#### СОГЛАСОВАНО

Начальник НКУ Н ОАО «Пеленг»

## **УТВЕРЖДАЮ**



Актинометр ПЕЛЕНГ СФ-12

Извещение № 2 - 2017 об изменении методики поверки МРБ МП.1651-2007

Разработано ОАО «Пеленг»

## Содержание

| Вводная часть                                                     | 3  |
|-------------------------------------------------------------------|----|
| 1 Нормативные ссылки                                              | 3  |
| 2 Операция поверки                                                | 3  |
| 3 Средства поверки                                                | 4  |
| 4 Требования к квалификации поверителей и требования безопасности | 5  |
| 5 Условия поверки и подготовка к ней                              | 5  |
| 6 Проведение поверки                                              | 6  |
| 6.1Внешний осмотр                                                 | 6  |
| 6.2 Опробование                                                   | 6  |
| 6.3 Определение метрологических характеристик                     | 6  |
| 7 Оформление результатов поверки                                  | 9  |
| Приложение А Форма протокола                                      | 10 |
| Библиография                                                      | 12 |

#### Вводная часть

Настоящая методика поверки распространяется на актинометр ПЕЛЕНГ СФ-12 (далее - изделие) и устанавливает методику его первичной и периодической поверки.

Изделие предназначено для измерения энергетической освещенности, создаваемой солнечным излучением, поступающим от солнечного диска, т.е. прямой солнечной радиации.

В состав изделия входят преобразователь, блок электронный трехканальный, программное обеспечение и расширитель портов МОХА.

Межповерочный интервал изделия - не более 12 мес.

Методика поверки разработана в соответствии с требованиями ТКП 8.003.

#### 1 Нормативные ссылки

В настоящей методике поверки использованы ссылки на следующие технические нормативные правовые акты в области технического нормирования и стандартизации:

ТКП 8.003-2011 Система обеспечения единства измерений Республики Беларусь. Поверка средств измерений. Правила проведения работ;

ГОСТ 8.195-2013 Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений спектральной плотности энергетической яркости, спектральной плотности силы излучения, спектральной плотности энергетической освещенности, силы излучения и энергетической освещенности в диапазоне длин волн от 0,2 до 25,0 мкм;

ГОСТ 12.3.019-80 Система стандартов безопасности труда. Испытания и измерения электрические. Общие требования безопасности.

#### 2 Операции поверки

2.1 При проведении поверки должны выполняться операции, указанные в таблице 1.

Таблица 1

|                                                   | Номер пункта        | Проведение операции при |                                        |  |  |
|---------------------------------------------------|---------------------|-------------------------|----------------------------------------|--|--|
| Наименование операции                             | методики<br>поверки | первичной<br>поверке    | периодической<br>поверке               |  |  |
| 1 Внешний осмотр                                  | 6.1                 | +                       | +                                      |  |  |
| 2 Опробование                                     | 6.2                 | +                       | +                                      |  |  |
| 3 Определение метрологических характеристик:      | 6.3                 |                         |                                        |  |  |
| 3.1 Определение выходного сопротивления           | 6.3.1               | +                       | <b>+</b> 1                             |  |  |
| 3.2 Определение времени<br>установления показаний | 6.3.2               | + //                    | ************************************** |  |  |

## Продолжение таблицы 1

|                                                                                        | Номер пункта        | Проведение операции при |                          |  |  |
|----------------------------------------------------------------------------------------|---------------------|-------------------------|--------------------------|--|--|
| Наименование операции                                                                  | методики<br>поверки | первичной<br>поверке    | периодической<br>поверке |  |  |
| 3.3. Определение коэффициента преобразования при нормальном падении радиации           | 6.3.3               | +                       | +                        |  |  |
| 3.4 Определение случайной погрешности результата измерения коэффициента преобразования | 6.3.4               | +                       | +                        |  |  |

Примечание — если при проведении той или иной операции поверки получают отрицательный результат, дальнейшую поверку прекращают.

## 3 Средства поверки

3.1 При проведении поверки должны применяться средства поверки, указанные в таблице 2.

Таблица 2

| Номер<br>пункта<br>методики<br>поверки | Наименование и тип (условное обозначение) эталонов и вспомогательных средств поверки, их метрологические и основные технические характеристики, обозначение ТНПА      |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.2.1                                  | Вольтметр универсальный В7-65 [1], 0+200 mV; предел допускаемой основной погрешности ± 0,03 %. Гигрометр-термометр цифровой ГТЦ-1 [2], диапазон измерений:            |
|                                        | относительная влажность от 10 % до 100 %; температура от минус 30 °C до 60 °C; класс точности ±3,0 %; ±0,5 °C (в точке 20 °C), ±0,6 °C (в остальном диапазоне).       |
|                                        | Барометр рабочий сетевой БРС-1М-1 [3], пределы допускаемой погрешности измерения при температуре от плюс 5 °C до плюс 55 °C, ± 0,03 кПа                               |
| 6.3.1                                  | Вольтметр универсальный В7-65 [1], 0+200 Ом; предел допускаемой основной погрешности ± 0,12 %. Гигрометр-термометр цифровой ГТЦ-1 [2], диапазон измерений:            |
|                                        | относительная влажность от 10 % до 100 %; температура от минус 30 °C до 60 °C; класс точности ±3,0 %; ±0,5 °C (в точке 20 °C), ±0,6 °C (в остальном диапазоне).       |
|                                        | Барометр рабочий сетевой БРС-1М-1 [3], пределы допускаемой погрешности измерения при температуре от плюс 5 °C до плюс 55 °C, ± 0,03 кПа                               |
| 6.3.2                                  | Установка актинометрическая ПО-4 [4], мощность светоизмерительной лампы не менее 1000 Вт; класс точности ±5 %. Секундомер электронный "Интеграл С-01"[5],             |
|                                        | класс точности ±(9,6·10 <sup>-6</sup> T <sub>x</sub> +0,01) с., где Т <sub>x</sub> - измеряемое время.<br>Гигрометр-термометр цифровой ГТЦ-1 [2], диапазон измерений: |
|                                        | относительная влажность от 10 % до 100 %; температура от минус 30 °C до 60 °C; класс точности ±3,0 %, ±0,5 °C (в точке 20 °C), ±0,6 °C (в остальном диапазоне).       |
|                                        | Барометр рабочий сетевой БРС-1М-1 [3], пределы допускаемой погрешности измерения при температуре от плюс 5 °C до плюс 55 °C, ± 0,03 кПа                               |

#### Продолжение таблицы 2

| Номер<br>пункта<br>методики<br>поверки | Наименование и тип (условное обозначение) эталонов и вспомогательных средств поверки, их метрологические и основные технические характеристики, обозначение ТНПА                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.3.3                                  | Установка актинометрическая ПО-4 [4], мощность светоизмерительной лампы не менее 1000 Вт; класс точности ±5 %.  Эталонный актинометр 1-го или 2-го разряда ГОСТ 8.195; предел допускаемой погрешности измерения $\Delta$ не более 1,7 %; диапазон измерений от 0,3 до 10,0 мкм.  Гигрометр-термометр цифровой ГТЦ-1 [2], диапазон измерений: относительная влажность от 10 % до 100 %; температура от минус 30 °С до 60 °С; класс точности ±3,0 %; ±0,5 °С (в точке 20 °С), ±0,6 °С (в остальном диапазоне).  Барометр рабочий сетевой БРС-1М-1 [3], пределы допускаемой погрешности измерения при температуре от плюс 5 °С до плюс 55 °С, ± 0,03 кПа |

#### Примечания

- 1 Допускается применять другие средства поверки, обеспечивающие определение метрологических характеристик поверяемых средств измерений с требуемой точностью.
- 2 Все средства измерений должны быть поверены или аттестованы в установленном порядке и иметь действующие клейма и (или) свидетельства о поверке.

#### 4 Требования к квалификации поверителей и требования безопасности

- 4.1 К проведению поверки допускают лиц, аттестованных в качестве поверителей, изучивших техническую документацию на средства поверки и поверяемые средства измерений и настоящую методику поверки.
- 4.2 При проведении поверки должны быть соблюдены общие требования безопасности по ГОСТ 12.3.019.

#### 5 Условия поверки и подготовка к ней

Прямая солнечная радиация во время поверки должна быть устойчивой. На диске солнца и в пределах угла 5° в любом направлении от линии визирования на солнце не должно быть следов облаков. В воздухе не должно быть пыли, дыма, тумана или дымки.

- 5.1.1Перед проведением поверки по солнцу должны быть выполнены подготовительные работы:
- измерительные приборы и термометр должны быть затенены экранами от прямой солнечной радиации;

- поверяемый преобразователь и эталонный актинометр должны быть вынесены на место поверки не менее чем за 30 минут до начала измерений.
- 5.2 При проведении поверки в лабораторных условиях для работы используется установка актинометрическая ПО-4. Светоизмерительная лампа установки актинометрической ПО-4 и измерительные приборы должны быть включены не менее чем за 30 мин до начала работы.
- 5.3 Помещение, в котором проводится поверка, не должно иметь вибраций и сотрясений, в нем не должно быть источников сильных электромагнитных полей.

#### 6 Проведение поверки

#### 6.1 Внешний осмотр

При внешнем осмотре устанавливают соответствие изделия следующим требованиям:

- 1) отсутствие видимых механических повреждений;
- 2) отсутствие загрязнений и царапин на поверхности преобразователя;
- 3) отсутствие повреждений кабелей и разъемов;
- 4) четкость и хорошая различимость маркировок на корпусе преобразователя;
- 5) защитное стекло не должно иметь пузырьков, трещин, царапин, темных пятен и свилей;
- 6) комплектность изделия, в зависимости от варианта исполнения, должна соответствовать комплектности, указанной [6].

#### 6.2 Опробование

- **6**.2.1 Преобразователь подсоединяют к вольтметру универсальному В**7-6**5, открывают крышку и убеждаются в наличии показаний при освещении преобразователя.
  - 6.3 Определение метрологических характеристик

#### 6.3.1 Определение выходного сопротивления

Определение выходного сопротивления проводят путем измерения сопротивления между выводами преобразователя при помощи вольтметра универсального В7-65.

Преобразователь считается прошедший поверку, если выходное сопротивление не превышает 30 Ом.

### 6.3.2 Определение времени установления показаний

Определение времени установления показаний проводят на установке ПО-4 при энергетической освещенности в плоскости измерений не менее 0,4 кВт/м<sup>2</sup> в следующим порядке:

6.3.2.1 Устанавливают преобразователь нормально к направлению светового потока и подключают к измерительному прибору. Через 2 мин затеняют преобразователь затеняющим экраном и через 2 мин снимают отсчет п

Убирают затеняющий экран и, выждав, когда выходной сигнал освещенного преобразователя достигнет установившего значения, снимают отсчет U.

6.3.2.2 Вычисляют пороговую величину выходного сигнала  $U_{a}$ , мВ по формуле

$$U_n = (U - n) \cdot 0.01 + n, \tag{1}$$

где U, п – отсчеты при освещенном и затененном преобразователе, мВ.

6.3.2.3 Затеняют преобразователь с одновременным включением секундомера, наблюдают изменение сигнала, и в момент достижения  $U_{\rm g}$ , вычисленного по формуле (1), останавливают секундомер и снимают по нему отсчет  $t_{\rm yi}$ , с. Измерение величины  $t_{\rm yi}$  выполняют три раза и вычисляют среднее арифметическое  $\overline{t_{\rm y}}$  (2), которое принимают в качестве значения времени установления показаний.

$$\overline{t_y} = \frac{\sum_{i=1}^{3} t_{yi}}{3}, \qquad (2)$$

Преобразователь считается прошедший поверку, если время установления показаний  $\overline{\mathbf{t}_{\mathsf{y}}}$  не превышает 30 с.

## 6.3.3 Определение коэффициента преобразования при нормальном падении радиации

Определение коэффициента преобразования при нормальном падении радиации проводят на установке ПО-4 путем сличения с эталонным актинометром 1-го или 2-го разряда либо в естественных условиях по Солнцу путем сличения с эталонным актинометром 1-го или 2-го разряда.

- 6.3.3.1 На установке ПО-4 сличения проводят в следующей последовательности:
- 1) включают лампу, устанавливают на ней напряжение, обеспечивающее в плоскости измерений энергетическую освещенность не ниже 0,4 кВт/м² и выдерживают не менее 30 мин для прогрева лампы. До конца поверки напряжение на лампе поддерживают постоянным с погрешностью не более ±0,2 В;
- 2) устанавливают эталонный актинометр нормально к направлению светового потока, подключают его к измерительному прибору и выдерживают освещенным не менее 2 мин, затеняют затеняющим экраном и через 2 мин снимают отсчет п<sub>0</sub> при затененном актинометре;

3) убирают экран и не менее чем через 2 мин, снимают три отсчета  $U_{0i}$ , из которых вычисляют среднее значение  $\overline{U_0}$  сигнала эталонного актинометра (3);

$$\overline{U_0} = \frac{\sum_{i=1}^{3} U_{0i}}{3},$$
(3)

- 4) снимают эталонный актинометр и устанавливают поверяемый преобразователь перпендикулярно оптической оси установки ПО-4 таким образом, чтобы центр его приемной поверхности располагался в той же точке пространства, что и эталонного актинометра;
- 5) поверяемый преобразователь выдерживают освещенным не менее 2 мин, затеняют и через 2 мин снимают отсчет n при затененном преобразователе;
- 6) убирают затеняющий экран и не менее чем через 2 мин, снимают 10 отсчетов  $U_{mi}$ , из которых вычисляют среднее значение  $\overline{U_{m}}$  (4);

$$\overline{U_{m}} = \frac{\sum_{i=1}^{10} U_{mi}}{10}, \tag{4}$$

7) вычисляют значение коэффициента преобразования K , мВ·м²/кВт, актинометра по формуле

$$K = K_0(\overline{U_m} - n) / (\overline{U_0} - n_0), \tag{5}$$

где  $K_0$  – значение коэффициента преобразования эталонного актинометра, мВ·м²/кВт;

 $\overline{U_m}\,;\;\overline{U_0}\,$  – среднее значение отсчетов при освещении поверяемого актинометра и эталонного актинометра, мВ;

- n;  $n_0$  отсчеты при затенении поверяемого преобразователя и эталонного актинометра, мВ.
- 6.3.3.2 В естественных условиях измерения выполняют в следующей последовательности:
- 1) поверяемый и эталонный актинометр нацеливают на Солнце, снимают с них крышки и выдерживают нацеленным не менее 2 мин. Измеряют температуру воздуха t °C;
- 2) закрывают поверяемый и эталонный актинометр крышками и через 2 мин отсчитывают значения места нуля поверяемого актинометра  $n_0$ ;
- 3) снимают крышки с поверяемого и эталонного актинометров, нацеливают на Солнце и через 2 мин снимают 10 пар синхронных показаний поверяемого актинометра  $(U_{mi})$  и эталонного актинометра  $(U_{0i})$ . При этом корректируя нацеливание через каждые 2 пары синхронных отсчетов.

Вычислить значение коэффициента преобразования преобразователя при температуре воздуха t по формуле

$$K_{t} = K_{0t}(\overline{U_{m}} - n) / (\overline{U_{0}} - n_{0}), \tag{6}$$

где  $K_{ot}$  – значение коэффициента преобразования эталонного актинометра, соответствующее температуре воздуха t, (мВ·м²/кВт);

 $\overline{U_m}$  ;  $\overline{U_0}$  — среднее значение отсчетов при освещении поверяемого актинометра и эталонного актинометра соответственно, мВ.

п – место нуля актинометра, мВ.

 $n_0$  — место нуля эталонного актинометра, мВ.

- 6.3.3.3 Преобразователь считается прошедший поверку, если полученные по п. 6.3.3.1 и п. 6.3.3.2 значения коэффициентов преобразования преобразователя не менее 6 (мВ·м²/кВт).
- 6.3.4 Определение случайной погрешности результата измерения коэффициента преобразования S, %

$$S = \frac{1}{\overline{U_m}} \sqrt{\frac{\sum_{i=1}^{10} (U_{mi} - \overline{U_m})^2}{m(m-1)}} 100, \tag{7}$$

где т - число измерений;

 $\overline{\textbf{U}_{m}}~$  – среднее из текущих значений  $\textbf{U}_{mi}$  данного ряда измерений, мВ.

Значение S оценивают по данным ряда измерений, выполненных по п. 6.3.3.1, при поверке на установке ПО – **4** или по п. 6.3.3.2, при поверке в естественных условиях.

Значение S, полученное по формуле 7, не должно превышать 0,3 %.

#### 7 Оформление результатов поверки

- 7.1 Результаты поверки заносят в протокол (Приложение А).
- 7.2 При положительных результатах поверки выдается Свидетельство о поверке установленной формы и на преобразователь наносится поверительное клеймо. (Приложение Г ТКП 8.003).
- 7.3 При отрицательных результатах поверки выдают Заключение о непригодности с указанием причин несоответствия. (Приложение Д ТКП 8.003).

# Приложение A (рекомендуемое)

## ФОРМА ПРОТОКОЛА

Протокол поверки

Nº

Дата поверки

| Наименование:                                     |
|---------------------------------------------------|
| Заводской номер:                                  |
| Принадлежит:                                      |
| Дата проведения поверки:                          |
| Условия поверки:                                  |
| Средства поверки:                                 |
| Вид поверки (первичная, периодическая):           |
| Результаты поверки:                               |
| 4.1 Внешний осмотр:                               |
| 1.2 Опробование:                                  |
| 1.3 Результаты измерений:                         |
| 4.3.1 Определение выходного сопротивления:        |
| $R_{BHX} = OM$                                    |
| 4.3.2 Определение времени установления показаний: |
| $\overline{t_y} = c$                              |

А.3.3 Определение коэффициента преобразования при нормальном падении радиации и случайной погрешности результата измерения коэффициента преобразования:

Таблица А.1

| № отсч.                                      | Этало               | нное СИ                                     | Поверяемый преобразователь |            |  |  |
|----------------------------------------------|---------------------|---------------------------------------------|----------------------------|------------|--|--|
|                                              | тип,                | номер                                       |                            |            |  |  |
|                                              | п <sub>о</sub> , мВ | $\mathbf{U}_{o_{i}}$ , $\mathbf{M}B$        | п <sub>і</sub> , мВ        |            |  |  |
| 1                                            |                     |                                             |                            |            |  |  |
|                                              |                     |                                             |                            |            |  |  |
| 10                                           |                     |                                             |                            |            |  |  |
| Среднее арифметическое $\overline{U_0}$ = мВ |                     | Среднее арифметическое $\overline{U_m}$ = м |                            |            |  |  |
|                                              |                     |                                             | S, S                       | % <b>=</b> |  |  |

| Коэффициент  | преобразования К = мВ·м                                       | <del>′</del> /кВт       |
|--------------|---------------------------------------------------------------|-------------------------|
| Заключение _ | годен, негоден, в последнем случае указ                       | вают причину негодности |
|              | тельство о поверке (при поло<br>не о непригодности (при отрин |                         |
| Дата         |                                                               |                         |
| Поверитель   | Подпись                                                       | ФИО                     |

#### Библиография

- [1] ТУ РБ 14559587.038-98 Вольтметр универсальный В7-65. Технические условия;
  - [2] ТУ ВҮ 100039847.056-2005 Гигрометр-термометр цифровой ГТЦ-1. Технические условия;
  - [3] 6Г2.832.037 ТО Барометр рабочий сетевой БРС-1М-1;
  - [4] ТУ 25-0854.002-84 Установка актинометрическая ПО-4. Технические условия;
  - [5] ТУ РБ 100231303.011-2002 Секундомер электронный "Интеграл С-01". Технические условия;
  - [6] Актинометр ПЕЛЕНГ СФ-12 Руководство по эксплуатации 6265.00.00.000 РЭ.

## Лист регистрации изменений

| Изм | Номера листов (страниц) |                 |       | Всего листов (страниц) в документе | N докум.  | Входящий N сопроводит. докум. и дата | Подпись                                            | Дата |                |
|-----|-------------------------|-----------------|-------|------------------------------------|-----------|--------------------------------------|----------------------------------------------------|------|----------------|
|     | изменен-<br>ных         | заменен-<br>ных | новых | аннул <b>ирован-</b><br>ных        | документе |                                      |                                                    |      |                |
| 1   |                         | 4,5             |       |                                    | 13        |                                      | ~1-10<br>0105.01<br>10                             | m    | 11.01.         |
| 2   |                         | 2-13            |       | ,                                  | 13        |                                      | ~1-10<br>01 05.01<br>10<br>~2-17<br>01 28.04<br>17 | ung  | 21.06.<br>8017 |
|     |                         |                 |       |                                    |           |                                      |                                                    |      |                |
|     |                         |                 |       |                                    |           |                                      |                                                    |      |                |
|     |                         |                 |       |                                    |           |                                      |                                                    |      |                |
|     |                         |                 |       |                                    |           |                                      |                                                    |      |                |
|     |                         |                 |       |                                    |           |                                      |                                                    |      |                |
|     | :                       |                 |       |                                    |           |                                      |                                                    |      |                |
|     |                         |                 |       |                                    |           |                                      |                                                    |      |                |
|     |                         |                 |       |                                    |           |                                      |                                                    |      |                |
|     |                         |                 |       |                                    |           |                                      |                                                    |      |                |
|     |                         |                 |       |                                    |           |                                      |                                                    |      |                |

