1052

утверждаю

Начальник ГЦИ «Воентест» 32 ГНИИ МО РФ

_А.Ю. Кузин

77,

12

2005 г.

ИНСТРУКЦИЯ

ИЗМЕРИТЕЛЬ ФАЗОВЫХ ШУМОВ PN 9000 фирмы Aeroflex, Франция

МЕТОДИКА ПОВЕРКИ

1 Введение

- 1.1 Настоящая методика распространяется на измеритель фазовых шумов PN 9000, изготовленный фирмой Aeroflex, Франция (далее измеритель), зав. № 03F00A0480, и устанавливает порядок проведения её первичной и периодической поверок, проводимых в соответствии с ПР 50.2.006 «ГСИ. Порядок проведения поверки средств измерений».
 - 1.2 Межповерочный интервал 1 год.

2 Операции поверки

При поверке выполняют операции, представленные в таблице 1.

Таблица 1.

	Наименование операции	Номер	Проведение операции	
		пункта	при	
		Методи-	первич-	Периоди-
		ки	ной	ческой
			поверке	Поверке
1.	Внешний осмотр	8.1	да	да
2.	Опробование	8.2	да	да
3.	Определение метрологических характеристик	8.3	да	да
3.1	Определение диапазона частот и абсолютной по-	8.3.1	да	да
	грешности измерения спектральной плотности			
	мощности фазовых шумов.			
3.2	Определение относительной погрешности измере-	8.3.2	да	да
	ния частоты			
3.3	Определение КСВН высокочастотного выхода гене-	8.3.3	да	да
	ратора			

3 Средства поверки

3.1 При проведении поверки используют средства измерений и вспомогательное оборудование, представленное в таблице 2.

Таблица 2.

Наименование средств	Требуемые технические пог	Рекомендуемое средство по-	
Поверки	Пределы измерений	Погрешность	верки (тип)
1. Частотомер	Диапазон частот	Относительная погреш-	Ч3-66
электронно-	10 ÷ 37,5· 10 ⁹ Гц	ность по частоте встроен-	
счетный		ного кварцевого генерато-	
		$pa \pm 5.10^{-7}$.	
2. Синтезатор	Диапазон частот	Относительная погреш-	Γ7-14
частоты	0,02 ÷ 17,85 ГГц	ность по частоте встроен-	
		ного кварцевого генерато-	
		$pa \pm 3.10^{-7}$	
3. Генератор	Частотный диапазон	Относительная погреш-	Γ4-102
сигналов высо-	$0,1 \div 50 \text{M} \Gamma$ ц	ность установки частоты	
кочастотный		0,1 %	H. i

Наименование средств	Требуемые технические пов	Рекомендуемое средство по-	
Поверки	Пределы измерений	Погрешность	верки (тип)
4. Измеритель КСВН пано- рамный	Частотный диапазон: $0,1 \div 18$ ГГц. Пределы измерения КСВН – от $1,03$ до 5	Относительная погрешность измерений КСВН ±(3Кст + 1) %	P2-83
5. Генератор шума	Диапазон частот от 10 МГц до 18 ГГц	Абсолютная погрешность измерения СПМШ 0,15 дБ	Agilent 346
6. Измеритель КСВН пано- рамный	Частотный диапазон: 0,01 ÷ 1,25 ГГц. Пределы измерения КСВН – от 1,03 до 5	Относительная погрешность измерений КСВН ±(3Кст + 1) %	P2-73

3.2 Допускается использование других средств измерений и вспомогательного оборудования, имеющих метрологические и технические характеристики не хуже характеристик приборов, приведенных в таблице 2.

4 Требования к квалификации поверителей

К проведению поверки измерителя допускается инженерно-технический персонал со среднетехническим или высшим радиотехническим образованием, имеющим опыт работы с радиотехническими установками, ознакомленный с руководством по эксплуатации и документацией по поверке и имеющие право на поверку.

5 Требования безопасности

- 5.1 К работе с измерителем допускаются лица, изучившие требования безопасности по ГОСТ 22261-94, инструкцию по правилам и мерам безопасности и прошедшие инструктаж на рабочем месте.
- 5.2 Запрещается проведение измерений при отсутствии или неисправности заземления аппаратуры, входящей в состав измерителя.

6 Условия поверки

6.1 Поверка проводится при нормальных условиях (составляющая погрешности измерений любой из характеристик от действия совокупности влияющих величин не превышает 35 % допускаемой основной погрешности).

температура окружающего воздуха (20 ± 5) °C; относительная влажность воздуха (65 ± 15) %; атмосферное давление (750 ± 30) мм рт. ст.

7 Подготовка к поверке

При подготовке к поверке выполнить следующие операции: проверку готовности измерителя в целом согласно руководству по эксплуатации; пробное непродолжительное (10-15 мин.) включение измерителя;

8 Проведение поверки

8.1 Внешний осмотр

При проведении внешнего осмотра проверить:

- сохранность пломб;
- чистоту и исправность разъемов и гнёзд;
- наличие предохранителей (если они имеются снаружи прибора);
- отсутствие механических повреждений корпуса и ослабления элементов конструкции;
- сохранность механических органов управления (если они имеются) и чёткость фиксации их положения.

8.2 Опробование

Подключить измеритель к сети, на лицевой панели нажать кнопку включения питания. На экране измерителя должна появится заставка фирмы-изготовителя. После загрузки операционной системы на экране должно появиться меню управления. С помощью кабеля присоединить измеритель к синтезатору Г7-14. Установить на генераторе любое значение частоты. Выходную мощность генератора установить на значение 0 дБмВт. Включить выход синтезатора. Произвести измерение спектральной плотности мощности фазовых шумов на установленной частоте. На экране измерителя должен отобразиться график результатов измерения. В противном случае измеритель бракуется и направляется в ремонт.

- 8.3 Определение метрологических характеристик
- 8.3.1 Проверка диапазона частот входного сигнала и абсолютной погрешности измерения спектральной плотности мощности фазовых шумов.

Проверку диапазона частот провести проведением измерения спектральной плотности мощности фазовых шумов на граничных частотах работы прибора, а также выборочно на точках в рабочем диапазоне частот.

В диапазоне частот от 2 МГц до 20 МГц в качестве источника сигнала использовать генератор высокочастотных сигналов Γ 4-102, а на частотах от 20 МГц до 18 ГГц синтезатор частот Γ 7-14. На синтезаторе (генераторе) Γ 7-14 (Γ 4-102) установить уровень выходного сигнала 0 дБм и подать его на вход измерителя.

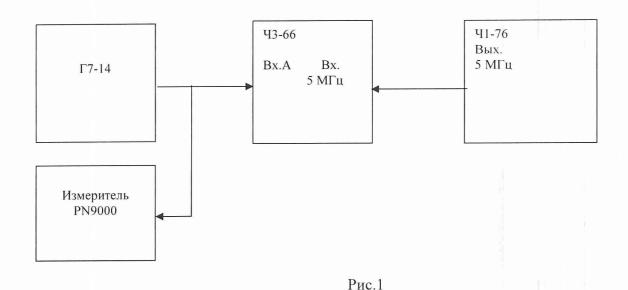
Последовательно установить частоты 2; 100; 1000; 10000; 18000 МГц.

Произвести измерение спектральной плотности мощности фазовых шумов на указанных частотах.

Погрешность измерения спектральной плотности мощности фазовых шумов произвести с применением генератора шума с калиброванными значениями спектральной плотности мощности (СПМШ) в диапазоне.

Выход генератора шума присоединить на вход измерителя. Произвести измерение СПМШ. Погрешность А измерения вычислить по формуле:

$$A = Aи3 - Aoб$$


где: Аиз – значение измеренное измерителем;

Аоб – значение взятое с калибровочной таблицы.

Результаты поверки считают удовлетворительными, если во всем диапазоне устойчиво работает система синхронизации, а погрешность измерения не превышает 2 дБ. В противном случае прибор бракуется и направляется в ремонт.

8.3.2 Определение относительной погрешности измерения частоты.

Собрать схему в соответствии с рис .1

На синтезаторе Γ 7-14 установить частоту 100 М Γ ц, уровень выходного сигнала 0д Γ м и подать его на вход А частотомера. Частотомер перевести в режим работы от внешнего источника опорного сигнала частотой 5 М Γ ц, который подать от стандарта частоты и времени Ч1-76.

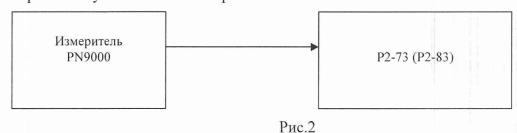
До проведения измерений Ч1-76 прогреть не менее 2 часов.

По истечении времени самопрогрева генератора, измерить частоту на выходе генератора при помощи частотомера и измерителя.

Погрешность измерения частоты (δ_f) вычислить по формуле:

$$\delta F = \frac{F_{_{^{13M}}} - F_{_{^{HOM}}}}{F_{_{HOM}}} \,,$$

где $F_{\text{ном}}$ – измеренное частотомером значение частоты;


 $F_{\text{изм}}$ – измеренное измерителем значение частоты.

Результаты поверки считать положительными, если вычисленные значения относительной погрешности измерений частоты находятся в пределах $\pm 1\cdot 10^{-6}$. В противном случае прибор бракуется и направляется в ремонт.

8.3.3 Определение КСВН высокочастотного выхода измерителя.

Определение КСВН высокочастотного входа провести измерителем КСВН панорамным Р2-73 (Р2-83) следующим образом:

Собрать схему в соответствии с рис.2

Измерить КСВН в диапазоне частот 10 ÷ 18000 МГц.

Результаты поверки считать положительными, если измеренные величины КСВН не превышают 1,6. В противном случае прибор бракуется и направляется в ремонт.

9 Оформление результатов поверки

Результаты поверки оформляются протоколом.

При положительных результатах поверки на измеритель выдается свидетельство установленного образца. При отрицательных результатах поверки измеритель бракуется и направляется в ремонт.

На забракованный измеритель выдается извещение об его непригодности с указанием причин забракования.

Начальник отдела ГЦИ СИ «Воентест» 32 ГНИИИ МО РФ

В.Л. Воронов