871

УТВЕРЖДАЮ

Начальник ГЦИ СИ "ВОЕНТЕСТ" ГНИИИ МО РФ

В. Н. Храменков

2005 г.

Комплексы программно-аппаратные «ГРИФ-АЭ-1001». Методика поверки

1 Введение

- 1.1 Данная методика распространяется на комплексы программно-аппаратные «ГРИФ-АЭ-1001» (далее комплексы) и устанавливает порядок проведения его первичной и периодической поверок.
 - 1.2 Межповерочный интервал один год.

2 Операции поверки

При поверке выполняют операции, представленные в таблице 1. Таблица1

	Наименование операции	Номер пункта	Прове операц	* **
			Первич- ной поверке	Периоди - ческой поверке
1	2	3	4	5
1.	Внешний осмотр	8.1	да	да
2.	Опробование	8.2	да	да
3.	Определение метрологических характеристик	8.3	да	да
3.1	Проверка диапазона частот	8.3.1	да	да
1	Проверка неравномерности амплитудно-частотной характеристики в пределах диапазона частот	8.3.2	да	да
3.3	Определение погрешности измерений амплитуды входного сигнала	8.3.3	да	да
	Проверка параметров внутреннего калибровочного генератора	8.3.4	да	да
3.5	Проверка среднего уровня собственных шумов	8.3.5	да	да
3.6	Проверка чувствительности	8.3.6	да	да
3.7	Проверка входного сопротивления	8.3.7	да	да

3 Средства поверки

3.1 При проведении поверки используют средства измерений и вспомогательное оборудование, представленное в таблице 2.

Таблица 2

Наименование и	Основные	Номер	Примечание
условное обозначение оборудования и изделий	технические характеристики	пункта методики	
1. Генератор сигналов низкочастотный Γ 3-122 Диапазон частот от 0,001 Γ ц до 1999999,999 Γ ц. Погрешность установки частоты $\pm 5*10^{-7}$ Γ ц.		8.3.1 8.3.2	

Ta sa	T	0.2.1	T
2. Частотомер	Диапазон	8.3.1	
Ч3-63/1	измеряемых частот	8.3.2	
	от 0,1 Гц до 1,5 ГГц.	8.3.4	
	Относительная		
	погрешность по		
E. C.	частоте		
($\pm 5*10^{-7}$.		
3. Вольтметр	Диапазон	8.3.1	
универсальный цифровой	измеряемых	8.3.2	
B7-38	напряжений	8.3.4	'
	от 10 мкВ до 300 В,		
	диапазон частот		
	от 30 Гц до 100 кГц.		
	Погрешность		
	измерений		
	$\pm (0,2-0,5)$ %.		
4. Универсальный	Диапазон	8.3.3	
калибратор-вольтметр	воспроизведения и	8.3.6	
В1-28	измерения	0.5.0	
B1-28	переменного		
	напряжения		
	от 10 мкВ до 700 В.		
	Погрешность		
	установки		
	выходного и		
	измеряемого		
	напряжения		
	$\pm (0.02 - 1) \%$.		
5. Аттенюатор	Диапазон частот	8.3.3	
ступенчатый Д1-13	от 0 Гц до 30 МГц.	8.3.6	
Ступенчатын Д1-13	Пределы ослабления	0.5.0	
	от 0 дБ до 110 дБ.		
	Погрешность		
	измерений от		
	0,003 дБ до 0, 025		
	дБ.		
6 Hayramanahaar -	***	0 2 7	
6. Измеритель цифровой	Диапазон измерений	8.3.7	
E7-14	сопротивления		
	0,1 мОм — 1 ГОм		
	Погрешность		
	измерений 0,1 %		

^{3.2} Допускается использование других средств измерений и вспомогательного оборудования, имеющих метрологические и технические характеристики не хуже характеристик приборов, приведенных в таблице 2.

3.3 Полученные при поверке значения метрологических характеристик должны быть не хуже значений, приведенных в таблице 3.

Таблица 3

Габлица 3	
Наименование характеристики	Значение характеристики
Диапазон частот, кГц	от 0,3 до 10
Неравномерность АЧХ в пределах	
диапазона частот, дБ	<u>+</u> 1,5
Пределы допускаемой погрешности	,
измерений амплитуды сигнала, дБ	<u>+</u> 1,5
Средний уровень собственных шумов в	
полосе пропускания 1 Гц, приведенный	
ко входу, н B/Γ ц $^{1/2}$	
канал 1	2
канал 2	10
канал 3	не нормируется
Чувствительность, нВ, не более:	
канал 1	6,2
канал 2	30
канал 3	не нормируется
Параметры калибровочного генератора	
на основе ЦАП:	
амплитуда, мВ	10 (± 1%)
частота, Гц	1000 (± 5%)
Входное сопротивление, кОм	
канал 1 (измерительный 600 Ом)	от 0,54 до 0,66
канал 2 (измерительный 1 МОм)	от 900 до 1100
канал 3 (виброакустический)	от 45 до 55

4 Требования к квалификации поверителей

К проведению поверки комплекса допускается инженерно-технический персонал со среднетехническим или высшим образованием, имеющий опыт работы с электронными установками, ознакомленный с руководством по эксплуатации и документацией по поверке и имеющий право на поверку.

5 Требования безопасности

- 5.1 К работе на комплексе допускаются лица, изучившие требования безопасности по ГОСТ 22261-94, ГОСТ Р 51350-99, инструкцию по правилам и мерам безопасности и прошедшие инструктаж на рабочем месте.
- 5.2 Запрещается проведение измерений при отсутствии или неисправности заземления аппаратуры, входящей в состав комплекса.

6 Условия поверки

- 6.1 Испытания проводят в нормальных климатических условиях (по ГОСТ 22261):
- температура окружающего воздуха (20 ± 5), °C;
- относительная влажность (45 80) %;
- атмосферное давление (645 795) мм рт.ст.

Параметры питающей электросети должны быть в пределах: напряжение (220 ± 22) В, частота (50 ± 0,5) Γ ц.

Перед проведением испытаний все входящие в состав комплекса электронные блоки и приборы должны быть включены и прогреты в течение не менее 30 мин.

7 Подготовка к поверке

При подготовке к поверке выполняют следующие операции:

- проверяют готовность комплекса в целом согласно руководству по эксплуатации;
- выполняют пробное непродолжительное (30 мин.) включение установки.

8 Проведение поверки

8.1 Внешний осмотр

При проведении внешнего осмотра проверяют:

- соответствие состава комплекса технической документации;
- панели и кабели аппаратуры комплекса на предмет механических повреждений.

8.2 Опробование

Присоединить к измерительному блоку вибродатчик, микрофон и головные телефоны.

Соединить измерительный блок и персональный компьютер соединительным кабелем USB.

Включить измерительный блок нажатием кнопки ПИТАНИЕ, при этом на лицевой панели должен загореться светодиод РАБОТА. Подключить ПК к питающей сети и включить его, установить специальное программное обеспечение (СПО) комплекса.

Произвести калибровку комплекса в соответствии с указаниями СПО.

8.3 Определение метрологических характеристик

8.3.1 Проверка диапазона частот

Проверка диапазона частот осуществляется с помощью генератора Γ 3-122, частотомера Ψ 3-63/1 и вольтметра Π 7-38.

Вольтметр В7-38, частотомер Ч3-63/1 и генератор Γ 3-122 заземлить, подключить к сети электропитания, включить и прогреть в течение времени, указанном в их технических описаниях.

Собрать схему согласно рис.1.

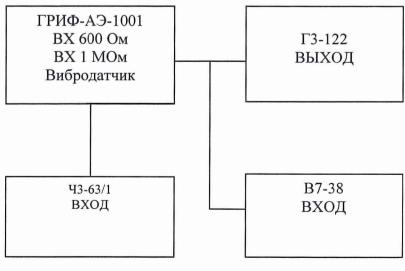


Рис. 1

Подключить разъем ВЫХОД генератора Г3-122 к разъему ВХ 600 Ом измерительного блока комплекса и входу вольтметра В7-38.

Перевести комплекс в режим работы ИЗМЕРЕНИЕ.

По вольтметру цифровому B7-38 установить выходное напряжение генератора Γ 3-122 величиной 1 В и поддерживая его постоянным (при помощи клавиш U, mV генератора), изменять значение частоты генератора Γ 3-122 в пределах от 0,3 до 10 к Γ ц. По показаниям комплекса зафиксировать максимальное значение напряжения Umax и измерить его.

Увеличивать значение частоты генератора Г3-122 до момента уменьшения значения напряжения до уровня 0,7Umax. Значение частоты на частотомере Ч3-63/1 будет соответствовать значению верхней граничной частоте диапазона частот комплекса.

Результаты поверки считают удовлетворительными, если измеренное значение верхней граничной частоты не меньше 10 кГц.

Уменьшать значение частоты генератора Г3-122 до момента уменьшения значения напряжения до уровня 0,7Umax. Значение частоты на частотомере Ч3-63/1 будет при этом соответствовать значению нижней граничной частоте диапазона частот комплекса.

Результаты поверки считают удовлетворительными, если измеренное значение нижней граничной частоты не больше 0,3 кГц.

Подключая разъем ВЫХОД генератора Г3-122 поочередно к разъемам ВХ 1 МОм и ВИБРОДАТЧИК комплекса, аналогично определить границы диапазона частот.

Результаты поверки считают удовлетворительными, если измеренные значения нижней граничной частоты не больше $0,3\,$ к Γ ц, верхней граничной частоты не меньше $10\,$ к Γ ц.

8.3.2 Проверка неравномерности амплитудно-частотной характеристики в пределах диапазона частот

Проверка неравномерности амплитудно-частотной характеристики в пределах диапазона частот осуществляется с помощью генератора Γ 3-122 , частотомера Ψ 3-63/1 и вольтметра Π 7-38.

Вольтметр В7-38, частотомер Ч3-63/1 и генератор Γ 3-122 заземлить, подключить к сети электропитания, включить и прогреть в течение времени, указанном в их технических описаниях.

Подключить приборы согласно схемы, приведенной на рис. 2.

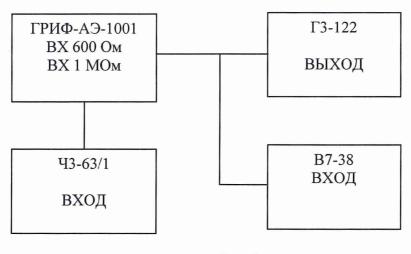


Рис. 2

Перевести комплекс в режим работы ИЗМЕРЕНИЕ.

Подключить разъем ВЫХОД генератора Г3-122 к разъему ВХ 600 Ом измерительного блока комплекса. По вольтметру цифровому В7-38 установить выходное напряжение генератора Г3-122 величиной 1 В и поддерживая его постоянным (при помощи

клавиш U, mV генератора), изменять значение частоты генератора Г3-122 в пределах диапазона частот комплекса. По показаниям комплекса зафиксировать максимальное Umax (В) и минимальное Umin (В) отклонения значений напряжения от номинального и измерить их.

Вычислить значение неравномерности амплитудно-частотной характеристики Y комплекса по формуле:

Y=20lgUmax/Umin (дБ).

Результаты поверки считают удовлетворительными, если вычисленное значение неравномерности AЧX не превышает \pm 1,5 дБ.

Подключить разъем ВЫХОД генератора Г3-122 к разъему ВХ 1 МОм измерительного блока комплекса и аналогично определить значение Y по входу 1 МОм.

Результаты поверки считают удовлетворительными, если вычисленное значение неравномерности AYX не превышает \pm 1,5 дБ.

8.3.3 Определение погрешности измерений амплитуды входного сигнала

Определение погрешности измерений амплитуды входного сигнала осуществляется с помощью калибратора-вольтметра В1-28 и аттенюатора Д1-13.

Универсальный калибратор-вольтметр В1-28 заземлить, включить в сеть электропитания и прогреть в течение времени, указанном в его техническом описании.

Подключить приборы согласно схемы, приведенной на рис. 3.

Рис. 3

Подключить разъем ВЫХОД калибратора-вольтметра В1-28 к разъему ВХ 600 Ом измерительного блока комплекса. Установить значение частоты калибратора-вольтметра В1-28, равное $1000 \, \Gamma$ ц.

Установить на аттенюаторе Д1-13 ослабление, равное 10 дБ.

Перевести комплекс в режим работы ИЗМЕРЕНИЕ.

Устанавливая потенциометром УСТ. ВЫХОДА калибратора-вольтметра В1-28 значения выходного напряжения 5, 10, 50, 100 нВ; 1, 10, 50, 100 мкВ; 1, 10, 50, 100 мВ; 1, 5, 8 В, фиксировать показания комплекса при каждом из данных воздействий. Вычислить погрешность измерения амплитуды комплекса по формуле:

$$\sigma[дБ] = Uкомплекса[дБ] - Uві-28[дБ].$$

Результаты поверки считают удовлетворительными, если вычисленные погрешности измерения амплитуды входного сигнала не превышают \pm 1,5 дБ.

Подключить разъем ВЫХОД универсального калибратора-вольтметра В1-28 к разъему ВХ 1 МОм измерительного блока комплекса и аналогично вышеуказанному определить погрешность измерения амплитуды комплекса по входу 1 МОм.

Результаты поверки считают удовлетворительными, если вычисленные погрешности измерения амплитуды входного сигнала не превышают + 1,5 дБ.

8.3.4 Проверка параметров внутреннего калибровочного генератора

Проверка параметров внутреннего калибровочного генератора осуществляется при помощи вольтметра В7-38 и частотомера Ч3-63/1.

Вольтметр В7-38 и частотомер Ч3-63/1 заземлить, подключить к сети электропитания, включить и прогреть в течение времени, указанном в их технических описаниях.

Подключить приборы согласно схемы, приведенной на рис. 4.

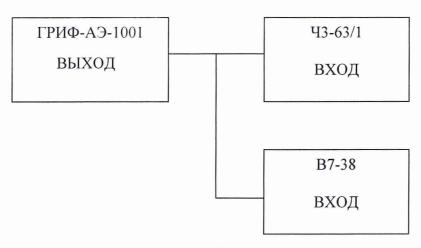


Рис. 4

Вольтметром В7-38 измерить величину напряжения внутреннего калибровочного генератора.

Результаты поверки считают удовлетворительными, если значение напряжения внутреннего калибровочного генератора равно $10 \text{ MB} \pm 1 \text{ %}$.

Частотомером Ч3-63/1 измерить значение частоты внутреннего калибровочного генератора.

Результаты поверки считают удовлетворительными, если значение частоты внутреннего калибровочного генератора равно $1000 \, \Gamma \mu \pm 5 \, \%$.

8.3.5 Проверка среднего уровня собственных шумов

В соответствии с указаниями СПО комплекса установить следующие значения коэффициентов усиления каскадов: первый каскад -60 дБ, второй каскад -20 дБ, третий каскад -40 дБ.

Выбрать значение входного сопротивления, равное 600 Ом. Установить полосу обзора комплекса 3,4 кГц, полосу пропускания 1 Гц.

Перевести комплекс в режим работы ИЗМЕРЕНИЕ.

Измерить среднеквадратическое значение шумов, наблюдаемых на экране монитора.

Средний уровень собственных шумов комплекса рассчитать по формуле:

$$U_{cui} = \frac{U_{u3M}}{K v \sqrt{\Delta F}},$$

где: Ucш – средний уровень собственных шумов комплекса (B/Гц^{у2}),

Uизм – измеренное среднеквадратическое значение собственных шумов (B),

 Ky – общий коэффициент усиления трех каскадов усиления, который учитывается при измерении Uизм,

 ΔF – значение выбранной полосы пропускания (Γ ц).

Установить значение полосы обзора, равное 10 кГц. Аналогично вышеизложенному определить средний уровень собственных шумов комплекса.

Результаты поверки считают удовлетворительными, если значение среднего уровня собственных шумов комплекса не превышает 2 нВ/ Γ ц $^{1/2}$.

Выбрать значение входного сопротивления, равное 1 МОм. Для полос обзора 3,4 кГц и 10 кГц аналогично определить средний уровень собственных шумов комплекса.

Результаты поверки считают удовлетворительными, если значение среднего уровня собственных шумов комплекса не превышает $10~{\rm HB}/{\Gamma}{\rm u}^{\frac{1}{2}}$.

8.3.6 Проверка чувствительности

Проверка чувствительности осуществляется при помощи универсального калибратора-вольтметра В1-28 и аттенюатора Д1-13.

Универсальный калибратор-вольтметр В1-28 заземлить, включить в сеть электропитания и прогреть в течение времени, указанном в его техническом описании.

Подключить приборы согласно схемы, приведенной на рис. 5.

Рис. 5

Подключить разъем ВЫХОД калибратора-вольтметра В1-28 через аттенюатор Д1-13 к разъему ВХ 600 Ом измерительного блока комплекса.

Установить значение частоты калибратора-вольтметра B1-28, равное 1000 Гц. Установить на аттенюаторе Д1-13 ослабление, равное 10 дБ.

Перевести комплекс в режим работы ИЗМЕРЕНИЕ.

Увеличивать потенциометром УСТ. ВЫХОДА калибратора-вольтметра В1-28 значение его выходного напряжения до момента превышения изображения сигнала на экране монитора над уровнем собственных шумов комплекса на 10дБ. Значение выходного напряжения калибратора-вольтметра В1-28 с учетом ослабления аттенюатора Д1-13 будет определять чувствительность комплекса.

Результаты поверки считают удовлетворительными, если чувствительность комплекса не превышает 6,2 нВ.

Подключить разъем ВЫХОД калибратора-вольтметра В1-28 через аттенюатор Д1-13 к разъему ВХ 1 МОм измерительного блока комплекса и аналогично определить чувствительность комплекса.

Результаты поверки считают удовлетворительными, если чувствительность комплекса не превышает 30 нВ.

8.3.7 Проверка входного сопротивления

Проверка входного сопротивления осуществляется при помощи измерителя L, C, R цифрового E7-14 при выключенном измерительном блоке комплекса.

Измеритель L, C, R цифровой E7-14 заземлить, включить в сеть электропитания и прогреть в течение времени, указанном в его техническом описании.

Подключить разъем ВЫХОД измерителя L, C, R цифрового E7-14 к разъему BX 600 Ом измерительного блока комплекса. Измерить входное сопротивление канала 1.

Результаты поверки считают удовлетворительными, если входное сопротивление канала 1 имеет значение, не превышающее пределы (540 - 660) Ом.

Подключить разъем ВЫХОД измерителя L, C, R цифрового E7-14 к разъему BX 1 МОм измерительного блока комплекса и аналогично измерить входное сопротивление канала 2.

Результаты поверки считают удовлетворительными, если входное сопротивление канала 2 имеет значение, не превышающее пределы (0.9 - 1.1) МОм.

Подключить разъем ВЫХОД измерителя L, C, R цифрового E7-14 к разъему ВИБРОДАТЧИК измерительного блока комплекса и аналогично измерить входное сопротивление канала 3.

Результаты поверки считают удовлетворительными, если входное сопротивление канала 3 имеет значение, не превышающее пределы (45 - 55) кОм.

9 Оформление результатов поверки

- 9.1 Положительным результатом поверки считают соответствие полученных метрологических и технических характеристик комплекса характеристикам, приведенным в таблице 3 настоящей Методики поверки.
- 9.2 При положительных результатах поверки оформляется Свидетельство о поверке с указанием полученных метрологических и технических характеристик, которое выдается хранителю комплекса.
- 9.3 При отрицательных результатах поверки комплекс настраивают и направляют на повторную поверку или в ремонт.

Заместитель начальника отдела ГЦИ СИ "Воентест" 32 ГНИИИ МО РФ

Младший научный сотрудник ГЦИ СИ "Воентест" 32 ГНИИИ МО РФ

И.М. Малай

М.С. Шкуркин