постоянного тока, соответствующих значениям механического напряжения
 - 5.5.1 Собрать схему приведенную на рис.5

- 1 прибор универсальный измерительный Р4833-М1;
- 2 клеммная колодка DB-37;
- 3 модуль LC-111DP;
- 4 модуль LC-451;
- 5 модуль LC-212F;
- 6 крейт-контроллер LC-014;
- 7 персональный компьютер;
- 8 бортовой измерительный комплекс «БИК-НАТИ».

Рис.5 – схема проверки LC-212F

- 5.5.2 Подготовить «БИК-НАТИ» к работе:
- 5.5.2.1 Подключить прибор универсальный измерительный Р4833-М1 к клеммной колодке DB-37F в соответствии со схемой, представленной на рис. 6.

где $R_1 = R_2 = R_3$;

Примечание: значения сопротивлений R_1 , R_2 , R_3 выбираются из диапазона от 100 до 1000 Ом в соответствии с «Руководством пользователя» крейтовой системы LTC 3AO «L-card».

- 5.5.2.2 Подключить и проверить заземление компьютера, крейта, клеммной колодки, вольтметра универсального В7-54.
 - 5.5.2.3 Подсоединить кабели клеммной колодки к крейту.
 - 5.5.2.4 Подсоединить кабель крейта к компьютеру.
 - 5.5.2.5 Подсоединить ключ HASP в разъем USB компьютера.
- 5.5.2.6 Установить на приборе универсальном измерительном Р4833-М1 значение сопротивления, равное значениям сопротивлений резисторов моста.
 - 5.5.2.7 Включить компьютер.
 - 5.5.2.8. Включить крейт и вольтметр универсальный В7-54.
- 5.5.2.9 Установить вольтметр универсальный В7-54 в режим измерения напряжения постоянного тока.
- 5.5.2.9 С помощью переключателей прибора универсального измерительного Р4833-М1 установить на вольтметре универсальном В7-54 значения напряжения постоянного тока равного нулю.
- 5.5.3 Запустить программное обеспечение «БИК-НАТИ» (Паспорт бортового измерительного комплекса с модульной системой измерения на базе крейт-контроллера и персонального компьютера, ПС 1066.БИК.00.00, пп 5.2 5.5).
- 5.5.4 Установить в опциях настройки модуля LC-212F следующие параметры: режим «Статодинамика», диапазон « ± 9 мВ», «модулятор использовать», питание 5 В, «Прореживание 11». Провести калибровку модуля LC-212F в соответствии с пп 5.8 и 5.10 паспорта ПС 1066.БИК.00.00.
- 5.5.5 Зарегистрировать показания БИК, соответствующее значению измеряемого напряжения постоянного тока, равное нулю.
- 5.5.6 Не прерывая записи, с помощью переключателей прибора универсального измерительного Р4833-М1 добиться установления на вольтметре универсальном В7-54 значения напряжения постоянного тока равного 9 мВ.
 - 5.5.7 Через 5-7 с остановить запись.
- 5.5.8 Используя функцию «Экспорт в Excel» программного обеспечения «БИК-НАТИ», экспортировать полученные в результате работы программы данные в файл с произвольным именем.
- 5.5.9 Выбрать из полученного массива данных 10 первых и 10 последних значений, соответствующих значениям 0 мВ и 9 мВ.
- 5.5.10 Усреднить полученные значения по каждой из выбранных групп по формуле (1):

$$\overline{x}_{ucx} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_{ucxi} \qquad (1),$$

где X_{ucxi} - исходные значения массива данных.

5.5.11 Высчитать коэффициенты пересчета А и В по формулам (2) и (3):

$$A = \left(\frac{D_{\text{max}} - D_{\text{min}}}{\overline{x}_{ucx \text{max}} - \overline{x}_{ucx \text{min}}}\right) \quad (2),$$

$$B = D_{\text{min}} - \overline{x}_{ucx \text{max}} \cdot \overline{x}_{ucx \text{min}} \quad (3),$$

где $D_{\mathrm{max}} \ u - D_{\mathrm{min}}$ - значения напряжений, равное 0 мВ и 9 мВ;

 $\overline{x}_{ucx \, max} \, u \, \overline{x}_{ucx \, min}$ - средние значения исходных данных, полученных в результате выполнения пункта 5.5.10.

5.5.12 Руководствуясь пп. 5.6 и рис. 5.10 на странице 35 паспорта ПС 1066.БИК.00.00, открыть окно настройки опрашиваемого канала и ввести коэффициенты пересчета А и В.

- 5.5.13 Перейти в окно просмотра и, установив верхнюю и нижнюю экранные границы 0 и 10, соответственно, визуально убедиться, что максимальное и минимальное значения графика соответствуют значениям напряжения постоянного тока 0 мВ и 9 мВ.
 - 5.5.14 Перейти в окно регистрации и удалить записанную информацию.
- 5.5.15 С помощью переключателей прибора универсального измерительного Р4833-М1 установить на вольтметре универсальном В7-54 значения напряжения постоянного тока равного 1 мВ.
- 5.5.16 Регистрировать показания БИК, соответствующее значению измеряемого напряжения постоянного тока, равное 1 мВ (в течение 3-7 с.).
- 5.5.17 Используя функцию «Экспорт в Excel» программного обеспечения «БИК-НАТИ», экспортировать полученные в результате работы программы данные в файл с произвольным именем.
 - 5.5.18 Выбрать из полученного массива данных 10 последних значений.
- 5.5.19 Усреднить полученные значения по формуле (1) и записать результат в столбец 3 таблицы 6.
- 5.5.20 Определить относительную погрешность результатов измерения по формуле (4) и записать результат в столбец 4 таблицы 6.

$$\delta = \left(\frac{\overline{x}_{ucx} - x_{3a\partial}}{x_{3a\partial}}\right) \cdot 100\% \qquad (4),$$

где $x_{_{3a0}}$ - установленное значение напряжения постоянного тока на вольтметре универсальном В7-54.

Таблица 6

Наименование	Входной сигнал, Измеренное значе-		Относительная погреш-
параметра	мВ	ние, мВ	ность измерения, %
1	2	3	4
Напряжение по- стоянного тока	1		
	3		
	5		
	7		
	8		
Напряжение по- стоянного тока	10		
	30		
	50		
	70		
	80		

- 5.5.21 Повторить действия по п.п. 5.5.14 5.5.20 для других значений напряжений, приведенных в таблице 6.
 - 5.5.22 Выключить аппаратуру.
- 5.5.23 Повторить действия по п.п. 5.5.2.1 5.5.22 для всех оставшихся каналов, руководствуясь при подключении таблицей 7.

Таблица 7

№ контак- та	Название	Назначение	
1	AINR3	См. рис. "Схема распайки добавочных резисторов на	
2	AINR1	контакты разъема"	
3	- AIN7	- Вход канала 7	
4	- AIN3	- Вход канала 3	
5	- REFIN4	- Опорное напряжение каналов 3 и 7	
6	- EXC	- Питание датчиков	
7	- AIN6	- Вход канала 6	

№ контак-	Название	Назначение	
та	4 D 10	D	
8	- AIN2	- Вход канала 2	
9	- REFIN3	- Опорное напряжение каналов 2 и 6	
10	- EXC	- Питание датчиков	
11	- AIN5	- Вход канала 5	
12	- AIN1	- Вход канала 1	
13	- REFIN2	- Опорное напряжение каналов 1 и 5	
14	- EXC	- Питание датчиков	
15	- AIN4	- Вход канала 4	
16	- AIN0	- Вход канала 0	
17	- REFIN1	- Опорное напряжение каналов 0 и 4	
18	- EXC	- Питание датчиков	
19	+ EXCR		
20	AINR4	См. рис. "Схема распайки добавочных резисторов на	
21	AINR2	контакты разъема"	
22	+ AIN7	+ Вход канала 7	
23	+ AIN3	+ Вход канала 3	
24	+ REFIN4	+ Опорное напряжение каналов 3 и 7	
25	+ EXC	+ Питание датчиков	
26	+ AIN6	+ Вход канала 6	
27	+ AIN2	+ Вход канала 2	
28	+ REFIN3	+ Опорное напряжение каналов 2 и 6	
29	+ EXC	+ Питание датчиков	
30	+ AIN5	+ Вход канала 5	
31	+ AIN1	+ Вход канала 1	
32	+ REFIN2	+ Опорное напряжение каналов 1 и 5	
33	+ EXC	+ Питание датчиков	
34	+ AIN4	+ Вход канала 4	
35	+ AIN0	+ Вход канала 0	
36	+ REFIN1	+ Опорное напряжение каналов 0 и 4	
37	+ EXC	+ Питание датчиков	

5.5.24 Повторить действия по пп. 5.5.2 - 5.5.23 для диапазона измерения напряжений постоянного тока ± 80 мВ (для значений напряжений 10, 30, 50, 50, 80 мВ) (табл. 6 столбец 2).

Результаты поверки ИК подсистемы считать положительными, если максимальные значения относительной погрешности измерений значений напряжений постоянного тока не превысили допустимого значения $\pm 1,0$ %. В противном случае система бракуется, и модуль LC-212F отправляется в ремонт.

6 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

Результаты поверки оформляются протоколом.

При положительных результатах поверки на комплекс выдается свидетельство установленного образца. При отрицательных результатах поверки комплекс бракуется и направляется в ремонт.

На забракованный комплекс выдается извещение об ее непригодности с указанием причин забракования.

Shull

Старший научный сотрудник ГЦИ СИ «Воентест» 32 ГНИИИ МО РФ

Научный сотрудник ГЦИ СИ «Воентест» 32 ГНИИИ МО РФ

С. Чурилов

А. Горбачев