1281

УТВЕРЖДАЮ

Начальник ГЦИ «Воентест»

32 ГНИИИ МО РФ

А.Ю. Кузин

8 » Derea Spa 2006 r.

Руководитель ИЛ СИ НИИФИ

_А.А. Целикин

2006 г.

ДАТЧИК КОНТРОЛЬНЫЙ Вт 1301 МЕТОДИКА ПОВЕРКИ Вт 2.760.000 МП

СОДЕРЖАНИЕ

Вводная часть	3
1 Операции поверки	.3
2 Средства поверки	3
3 Требования безопасности	4
4 Условия поверки	4
5 Подготовка к поверке	5
6 Проведение поверки	5
7 Оформление результатов поверки	.8

Вводная часть

Настоящая методика поверки распространяется на датчики контрольные Вт 1301, зав. №№ 021, 061, 063, 066 (далее - датчики), предназначенные для измерений амплитуды переменного давления.

Межповерочный интервал – 1 год.

1 Операции поверки

1.1 При проведении поверки должны выполняться операции, указанные в таблице 1.

Таблица 1.

Наименование операции	Номер пункта ме- тодики поверки	Проведение опера- ции при периоди- ческой поверке
1 Контроль внешнего вида, маркировки	6.1	да
2 Определение электрического сопротивления изоляции в нормальных климатических условиях	6.2	да
3 Определение чувствительности датчика при $P_{ct} = 630 \cdot 10^5 \text{Па} (630 \text{кгc/cm}^2)$	6.3	да
4 Определение изменения чувствительности датчика в диапазоне статических давлений от $110\cdot10^5$ Па до $1250\cdot10^5$ Па (от 110 до 1250 кгс/см ²)	6.4.1 – 6.4.2	да
5 Определение вариации чувствительности датчика	6.4.3	да

^{1.2} При получении отрицательного результата при проведении любой операции поверка прекращается.

- 2 Средства поверки
- 2.1 При проведении поверки рекомендуется применять средства поверки, указанные в таблице 2.

Таблица 2.

	Y Y		
Цаименорание операции	Наименование и нормативные документы на средства повер-		
Наименование операции	ки, основные технические характеристики		
	Kii, concentration receive napakiepiteriikii		
Электрическое сопро-	Тераомметр Е6-13А (диапазон измерений сопротивления от		
тивление изоляции, Ом	10 до 10 ¹⁴ Ом, пределы допускаемой относительной погреш-		
	ности измерений сопротивления \pm (2,5 - 10) %)		
Чувствительность датчи-	Микровольтметр-электрометр В7-30 (пределы допускаемой		
ка при $P_{cr} = 630 \cdot 10^5$ Па	относительной погрешности измерений напряжения ± 2 %);		
(630 кгс/см ²)	манометр грузопоршневый МП-600 (ТУ 4212-014-55862958-		
	2005)		
Изменение чувствитель-	Микровольтметр-электрометр В7-30; манометр грузопоршне-		
ности датчика в диапазо-	вый МП-2500 (ТУ 4212-014-55862958-2005)		
не статических давлений			
от 110·10 ⁵ до 1250·10 ⁵ Па			
(от 110 до1250 кгс/см ²)			

- 3 Требования безопасности
- 3.1 При проведении поверки необходимо соблюдать общие требования безопасности по ГОСТ 12.3.019-80 и требования на конкретное поверочное оборудование.
 - 4 Условия поверки
 - 4.1 При проведении поверки должны соблюдаться следующие условия:
 - температура окружающего воздуха (20 \pm 5) $^{\rm o}$ C;
 - относительная влажность воздуха от 45 до 80 %;
 - атмосферное давление от 86 до 106 к Π а (от 645 до 795 мм рт. ст.).

- 4.2 Все измерения начинать не ранее чем через час после установки датчика в посадочное гнездо грузопоршневого манометра и включения электрометра в электрическую сеть.
 - 5 Подготовка к поверке
- 5.1 Перед проведением поверки подготовить средства поверки к работе согласно инструкции на них.
- 5.2 Не допускается применять средства поверки, срок обязательных поверок которых истек.
 - 6 Проведение поверки
 - 6.1 Внешний осмотр
- 6.1.1 При проведении внешнего осмотра установить соответствие датчика следующим требованиям:
- поверяемые датчики не должны иметь повреждений, препятствующих их дальнейшему применению;
- на поверхности датчика не должно быть вмятин, глубоких царапин, забоин за исключением царапин и вмятин глубиной не более 0,4 мм от ключа на плоскостях гайки датчика, потемнения (некоррозионного характера) наружной поверхности корпуса датчика;
- маркировка датчика должна соответствовать данным, указанным в формуляре на датчик.
- 6.2 Определение электрического сопротивления изоляции провести тераомметром E6-13A при испытательном напряжении 100 В путем измерения сопротивления между корпусом датчика и гнездом розетки. Электрическое сопротивление изоляции при нормальных климатических условиях должно быть не менее $1\cdot10^{11}$ Ом.
 - 6.3 Определение чувствительности
- 6.3.1 Определение чувствительности датчика провести в статическом режиме в нормальных климатических условиях.
- 6.3.2 Датчик ввернуть в гнездо грузопоршневого манометра МП-2500, подключить его антивибрационным кабелем емкостью (150 ± 15) пФ и сопротивлением изоляции не менее $1 \cdot 10^{11}$ Ом к входу вольтметра-электрометра универсального В7-30. Выдержать датчик в подключенном состоянии в течение 1 часа для установления теплового баланса.

- 6.3.3 Задать грузопоршневым манометром статическое давление $P_{cr} = 630 \cdot 10^5$ Па (630 кгс/см²) при нажатой кнопке вольтметра-электрометра «ВХ. ЗАМКН».
- 6.3.4 Отпустить кнопку «ВХ. ЗАМКН». Проконтролировать «0» датчика. Отклонение не должно превышать $|\pm 2|$ единицы последней декады.
- 6.3.5 Задать грузопоршневым манометром дополнительное давление $\Delta P = 5 \cdot 10^5$ Па (5 кгс/см²) путем наложения дополнительного груза и замерить выходное напряжение датчика по показанию вольтметра-электрометра.
- 6.3.6 Снять дополнительный груз и проконтролировать «0» датчика. Отклонение не должно превышать $|\pm 2|$ единицы последней декады.
- 6.3.7 Повторить работу по п.п. 6.3.3 6.3.7 еще два раза, после чего подсчитать чувствительность датчика $\sigma_{+\Lambda Pi}$ мВ(ампл)/Па (мВ(ампл)/кгс/см²), по формуле:

$$\sigma_{\pm \Delta Pi} = (U_i + U_i' + U_i'')/3 \cdot \Delta Pi,$$
 (1)

где $U_{i}^{'}$, $U_{i}^{"}$, $U_{i}^{"}$, $U_{i}^{"}$ – выходное напряжение датчика, мВ(ампл), в 1, 2 и 3 замерах;

i – значения ΔP , Πa (кгс/см²), в градуировочных точках.

Значения $U_{i}^{'}$, $U_{i}^{"}$, $U_{i}^{"}$, $U_{i}^{"}$ не должны отличаться между собой более, чем на $|\pm 2|$ единицы последней декады вольтметра-электрометра.

- 6.3.8 Повторить работу по п.п. 6.3.3 6.3.4, уменьшая статическое давление $P_{cr} = 630 \cdot 10^5~\Pi a~(630~\kappa rc/cm^2)$ на $\Delta P = 5 \cdot 10^5~\Pi a~(\kappa rc/cm^2)$ путем снятия груза и измерения выходного напряжения датчика по показанию вольтметра-электрометра.
- 6.3.9 Вернуть дополнительный груз и проконтролировать «0» датчика. Отклонение не должно превышать $|\pm 2|$ единицы последней декады.
- 6.3.10 Повторить работу по п.п. 6.3.9 6.3.10 еще два раза и определить чувствительность $\sigma_{\pm \Delta Pi}$ по формуле (1).
- 6.3.11 Подсчитать среднее значение чувствительности датчика $\sigma_{\Delta Pi,}$ мВ(ампл)/Па (мВ(ампл)/ кгс/см²), при заданной величине \pm ΔP_i по формуле:

$$\sigma_{\Delta Pi} = (\sigma_{+\Delta Pi} + \sigma_{-\Delta Pi})/2, \qquad (2)$$

где $\sigma_{+\Delta Pi}$ — чувствительность датчика при увеличении давления P_{cr} на величину $\Delta P_i = 5 \cdot 10^5 \; \Pi a \; (5 \; \kappa r c/cm^2);$

 $\sigma_{\text{-}\Delta Pi}$ — чувствительность датчика при уменьшении давления P_{cr} на величину $\Delta P_i = 5 \cdot 10^5 \; \Pi a \; (5 \; \text{кгc/cm}^2).$

- 6.3.12 По методике п.п. 6.3.5 6.3.9 повторить определение чувствительности датчика при $P_{cr} = 630 \cdot 10^5$ Па (630 кгс/см²) для значений $\Delta P_i = \pm$ (10; 15; 20; 25; 30; 40; 56; 80)·10⁵ Па [\pm (10; 15; 20; 25; 30; 40; 56; 80) кгс/см²].
- 6.3.13 Подсчитать среднюю чувствительность датчика σ_{cp} , мВ(ампл)/Па (мВ(ампл)/кгс/см²), по формуле:

$$\sigma_{\rm cp} = (\sigma_{\Delta P5} + \sigma_{\Delta P10} + \sigma_{\Delta P15} \dots + \sigma_{\Delta P56})/8,$$

где $\sigma_{\Delta P5}$... $\sigma_{\Delta P80}$ — значения средней чувствительности в градуировочных точках ΔP_i .

Чувствительность датчика должна быть равна $(7.5 \pm 3) \cdot 10^{-5}$ мВ(ампл)/Па $[(7.5 \pm 3) \text{ мВ(ампл)/кгс/см}^2].$

- 6.4 Определение изменения чувствительности датчика в диапазоне статических давлений от $110\cdot10^5$ до $1250\cdot10^5$ Па (от 110 до 1250 кгс/см²)
- 6.4.1 По методике п.п. 6.3.3 6.3.7 определить чувствительность датчика $\sigma_{\text{Рстк}}$ при статических давлениях $P_{\text{ст}} = (110; 160; 224; 315; 450; 900; 1250) \cdot 10^5$ Па [(110; 160; 224; 315; 450; 900; 1250) кгс/см²],

где κ – значение статического давления P_{cr} в градуировочных точках.

Измерение выходного сигнала датчика $U_{\text{Рстк}}$ при каждом значении $P_{\text{ст}}$ проводить 3 раза.

6.4.2 Подсчитать чувствительность датчика $\sigma_{\text{Рстк}}$ мВ(ампл)/Па (мВ(ампл)/кгс/см²), по формуле:

$$\sigma_{Pctk} = (U_{Pctk} + U_{Pctk} + U_{Pctk} + U_{Pctk})/3 \cdot \Delta P_i,$$

где $U_{Pcтк}$, $U_{Pcтk}^{"}$, $U_{Pcтk}^{"}$ – выходное напряжение датчика при заданном P_{ct} в первом, втором и третьем замерах $\Delta P_i = 5 \cdot 10^5 \, \text{Па} \, (5 \, \text{кгc/cm}^2)$.

6.4.3 Подсчитать изменение чувствительности датчика $\gamma_{\text{Рст }\kappa}$, % по формуле:

$$\gamma_{\text{Рст K}} = (1 - \sigma_{\text{РстK}}/\sigma + \Delta P_{10}) \cdot 100 \%,$$

где σ_{Pcrk} – чувствительность датчика в диапазоне P_{cr} (от $110\cdot$ до $1250)\cdot 10^5$ Па (от 110 до 1250 кгс/см²) мВ(ампл)/Па [мВ(ампл)/кгс/см²];

 $\sigma + \Delta P_{10} -$ чувствительность, определенная в п.п. 6.3.3 - 6.3.8 при $P_{cr} = 630 \cdot 10^5~\Pi a$ $(630 \text{ кгс/см}^2) \text{ мВ}(\text{ампл})/\Pi \text{а} [\text{мВ}(\text{ампл})/\text{кгс/см}^2].$

6.4.4 Подсчитать вариацию чувствительности датчика σ_{κ} , %, датчика контрольного в каждой точке статического ряда от $110\ 10^5$ до $1250\ 10^5$ Па (от $110\ до\ 1250\ кгс/см^2$) по формуле:

$$\sigma_{\rm Ki} = (\sigma_{\rm PCTKi} - \sigma'_{\rm PCTKi})/\sigma_{\rm PCTK} \cdot 100 \%$$

где $\sigma_{Pcткi}$ – значение чувствительности датчика в i-й точке статического ряда, полученное при предыдущей проверке;

σ' Реткі - значение чувствительности в і-й точке статического ряда, полученное при проверке по п.п. 6.3.14, 6.4.2.

6.5 Положительные результаты поверки оформляются протоколом и свидетельством о поверке.

7 Оформление результатов поверки

7.1 Положительные результаты оформляются поверки соответствии ПР 50.2.006-94.

Начальник отдела

ГЦИ СИ «Воентест» 32 ГНИИИ МО РФ
Начальник НИО-15
Начальник НИЛ-151
Исполнитель – ведущий инженер

В.П. Бажанов

К.Е. Балашов

В.Т. Цыганков