1511 **УТВЕРЖДАЮ** Начальник ГЦИ СИ «Воентест» 32 ГИЛИИ МО РФ А.Ю. Кузин 2007 г. « 26 12

ИНСТРУКЦИЯ

КОМПЛЕКС ИЗМЕРИТЕЛЬНО-ВЫЧИСЛИТЕЛЬНЫЙ «ИВК-15-4»

Методика поверки

г. Мытищи 2007 г.

содержание

Стр.

1. Введение	3
2. Операции поверки	4
3. Средства поверки	5
4. Требования безопасности	6
5. Условия поверки	6
6. Подготовка к поверке	6
7. Проведение поверки	7
8. Обработка результатов измерений	7
9. Оформление результатов поверки	9
Приложение 1. Функциональные схемы поверки ИК	10
Приложение 2. Форма протокола поверки	13

ИВК-15-4. Методика поверки измерительных каналов

1 ВВЕДЕНИЕ

Настоящая методика поверки (МП) распространяется на комплекс измерительновычислительный «ИВК-15-4» и устанавливает порядок проведения и оформления результатов поверки измерительных каналов (ИК):

подсистемы измерения напряжения постоянного тока, соответствующего значениям температуры;

подсистемы измерения силы постоянного тока, соответствующей значениям давления;

подсистемы измерения сопротивлений постоянному току, соответствующих значениям температуры;

подсистемы измерения частоты напряжений переменного тока, соответствующей значениям частоты вращения роторов и расхода;

подсистемы измерения напряжения постоянного тока, соответствующей значениям силы от тяги;

подсистемы измерения напряжения переменного тока, соответствующего значениям виброускорения;

подсистемы измерения параметров атмосферного воздуха.

Пределы допускаемой погрешности измерений при доверительной вероятности Р=0,95 должны соответствовать следующим значениям: 0.02 % BII напряжение постоянного тока в диапазоне от минус 2 до 55 мВ сила постоянного тока в диапазоне от 4 до 20 мА 0,05 % BII 0,04 % BII сопротивление постоянному току в диапазоне от 40 до 130 Ом 0.04 % BΠ сопротивление постоянному току в диапазоне от 80 до 200 Ом 0.1 % BII частота переменного тока в диапазоне от 5 Гц до 30000 Гц 0.06 % BII напряжение постоянного тока в диапазоне от минус 50 до 50 мВ 1,0 % BП напряжение переменного тока в диапазоне от 0 до 10 В 0,3% BII температура атмосферного воздуха в диапазоне от 233 до 323 К атмосферное давление в диапазоне от 800 до 1067 гПа 0,67 гПа 3% относительная влажность воздуха в диапазоне от 10 до 100 % где ВП – верхний предел измеряемой величины.

Перечень метрологических характеристик, подлежащих определению при поверке, приведен в таблице 1.

Таблица 1.

№ п/п	Наименование МХ канала	Условное обозначение
1	Среднее арифметическое значение измеренной величины на <i>i</i> -ой	\overline{y}_{i}
	ступени	- /
2	Оценка систематической составляющей погрешности	$\overline{\Delta}_{ci}$
3	Оценка среднего квадратического отклонения измеренной	$S_i(\Delta^{\circ})$
	величины на <i>i</i> -ой ступени	
4	Граница систематической погрешности ИК на <i>i</i> -ой ступени	Θ_i
5	Граница суммарной абсолютной погрешности ИК на <i>i</i> -ой ступени	$\overline{\Delta}_i$
6	Абсолютная погрешность ИК	Δ
7	Приведенная погрешность ИК	γ

Исходными данными для расчета метрологических характеристик ИК являются выходные сигналы ИК, представляемые в виде массивов чисел y_{jk} , полученные при подаче на вход поверяемого ИК входных величин x_i , контролируемых по рабочему эталону,

где:

і - индекс номера контрольной точки;

k - индекс номера отсчета в контрольной точке.

Функциональные схемы поверки ИК представлены в Приложении 1, рис.№№ 1-7.

2 ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки должны выполнятся операции, указанные в таблице 2.

Таблица 2.

NG		N⁰	Проведение операции	
л <u>∘</u> п/п	Наименование операции	пункта документа	первичная поверка	периодическая поверка
1	Внешний осмотр	7.1	да	да
2	Опробование	7.2	да	да
3	Определение погрешности измерений	7.3,	да	да
	ИК	8		

3 СРЕДСТВА ПОВЕРКИ

3.1. При проведении поверки используются средства измерений и технические средства, приведенные в таблицах 3 и 4.

Таблица 3. Рабочие эталоны

Номер	Наименование и тип (условное обозначение) основного или вспомогательного		
пункта	средства поверки; обозначение нормативного документа, регламентирующего		
документа	технические требования, и (или) метрологические и основные		
по поверке	характеристики средства поверки		
7.2.1	Калибратор многофункциональный MCX-II-R:		
7.3	диапазон воспроизведения напряжения постоянного тока от минус 10 до 100		
	мВ; погрешность ±(0,003 % от показаний + 0,004 % от диапазона + 0,001 мВ);		
	диапазон измерения напряжения постоянного тока от 0 до 100 мВ;		
	погрешность $\pm (0,009 \%$ от показаний $+ 0,003 \%$ от диапазона $+ 0,001 \text{ MB}$);		
	диапазон воспроизведения силы постоянного тока от 0 до 24 мА; погрешность		
	±(0,012 % от диапазона + 0,001 мА);		
	диапазон измерений силы постоянного тока от 0 до 24 мА; погрешность		
	±(0,010 % от показаний + 0,003 % от диапазона + 0,001 мА)		
7.2.1	Генератор сигналов низкочастотный прецизионный Г3-110:		
7.3	диапазон рабочих частот от 0,01 Гц до 2 МГц, погрешность \pm 3.10 ⁻⁵ %,		
	амплитуда синусоидального сигнала до 1 В, погрешность установки		
-	амплитуды не более ±0,3 %		
7.2	Магазин электрических сопротивлений Р4834:		
7.3	диапазон сопротивлений от 0,01 Ом до 999999,99 Ом; кл.т. 0,02/2,5· 10 ⁻⁷		

Номер	Наименование и тип (условное обозначение) основного или вспомогательного		
пункта	средства поверки; обозначение нормативного документа, регламентирующего		
документа	технические требования, и (или) метрологические и основные		
по поверке	характеристики средства поверки		
7.2	Генератор сигналов низкочастотный Г3-121: диапазон рабочих частот от 10 Гц		
7.3	до 1 МГц; погрешность установки амплитуды ± (0,5-2) %		
7.2	Вольтметр универсальный цифровой В7-40/1:		
7.3	диапазон измерений напряжения постоянного тока от 10 мкВ до 1000 В,		
	погрешность (0,05 – 0,1) %; диапазон измерений напряжения переменного тока		
	от 2 мВ до 1000 В, диапазон рабочих частот от 40 Гц до 100 кГц, погрешность		
	(0,6-10) %		
7.2	Термометр сопротивления платиновый вибропрочный эталонный ПТСВ-1-2:		
7.3	погрешность: не более ± 0,02 °С при измерениях температуры от минус 50 до		
	0 °C; не более $\pm 0,01$ °C при измерениях температуры от 0 до 30 °C; не более		
-	±0,02 °С при измерениях температуры от 30 до 150 °С.		
7.2	Прибор комбинированный Testo 645: диапазон измерений относительной		
7.3	влажности от 0 до 100 %; погрешность не более $\pm 0,1\%$		
7.2	Барометр образцовый переносной БОП-1М: диапазон измерений 0,5 до 1100		
7.3	кПа; пределы основной допускаемой погрешности ±10 Па		

Таблица 4. Вспомогательные средства.

№ п/п	Наименование средства измерений (технического средства)	Техническая характеристика
1	Термометр, ГОСТ 28498-90	Диапазон измерений от минус 30 до 60
		°С; цена дел. 1 °С
2	Барометр БАММ-1	Диапазон измерений от 600 до 800 мм.
		рт. ст.; погрешность ± 1,5 мм. рт. ст
3	Психрометр аспирационный MB-4M	Диапазон измерений от 10 до 100 %;
		погрешность ± 2 %
4	Термобаровлагокамера КТХБВ-1-8	

3.2 При проведении поверки допускается применять другие средства измерений, удовлетворяющие по точности и диапазону измерения требованиям настоящей методики.

3.3 При поверке должны использоваться средства измерений утвержденных типов.

3.4 Используемые при поверке рабочие эталоны должны быть поверены и иметь действующее свидетельства о поверке (поверочное клеймо).

Вспомогательные средства поверки должны быть поверены (откалиброваны) и иметь действующие свидетельства о поверке (поверочные клейма) или сертификаты о калибровке.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

4.1 При проведении поверки необходимо соблюдать требования техники безопасности, предусмотренные «Правилами технической эксплуатации электроустановок потребителей» и «Правилами техники безопасности при эксплуатации электроустановок потребителей» (изд. 3), ГОСТ 12.2.007.0-75, ГОСТ 12.1.019-79, ГОСТ 12.2.091-94 и требования безопасности, указанные в технической документации на применяемые рабочие эталоны и вспомогательное оборудование.

4.2 Поверка ИК комплекса должна осуществляться лицами не моложе 18 лет, изучившими её эксплуатационную и нормативно-техническую документацию и аттестованными в качестве поверителей.

4.3 Лица, участвующие в поверке ИК комплекса, должны пройти инструктаж и аттестацию на знание правил техники безопасности, пожарной безопасности, промышленной санитарии в

условиях испытательной станции.

5 УСЛОВИЯ ПОВЕРКИ

При проведении поверки должны соблюдаться следующие условия:

температура окружающего воздуха, °С (К):от 15 до	о 30 (от 288 до 303).
относительная влажность воздуха, %	не более 80.
атмосферное давление, мм рт. ст. (кПа) от 720 до	о 780 (от 96 до 104).
напряжение питания однофазной сети переменного тока при частоте	
(50 ± 1) Γη, B	от 198 до 242.

Примечание.

При проведении поверочных работ условия окружающей среды средств поверки (рабочих эталонов) должны соответствовать регламентируемым в их инструкциях по эксплуатации требованиям.

6 ПОДГОТОВКА К ПОВЕРКЕ

При подготовке к поверке провести следующие работы:

-проверить наличие поверочных пломб, клейм, а также свидетельства о поверке на рабочие эталоны и вспомогательные СИ;

-проверить целостность электрических цепей измерительного канала;

-обеспечить оперативную связь оператора у монитора с оператором, задающим контрольные значения;

-включить вентиляцию и освещение;

-отключить первичные преобразователи от ИК;

-подключить вместо первичных преобразователей рабочие эталоны в соответствии с схемами подключения (см. схему на рис.1-7 в Приложении 1) и руководствами по эксплуатации на рабочие эталоны;

- включить питание аппаратуры комплекса в соответствии с Приложением А руководства по эксплуатации ИВК-15-4 (ИНСИ 425800.110.00 РЭ);

- ожидать прогрева аппаратуры 20 минут;

- перед началом поверки измерить и занести в протокол поверки условия окружающей среды (температура и влажность воздуха, атмосферное давление).

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1. Внешний осмотр.

При внешнем осмотре необходимо убедиться, что все входящие в ИК компоненты не имеют внешних повреждений, которые могут влиять на его работу.

7.2. Опробование.

7.2.1. Запустить программную утилиты «Конфигуратор» двойным щелчком левой кнопки мыши на пиктограмме «Конфигуратор» на рабочем столе APM_1 и установить с помощью нее в файле конфигурации ИВК cfg_st_15_4.xml, расположенном в папке общего доступа сервера, для каналов подсистемы измерения напряжения постоянного тока, соответствующего значениям температуры, подвергающихся опробованию, значение поля «Сенсор XC» в состояние «Выкл.». Выйти из программной утилиты «Конфигуратор» с сохранение файла конфигурации.

7.2.2 Запустить программную утилиту «Поверки» двойным щелчком левой кнопки мыши на пиктограмме «Поверка» на рабочем столе APM_1.

ООО «ИнСис Лтд.»

7.2.3 Указать файл конфигурации. Для этого нажать на кнопку и выбрать необходимый файл конфигурации, который был создан в Конфигураторе. После этого в таблице «База каналов» (Рисунок 1) отображается перечень каналов сервера, которые содержатся в файле конфигурации.

Рисунок 1. Программное обеспечение поверки.

7.2.4 Выбрать канал «Temp1_001» из таблицы «База каналов». Занести канал в таблицу «Выбранные каналы» нажав кнопку «→».

7.2.5 Занести параметры рабочего эталона в окно «Параметры протоколов» нажав кнопку «Параметры» в разделе «Формирование протоколов».

7.2.6 Выбрать операцию «Контроль» из выпадающего списка «Операция» раздела «Параметры испытания».

7.2.7. Выбрать «Канал» из выпадающего списка «Объект» раздела «Параметры испытания».

7.2.8 Убедиться в отсутствии выбора поля «Циклы».

7.2.9 Задать абсолютную погрешность эталона в поле «Абсолютная погрешн. эталона».

7.2.10 Задать относительную погрешность эталона в поле «Относительная погрешн. эталона, %». В случае, если у рабочего эталона нормируется только абсолютная или относительная погрешность, в оставшемся поле задать «0».

<u>Примечание:</u> Абсолютная и относительная погрешность эталона берется из паспорта прибора, который используется как рабочий эталон при поверке измерительных каналов.

7.2.11 Установить частоту выборки в поле «Частота выборки, Гц». Частоту выборки установить 100 Гц.

7.2.12 Задать размер выборки в поле «Размер выборки». Размер выборки установить 50.

7.2.13 Установить значение нижнего предела измерения данного ИК в поле «Нижняя точка диапазона» значение «-2».

7.2.14 Установить значение верхнего предела измерения данного ИК в поле «Верхняя точка диапазона» значение «55».

7.2.15 Установить значение «2» в поле «Количество точек».

7.2.16 Вычислить точки. Для этого нажать кнопку «Вычислить» и в полях «Заданные точки» появятся соответствующие значения.

7.2.17 Перевести калибратор MCX-II-R в режим воспроизведения напряжения постоянного тока в милливольтовом диапазоне в соответствии с руководством по эксплуатации на калибратор.

7.2.18 Запустить испытания, нажав кнопку «Пуск». В этом случае отображается окно с значением первой контрольной точки (Рисунок 2).

X			×
Необхо	димо установить зн	ачение -100.000000 гра	д. С
	Записать	Остановить	

Рисунок 2. Окно с указанием устанавливаемой контрольной точки.

7.2.19 Установить соответствующее значение эталонного сигнала на входах измерительных каналов. Текущее измеренное значение в этом случае можно наблюдать в поле «Знач. исх» таблицы «Выбранные каналы».

7.2.20 Записать значение. Для этого нажать кнопку «Записать». В этом случае текущие значения каналов регистрируются в памяти и будут использованы для дальнейших расчетов. Далее отображается окно с очередной контрольной точкой, которая отрабатывается аналогичным образом.

7.2.21 Просмотреть результаты испытаний. По окончании измерений зарегистрированные данные подвергаются обработке и расчету составляющих погрешностей. Результаты вычислений для канала, выбранного курсором в таблице «Выбранные каналы», выводятся в поле «Результаты испытания».

Приведенная погрешность ИК не должна превышать установленную погрешность для данного типа ИК.

7.3 Определение погрешности измерений ИК.

7.3.1 Поверка каналов измерения напряжение постоянного тока в диапазоне от минус 2 до 55 мВ.

7.3.1.1 Подключить рабочий эталон, калибратор MCX-II-R, в соответствии с Рис.1.

7.3.1.2 Включить калибратор MCX-II-R в режиме воспроизведения напряжения постоянного тока в милливольтовом диапазоне

7.3.1.3 Выполнить пункты 7.2.1 – 7.2.14 включительно.

7.3.1.4 Установить значение «11» в поле «Количество точек».

7.3.1.5 Задать степень полинома в поле «Степень полинома». Указать степень полинома 1.

7.3.1.6 Выбрать метод аппроксимации Гивенса в поле «Метод аппроксимации».

7.3.1.7 Выполнить пункты 7.2.18 – 7.2.21 включительно.

7.3.1.8 Нажать кнопки «Сохранить» и затем «Протоколы».

7.3.1.9 Выполнять пункты 7.3.1.1 – 7.3.1.8 для всех каналов подсистемы (Temp1-002 – Temp4 048) измерения напряжение постоянного тока в диапазоне от минус 2 до 55 мВ.

7.3.2 Поверка каналов измерения силы постоянного тока в диапазоне от 4 до 20 мА.

7.3.2.1 Подключить рабочий эталон, калибратор MCX-II-R, в соответствии с Рис.2.

7.3.2.2 Выполнить пункты 7.2.2-7.2.3 включительно.

7.3.2.3 Выбрать канал «Press001» из таблицы «База каналов». Занести канал в таблицу «Выбранные каналы» нажав кнопку «→».

ИВК-15-4. Методика поверки измерительных каналов

7.3.2.4 Выполнить пункты 7.2.6-7.2.12 включительно.

7.3.2.5 Установить значение нижнего предела измерения данного ИК в поле «Нижняя точка диапазона» значение «4».

7.3.2.6 Установить значение верхнего предела измерения данного ИК в поле «Верхняя точка диапазона» значение «20».

7.3.2.7 Установить значение «11» в поле «Количество точек» и нажать кнопку «Вычислить».

7.3.2.8 Задать степень полинома в поле «Степень полинома». Указать степень полинома 1.

7.3.2.9 Выбрать метод аппроксимации Гивенса в поле «Метод аппроксимации».

7.3.2.10 Выполнить пункты 7.2.18 – 7.2.21 включительно.

7.3.2.11 Нажать кнопки «Сохранить» и затем «Протоколы».

7.3.2.12 Выполнять пункты 7.3.1.1 – 7.3.1.8 для всех каналов подсистемы (Press002 – Press160) измерения силы постоянного тока в диапазоне от 4 до 20 мА.

7.3.3 Поверка канала измерения сопротивления постоянному току в диапазоне от 40 до 130 Ом и от 80 до 200Ом.

7.3.3.1 Подключить рабочий эталон, магазин электрических сопротивлений Р4834, в соответствии с Рис.3.

7.3.3.2 Выполнить пункты 7.2.2-7.2.3 включительно.

7.3.3.3 Выбрать канал «Termores001» из таблицы «База каналов». Занести канал в таблицу «Выбранные каналы» нажав кнопку «→».

7.3.3.4 Выполнить пункты 7.2.6-7.2.12 включительно.

7.3.3.5 Установить значение нижнего предела измерения данного ИК в поле «Нижняя точка диапазона» значение «40», для каналов «Termores017 – Termores032» и значение «80» для каналов «Termores001 – Termores016».

7.3.3.6 Установить значение верхнего предела измерения данного ИК в поле «Верхняя точка диапазона» значение «130», для каналов «Termores017 – Termores032» и значение «200» для каналов «Termores001 – Termores016».

7.3.3.7 Установить значение «11» в поле «Количество точек» и нажать кнопку «Вычислить».

7.3.3.8 Задать степень полинома в поле «Степень полинома». Указать степень полинома 2.

7.3.3.9 Выбрать метод аппроксимации Гивенса в поле «Метод аппроксимации».

7.3.3.10 Выполнить пункты 7.2.18 – 7.2.21 включительно.

7.3.3.11 Нажать кнопки «Сохранить» и затем «Протоколы».

7.3.3.12 Выполнять пункты 7.3.1.1 – 7.3.1.8 для всех каналов измерения сопротивления постоянному току в диапазоне от 40 до 130 Ом и от 80 до 2000м.

7.3.4 Поверка каналов измерения частоты переменного тока в диапазоне от 5 Гц до 30000 Гц

7.3.4.1 Подключить рабочий эталон, генератор сигналов низкочастотный прецизионный ГЗ-110, в соответствии с Рис.4.

7.3.4.2 Выполнить пункты 7.2.2-7.2.3 включительно.

7.3.4.3 Выбрать канал «Freq001» из таблицы «База каналов». Занести канал в таблицу «Выбранные каналы» нажав кнопку «→».

7.3.4.4 Выполнить пункты 7.2.6-7.2.12 включительно.

7.3.4.5 Установить значение нижнего предела измерения данного ИК в поле «Нижняя точка диапазона» значение «5».

7.3.4.6 Установить значение верхнего предела измерения данного ИК в поле «Верхняя точка диапазона» значение «30000».

7.3.4.7 Установить значение «11» в поле «Количество точек» и нажать кнопку «Вычислить».

7.3.4.8 Задать степень полинома в поле «Степень полинома». Указать степень полинома 1.

7.3.4.9 Выбрать метод аппроксимации Гивенса в поле «Метод аппроксимации».

7.3.4.10 Выполнить пункты 7.2.18 – 7.2.21 включительно.

7.3.4.11 Нажать кнопки «Сохранить» и затем «Протоколы».

7.3.4.12 Выполнять пункты 7.3.1.1 – 7.3.1.8 для всех каналов подсистемы (Freq002 – Freq016) измерения частоты переменного тока.

7.3.5 Поверка каналов измерения напряжения постоянного тока в диапазоне от минус 50 до 50 мВ.

7.3.5.1 Подключить рабочий эталон, калибратор MCX-II-R, в соответствии с Рис.5.

7.3.5.2 Выполнить пункты 7.2.2-7.2.3 включительно.

7.3.5.3 Выбрать канал «Force001» из таблицы «База каналов». Занести канал в таблицу «Выбранные каналы» нажав кнопку «→».

7.3.5.4 Выполнить пункты 7.2.6-7.2.12 включительно.

7.3.5.5 Установить значение нижнего предела измерения данного ИК в поле «Нижняя точка диапазона» значение «-50».

7.3.5.6 Установить значение верхнего предела измерения данного ИК в поле «Верхняя точка диапазона» значение «50».

7.3.5.7 Установить значение «11» в поле «Количество точек» и нажать кнопку «Вычислить».

7.3.5.8 Задать степень полинома в поле «Степень полинома». Указать степень полинома 1.

7.3.5.9 Выбрать метод аппроксимации Гивенса в поле «Метод аппроксимации».

7.3.5.10 Выполнить пункты 7.2.18 – 7.2.21 включительно.

7.3.5.11 Нажать кнопки «Сохранить» и затем «Протоколы».

7.3.5.12 Выполнять пункты 7.3.1.1 – 7.3.1.8 для канала Force002.

7.3.6 Поверка каналов измерения напряжения переменного тока в диапазоне от 0 до 10 В

7.3.6.1 Подключить рабочий эталон, генератор сигналов низкочастотный Г3-121 и вольтметр универсальный цифровой В7-40/1, в соответствии с Рис.6.

7.3.6.2 Выполнить пункты 7.2.2-7.2.3 включительно.

7.3.6.3 Выбрать канал «Vibro001» из таблицы «База каналов». Занести канал в таблицу «Выбранные каналы» нажав кнопку «→».

7.3.6.4 Выполнить пункты 7.2.6-7.2.11 включительно.

7.3.6.5 Установить частоту выборки в поле «Частота выборки, Гц». Частоту выборки установить 100 Гц.

7.3.6.6 Установить значение нижнего предела измерения данного ИК в поле «Нижняя точка диапазона» значение «0».

7.3.6.7 Установить значение верхнего предела измерения данного ИК в поле «Верхняя точка диапазона» значение «10».

7.3.6.8 Установить значение «11» в поле «Количество точек» и нажать кнопку «Вычислить».

7.3.6.9 Задать степень полинома в поле «Степень полинома». Указать степень полинома 0.

7.3.6.10 Выбрать метод аппроксимации Гивенса в поле «Метод аппроксимации».

7.3.6.11 Выполнить пункты 7.2.18 – 7.2.21 включительно.

7.3.6.12 Нажать кнопки «Сохранить» и затем «Протоколы».

7.3.6.13 Выполнять пункты 7.3.1.1 – 7.3.1.8 для всех каналов подсистемы (Vibro002 – Vibro008).

7.3.7 Поверка канала измерения температуры атмосферного воздуха.

7.3.7.1 Собрать схему, в соответствии с Рис.7.

7.3.7.2 Выполнить пункты 7.2.2-7.2.3 включительно.

7.3.7.3 Выбрать канал «4М001» (температура) из таблицы «База каналов». Занести канал в таблицу «Выбранные каналы» нажав кнопку «→».

7.3.7.4 Выполнить пункты 7.2.6-7.2.11 включительно.

7.3.7.5 Установить частоту выборки в поле «Частота выборки, Гц». Частоту выборки установить 1 Гц.

7.3.7.6 Установить значение нижнего предела измерения данного ИК в поле «Нижняя точка диапазона» значение «233».

7.3.7.7 Установить значение верхнего предела измерения данного ИК в поле «Верхняя точка диапазона» значение «323».

7.3.7.8 Установить значение «11» в поле «Количество точек» и нажать кнопку «Вычислить».

7.3.7.9 Задать степень полинома в поле «Степень полинома». Указать степень полинома 0.

7.3.7.10 Выбрать метод аппроксимации Гивенса в поле «Метод аппроксимации».

7.3.7.11 Выполнить пункты 7.2.18 – 7.2.21 включительно.

7.3.7.12 Нажать кнопки «Сохранить» и затем «Протоколы».

7.3.8 Поверка канала измерения атмосферного давления.

7.3.8.1 Собрать схему, в соответствии с Рис.7.

7.3.8.2 Выполнить пункты 7.2.2-7.2.3 включительно.

7.3.8.3 Выбрать канал «4М002» (давление) из таблицы «База каналов». Занести канал в таблицу «Выбранные каналы» нажав кнопку «→».

7.3.8.4 Выполнить пункты 7.2.6-7.2.11 включительно.

7.3.8.5 Установить частоту выборки в поле «Частота выборки, Гц». Частоту выборки установить 1 Гц.

7.3.8.6 Установить значение нижнего предела измерения данного ИК в поле «Нижняя точка диапазона» значение «800».

7.3.8.7 Установить значение верхнего предела измерения данного ИК в поле «Верхняя точка диапазона» значение «1067».

7.3.8.8 Установить значение «11» в поле «Количество точек» и нажать кнопку «Вычислить».

7.3.8.9 Задать степень полинома в поле «Степень полинома». Указать степень полинома 0.

7.3.8.10 Выбрать метод аппроксимации Гивенса в поле «Метод аппроксимации».

7.3.8.11 Выполнить пункты 7.2.18 – 7.2.21 включительно.

7.3.8.12 Нажать кнопки «Сохранить» и затем «Протоколы».

7.3.9 Поверка канала измерения относительной влажности воздуха.

7.3.9.1 Собрать схему, в соответствии с Рис.7.

7.3.9.2 Выполнить пункты 7.2.2-7.2.3 включительно.

7.3.9.3 Выбрать канал «4М003» (влажность) из таблицы «База каналов». Занести канал в таблицу «Выбранные каналы» нажав кнопку «→».

7.3.9.4 Выполнить пункты 7.2.6-7.2.11 включительно.

7.3.9.5 Установить частоту выборки в поле «Частота выборки, Гц». Частоту выборки установить 1 Гц.

7.3.9.6 Установить значение нижнего предела измерения данного ИК в поле «Нижняя точка диапазона» значение «10».

7.3.9.7 Установить значение верхнего предела измерения данного ИК в поле «Верхняя точка диапазона» значение «100».

7.3.9.8 Установить значение «11» в поле «Количество точек» и нажать кнопку «Вычислить».

7.3.9.9 Задать степень полинома в поле «Степень полинома». Указать степень полинома 0.

7.3.9.10 Выбрать метод аппроксимации Гивенса в поле «Метод аппроксимации».

7.3.9.11 Выполнить пункты 7.2.18 – 7.2.21 включительно.

7.3.9.12 Нажать кнопки «Сохранить» и затем «Протоколы».

Расчет погрешности измерения ИК производится согласно пункту 8.

8 ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Измеренные массивы значений *z*_{*k*} обрабатываются с помощью встроенных в программное обеспечение алгоритмов следующим образом.

8.1 Вычисляется среднее значение результатов измерений измеренной величины на каждой *i*-той ступени:

$$\overline{z}_i = \frac{\sum_{k} z_{ik}}{m}$$
(1).

8.2 Определяется индивидуальная функция преобразования в виде степенного полинома:

$$x_{i} = a_{0} + a_{1}\bar{z}_{i} + \dots + a_{n}\bar{z}_{i}^{"}$$
(2).

где *a*₀, *a*₁...*a*_{*n*} - коэффициенты аппроксимирующей функции преобразования.

8.3 Вычисляется среднее значение результатов измерений измеренной величины с учетом функции преобразования на каждой *i*-той ступени:

$$\overline{y}_{i} = \frac{\sum_{k} y_{ik}}{m}$$
(3).

где $y_{ik} = a_0 + a_1 \overline{z}_i + ... + a_n \overline{z}_i^n$.

8.4 Для каждой *i*-той ступени вычисляется оценку систематической составляющей погрешности $\overline{\Delta}_{cr}$:

$$\overline{\Delta}_{ci} = \overline{y_i} - x_i \tag{4}$$

8.5 Определяется границы систематических погрешностей Θ_i измеренной величины:

$$\Theta_i = \mathbf{1}, \mathbf{1} \cdot \sqrt{\Delta^2_{Ci} + \Delta^2_{C1}}$$
(5),

где Δ^2_{C1} - абсолютная погрешность рабочего эталона.

8.6 Вычисляется оценку среднего квадратического отклонения измеренной величины $S_{\cdot}(\Delta^{\circ})$ на каждой *i*-той ступени:

$$S_{i}(\Delta^{\circ}) = \sqrt{\frac{\sum_{k} (y_{ik} - \overline{y_{i}})^{2}}{m - 1}}$$
(6).

8.7 Оценивается границы суммарной абсолютной погрешности $\overline{\Delta}_i$ измеренной величины на каждой *i*-той ступени следующим образом:

8.7.1 Определить
$$K = \frac{\Theta_i}{S_i(\Delta^\circ)}$$
 (7).
8.7.2 Если $K > 8$, то $\overline{\Delta}_i = \Theta_i$ (8).

ООО «ИнСис Лтд.»

Если
$$K < 0,8$$
, то $\Delta_i = t \cdot S_i(\Delta^\circ)$ (9).
Если $0,8 \le K \le 8,0$, то $\overline{\Delta}_i = \sqrt{\frac{\Theta_i^2}{3} + S^2_i(\Delta^\circ)} \cdot \left(\frac{t \cdot S_i(\Delta^\circ) + \Theta_i}{S_i(\Delta^\circ) + \sqrt{\frac{\Theta^2_i}{3}}}\right)$ (10).

где t - коэффициент Стьюдента, который определяется при доверительной вероятности P = 0.95 для числа степеней свободы m-1 в соответствии с ГОСТ 8.207-76, Приложение 2.

8.8. Определяется погрешность ИК ∆ как максимальное значение суммарной абсолютной погрешности:

$$\Delta = \max \left| \overline{\Delta}_i \right| \tag{11}.$$

8.9. Определяется приведенную погрешность у ИК

$$\gamma = \frac{\Delta \cdot 100}{x_n} \%$$
(12).

где *x_n* – верхний предел измеренной величины.

9. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

Результаты поверки заносятся в Протокол поверки (Приложение 2).

При положительных результатах поверки оформляется свидетельство о поверке по форме, приведенной в приложении 1 ПР50.2.006-94.

При отрицательных результатах поверки оформляется извещение о непригодности к применению по форме, приведенной в Приложении 2 ПР50.2.006-94.

Научный сотрудник ГЦИ СИ «Воентест»32 ГНИИИ МО РФ

Старший научный сотрудник ГЦИ СИ «Воентест» 32 ГНИИИ МО РФ

selle

С.Н. Чурилов

А.А. Горбачев

1 – Калибратор многофункциональный MCX-II-R (рабочий эталон);

2 – Термостанция ЕХ1048;

3 – ПЭВМ;

Рис. 1. Функциональная схема поверки ИК измерения напряжения постоянного тока в диапазоне от минус 2 до 55 мВ.

1 – Калибратор многофункциональный MCX-II-R (рабочий эталон);

- 2-Клеммы;
- 3 Терминальный блок SCXI-1308;

4 – Измерительный усилитель SCXI-1102С;

5 – Плата АЦП РХІ-6289;

6 – ПЭВМ.

Рис. 2. Функциональная схема поверки ИК измерения силы постоянного тока в диапазоне от 4 до 20 мА.

Приложение 1.

- 1 Магазин сопротивлений Р4834 (рабочий эталон);
- 2 Модуль согласования DSCA34;
- 3 Терминальный блок SCXI-1308;
- 4 Измерительный усилитель SCXI-1102С;
- 5 АЦП на плате РХІ-6289;
- 6 ПЭВМ;

Рис.3. Функциональная схема поверки ИК измерения сопротивления постоянному току в диапазоне от 40 до 130 Ом и от 80 до 200 Ом.

1 – Генератор сигналов низкочастотный прецизионный ГЗ-110 (рабочий эталон);

- 2 Клеммы;
- 3 Устройство нормализации сигнала FL154;
- 4 Терминальный блок ТВ-2715;
- 5 Плата счетчиков/таймеров РХІ-6602;
- 6 ПЭВМ.

Рис. 4. Рис. 4. Функциональная схема поверки ИК измерения частоты переменного тока в диапазоне от 1 Гц до 30000 Гц.

- 1 Калибратор многофункциональный MCX-II-R (рабочий эталон);
- 2 Клеммы;
- 3 Шасси SC-2345;
- 4 Плата АЦП РХІ-6289;

4 – ПЭВМ.

Рис. 5. Функциональная схема поверки ИК измерения напряжения постоянного тока в диапазоне от минус 50 до 50 мВ.

1 – генератор сигналов низкочастотный ГЗ-121 (рабочий эталон);

2- вольтметр В7-40/1;

3 – плата АЦП РХІ-4472;

4 – ПЭВМ.

Рис. 6. Функциональная схема поверки ИК измерения напряжения переменного тока в диапазоне от минус 10 до 10 В

- 1 термобаровлагокамера КТХБВ-1-8;
- 2- термометр ПТСВ-1-2;
- 3 многоканальный прецизионный измеритель температуры МИТ 8.10;
- 4- термогигрометр «Testo 645»;
- 5- барометр образцовый переносной БОП-1М
- 6 метеостанция МС-ИнСи;
- 7 ПЭВМ.

Рис. 7. Функциональная схема поверки ИК измерения напряжения переменного тока в диапазоне от минус 10 до 10 В.

ИВК-15-4. Методика поверки измерительных каналов

Приложение 2

ОАО «НПО «Сатурн»

Измерительно-вычислительный комплекс ИВК-15-4 ПРОТОКОЛ поверки

измерительного канала №.....

1. Вид поверки.....

2. Дата поверки.....

- 4. Средства поверки
- 4.1. Рабочий эталон

		Пределы измерения, (мВ или мА, или Ом, или Гц,		Абсолютная погрешность
Наименование		или гПа, или 8	3C, или %)	
		нижний	верхний	(В/мВ/мА/Ом/Гц/гПа/ ^о С/%)

4.2. Вспомогательные средства: в соответствии с методикой поверки

5. Условия поверки

5.1. Температура окружающего воздуха, °С:	
5.2. Относительная влажность воздуха, %	
5.3. Атмосферное давление, мм рт. ст.	

6. Результаты экспериментальных исследований

6.1. Внешний осмотр:
6.2. Результаты опробования:
6.3. Результаты метрологических исследований

6.3.1. Условия исследования

Число ступеней измерений (контрольных точек)	
Число измерений в контрольной точке	

6.3.2. Задаваемые контрольные точки

Эталонн. сигнал, ед.изм.				
	Эталонн. сигнал, ед.изм.			

Протокол поверки ИК № от стр. 2

6.3.3. Составляющие погрешности.

Номер	Задаваемые)	Средние	Система-	Оценка	Сумма	Абсолютная
ступени	эталонные		значения	тическая	СКО	неисключ.	погрешность
	сигналы	на	измеренных	погрешность		системат.	
	входе ИК		сигналов			погрешностей	

6.3.4. Погрешность ИК

Абсолютная погрешность	
Нормированный верхний предел измерения (верхний предел	
нормированного значения)	
Приведенная погрешность, %	

7. Вывод.

Относительная погрешность измерительного канала № , при доверительной вероятности P = 0,95 не превышает значения ± %, допустимого согласно программе поверки ИК на стенде.

Дата очередной поверки

Поверитель

(подпись, дата)

(ф.и.о.)