ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт расходометрии»

Государственный научный метрологический центр

ФГУП «ВНИИР»

Заместитель директора по развитию ФЕУП «ВНИИР»

«11» новоря 2018 г.

ИНСТРУКЦИЯ

Государственная система обеспечения единства измерений

Расходомеры газа ультразвуковые MPU моделей MPU 1200, MPU 800, MPU 600 и MPU 200 Методика поверки

MΠ 0895-13-2018

Начальник отдела НИО-13

А.И. Горчев

Тел. (843)272-11-24

РАЗРАБОТАНА

ФГУП «ВНИИР»

ООО Завод «Саратовгазавтоматика»

УТВЕРЖДЕНА

ФГУП «ВНИИР»

Настоящая инструкция распространяется на расходомеры газа ультразвуковые MPU моделей MPU 1200, MPU 800, MPU 600, MPU 200 (далее — расходомеры), изготавливаемые ООО Заводом «Саратовгазавтоматика» и устанавливает методы и средства их первичной и периодической поверок.

Межповерочный интервал – 4 года.

1 НОРМАТИВНЫЕ ССЫЛКИ

В настоящей методике использованы ссылки на следующие нормативные документы:

- ГОСТ 8.395-80 Государственная система обеспечения единства измерений. Нормальные условия измерений при поверке. Общие требования;
- ГОСТ 9293-74 Азот газообразный и жидкий. Общие технические условия;
- ГОСТ 6651-2009 Термопреобразователи сопротивления из платины, меди и никеля
- ГОСТ Р 8.618-2014 Государственная система обеспечения единства измерений.
 Государственная поверочная схема для средств измерений объемного и массового расходов газа;

Примечание — При применении настоящей инструкции целесообразно проверить действие ссылочных стандартов на территории Российской Федерации по соответствующему указателю стандартов, составленному по состоянию на 1 января текущего года, и по соответствующим информационным указателям, опубликованным в текущем году. Если ссылочный документ заменен (изменен), то при пользовании настоящей инструкцией следует руководствоваться замененным (измененным) стандартом. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

2 ОПЕРАЦИИ ПОВЕРКИ

2.1. При проведении поверки должны выполняться следующие операции:

1	a	n	Л	И	Ц	а	ı

	Номер	Проведение операции при		
Наименование операции	пункта методики поверки	первичной поверке	периоди- ческой поверке	
1	2	3	4	
Внешний осмотр	8.1	+	+	
Опробование	8.2	+	+	
Подтверждение соответствия программного обеспечения средства измерения (далее – СИ)	8.2.4	+	+	
Определение относительной погрешности измерений объемного расхода и объема в рабочих условиях	8.3			
Определение относительной погрешности измерений объемного расхода и объема в рабочих условиях при использовании поверочной установки	8.3.1	+	+	
Определение относительной погрешности измерений объемного расхода и объема в рабочих условиях имитационным методом	8.3.2	+	+	

Примечания:

- * Имитационный метод может применяться для поверки расходомеров с пределом относительной погрешности определения расхода газа 0,5% и более.
 - ** При наличии в составе расходомера преобразователей температуры и давления.

3 СРЕДСТВА ПОВЕРКИ

- 3.1 При проведении поверки применяют следующие средства поверки:
- установка поверочная расходоизмерительная, рабочая среда: воздух, диапазон воспроизведения единиц объемного расхода газа от 0,0003 до 16000 м³/ч, СКО от 0,01 до 0,03, НСП от 0,05 до 0,12, расширенная неопределенность при коэффициенте охвата k=2 от 0,06 до 0,11%.
- рабочий эталон 1-го разряда по ГОСТ Р 8.618-2014 (установка поверочная расходо-измерительная, поверочная среда: воздух или природный газ, диапазон задаваемого объемного расхода должен соответствовать рабочему диапазону поверяемого расходомера, с пределом основной относительной погрешности $\pm 0.3\%$);
- национальные эталоны в рамках соглашения СІРМ MRA (установка поверочная расходоизмерительная, поверочная среда: природный газ или воздух, диапазон задаваемого объемного расхода должен соответствовать рабочему диапазону поверяемого счетчика, с пределом основной относительной погрешности $\pm 0.23\%$ (или средним квадратическим отклонением результатов измерений не более 0.05% при 11 независимых измерениях, и неисключенной систематической погрешности не превышающей 0.1%);
- частотомер электронно-счетный ЧЗ-85/4, диапазон измерений от 1 м Γ ц до 200М Γ ц, пределы относительной погрешности $\pm 2 \times 10^{-7}$; ($\mathbb{N}_{\mathbb{C}}$ в Γ осреестре 56478-14)
- барометр анероид БАММ-1, диапазон от 80 до 106 кПа, цена деления 0,1 кПа, предел допускаемой дополнительной погрешности ±0,5 кПа; (№ в Госреестре 5738-76)
- термометр лабораторный электронный ЛТ-300, диапазон измерения от минус 50 до плюс 300°С, пределы абсолютной погрешности ±0,05 °С; (№ в Госреестре 61806-15)
- калибратор-измеритель унифицированных сигналов ИКСУ 260 Ex, диапазон: минус 50 до плюс 200 °C, пределы абсолютной погрешности \pm 0,05 °C, диапазон: от 0 до 25 мA, пределы абсолютной погрешности \pm 0,003 мA. (№ в Госреестре 35062-07)
- 3.2. Применяемые при поверке средства измерений должны быть поверены и иметь действующие свидетельства о поверке или поверительные клейма.
- 3.3. Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых СИ с требуемой точностью.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 4.1. При проведении поверки соблюдают требования, определяемые:
- эксплуатационной документацией на поверяемый расходомер-счетчик и средства поверки;
- правилами безопасности труда, действующими на предприятии.
- 4.2. К проведению поверки допускаются лица, имеющие квалификационную группу по технике безопасности не ниже II, прошедшие инструктаж по технике безопасности, и изучившие руководства по эксплуатации расходомера и средств поверки.
- 4.3. Монтаж и демонтаж расходомера должны производиться при отсутствии давления в измерительной линии и при отключенном напряжении питания, а также в соответствии с техникой безопасности и эксплуатационной документацией на расходомер-счетчик. Конструкция соединительных элементов расходомера и поверочной установки должна обеспечивать надежность крепления расходомера и фиксацию его положения в течение всего цикла поверки.

4.4. Заземление средств поверки должно осуществляться согласно требованиям ГОСТ 12.2.007.10-87.

5 ТРЕБОВАНИЯ ТЕХНИКИ БЕЗОПАСНОСТИ И ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

- 5.1. При проведении поверки должны соблюдаться следующие требования:
- корпус расходомера и применяемых средств измерений должны быть заземлены в соответствии с их руководствами по эксплуатации;
- ко всем используемым средствам должен быть обеспечен свободный доступ для заземления, настройки и измерений;
- работы по соединению устройств должны выполняться до подключения к сети питания;
- к работе должны допускаться лица, имеющие необходимую квалификацию и обученные работе с расходомером-счетчиком и правилам техники безопасности;
- указания, предусмотренные «Правилами технической эксплуатации электроустановок» и «Правилами техники безопасности при эксплуатации электроустановок», а также инструкциями по эксплуатации оборудования, его компонентов и применяемых средств поверки.

6 УСЛОВИЯ ПОВЕРКИ

- 6.1. При проведении поверки должны соблюдаться условия по ГОСТ 8.395:
- температура окружающего воздуха (20 ± 10) °C^{*};
- относительная влажность воздуха от 30 до 80 %;
- атмосферное давление от 84 до 106,7 кПа.

Вибрация и внешнее магнитное поле (кроме земного) отсутствуют.

 Π р и м е ч а н и е - *) При поверке расходомера имитационным методом без снятия расходомера с измерительной линии допускается определение относительной погрешности измерения объемного расхода газа расходомера при температуре окружающей среды от минус 25 °C до плюс 55 °C.

7 ПОДГОТОВКА К ПОВЕРКЕ

Перед проведением поверки расходомера выполняют следующие подготовительные работы:

- 7.1 Проверяют комплектность эксплуатационной документации на расходомер.
- 7.2 Проверяют наличие действующих свидетельств о поверке или поверительные клейма на используемые средства поверки.
- 7.3 Проверяют работоспособность расходомера и средств поверки в соответствии с руководством по эксплуатации.
- 7.4 Проводят монтаж средств поверки согласно структурным схемам, указанным в руководстве по эксплуатации.
 - 7.5 Включают и прогревают расходомер и средства поверки не менее 30 минут.
- 7.6 Остальную подготовку проводят согласно требованиям документации изготовителя расходомера и руководствам по эксплуатации средств поверки.

8 ПРОВЕДЕНИЕ ПОВЕРКИ

8.1. Внешний осмотр

При внешнем осмотре должны быть установлены:

- комплектность расходомера;

- соответствие маркировки требованиям, предусмотренным эксплуатационной документацией;
- отсутствие механических повреждений, коррозии, нарушения покрытий, надписей и отсутствие других дефектов, препятствующих его функционированию в соответствии с эксплуатационной документацией.

8.2. Опробование

Опробование заключается в проверке работоспособности поверяемого расходомера и его отдельных компонентов. Проверка может осуществляться при помощи персонального компьютера (далее ПК), либо непосредственно при помощи встроенного интерфейса показывающего устройства расходомера.

- 8.2.1 При поверке расходомеров проливным методом убеждаются в изменении показаний расходомера при изменении расхода газа на поверочной установке.
- 8.2.2 При поверке имитационным методом на месте эксплуатации убеждаются в показаниях расходомера по измерительным каналам расхода, давления и температуры до выполнения процедуры перекрытия расхода.
- 8.2.3 При поверке имитационным методом при снятии расходомера с газопровода убеждаются в показаниях по измерительным каналам расхода, давления и температуры расходомера любым доступным способом, задавая расход вентилятором, компрессором и т.п. Воздушный поток не должен превышать значения по скорости в 20 м/с.

Результаты опробования считают положительными, если значение скорости потока и расхода газа по показаниям расходомера отличны от нуля, а значения параметров температуры и давления окружающей среды соответствуют значениям, перечисленным в п. 6.

8.2.4 Проверка соответствия ПО

Для проверки идентификационных данных ПО СИ необходимо соединиться с поверяемым расходомером сервисной программой Winscreen согласно руководству по эксплуатации. В главном меню программы выбрать «Вид» («View») – «Окно базы данных» («Database configuration window»). В открывшемся окне выбрать «База данных» («Database») - «Версии» («Version»).

При этом на экране будут отражаться следующие данные:

- идентификационное наименование ПО;
- номер версии (идентификационный номер) ПО;
- цифровой идентификатор (контрольная сумма) ПО.

Результат подтверждения соответствия программного обеспечения считается положительным, если полученные идентификационные данные ПО СИ (идентификационное наименование, номер версии (идентификационный номер) и цифровой идентификатор) соответствуют идентификационным данным, указанным в подразделе «Программное обеспечение» описания типа средства измерений.

- 8.3 Определение относительной погрешности измерений объемного расхода и объема в рабочих условиях
- 8.3.1 Определение относительной погрешности измерений объемного расхода и объема в рабочих условиях при использовании поверочной установки

Допускается проводить поверку и выдавать свидетельство о поверке для ограниченного диапазона объемного расхода газа на основании письменного заявления владельца расходомера.

Поверочная установка и метод поверки выбирается согласно приложению В.

8.3.1.1 Определение относительной погрешности измерений объемного расхода и объема в рабочих условиях при использовании поверочной установки методом прямых измерений

Измерения проводятся при следующих значениях объемного расхода Q_j : Q_{\max} , $0.7Q_{\max}$, $0.5Q_{\max}$, $0.1Q_{\max}$ и Q_{\min} . Допускается производить измерения в произвольном числе равно распределенных значений расхода, (не менее 5 точек). Для удобства допускается округление дробной доли расхода в большую или меньшую сторону. Точность задания расхода $\pm 0.025Q_{\max}$, в течение всего процесса измерений отклонение расхода по показаниям эталонного преобразователя расхода от заданного значения расхода не должно превышать $\pm 0.01Q_{\max}$.

Определяют относительную погрешность расходомера, в процентах, по формуле

$$\delta = \frac{Q_{ic} - Q_{etal}}{Q_{etal}} 100, \qquad (1)$$

где $Q_{\it etal}$ — расход по показаниям эталонной установки.

Примечание: допускается введение корректировочных коэффициентов.

Расходомер считается прошедшим поверку если значения относительной погрешности не превышают следующих значений

Т	a	б	π	и	TT	а	2
_	ч	v	JI	11	щ	и	~

Uoursayanayyya yanayyanyayya	Значение				
Наименование характеристики	MPU 1200	MPU 800	MPU 600	MPU 200	
Пределы допускаемой относительной погрешности при измерении объемного расхода и объема при проливном методе поверки, %:					
$-$ в диапазоне $Q_{min} \le Q < 0.05 \; Q_{max}$ $-$ в диапазоне $0.05 \; Q_{max} \le Q \le Q_{max}$	±1 ±0,4(1,0 (0.5)**	±2,0 ±0,6	±4,0 ±2,5	

8.3.1.2 Определение относительной погрешности измерений объемного расхода и объема в рабочих условиях при использовании поверочной установки методом прямых многократных измерений

Измерения проводятся при следующих значениях объемного расхода Q_j : Q_{\max} , $0.7Q_{\max}$, $0.5Q_{\max}$, $0.1Q_{\max}$ и Q_{\min} . Допускается производить измерения в произвольном числе равно распределенных значений расхода, (не менее 5 точек). Для удобства допускается округление дробной доли расхода в большую или меньшую сторону. Точность задания расхода $\pm 0.025Q_{\max}$, в течение всего процесса измерений отклонение расхода по показаниям эталонного преобразователя расхода от заданного значения расхода не должно превышать $\pm 0.01Q_{\max}$.

На каждом значении расхода проводят не менее пяти измерений. Значения объемного расхода, полученные по показаниям расходомера Q_{icn} , приводят к условиям измерений эталонными преобразователями Q_{ic} по формуле:

$$Q_{ic} = Q_{icn} \frac{P_e T_t z_t}{P_t T_e z_e}, \qquad (2)$$

где P_{e} – давление газа на участке эталонных преобразователей;

 P_t – давление газа на участке поверяемого расходомера;

 T_e – температура газа на участке эталонных преобразователей;

 T_{i} — температура газа на участке поверяемого расходомера;

- z_t фактор сжимаемости газа, рассчитанный при температуре и давлении на участке поверяемых расходомеров;
- z_e фактор сжимаемости газа, рассчитанный при температуре и давлении на участке эталонных преобразователей.

 Π р и м е ч а н и е : допускается проводить измерения и обработку результатов измерений по объему газа.

Полученные значения и значения по показаниям установки фиксируют и оформляют в виде таблицы 3.

Таблица 3

Среднее значение расхода	Расход (эталонное значение)	Расход (показания расходомера)	Девиация	Среднеарифметическая девиация	
м ³ /ч	м ³ /ч	м ³ /ч	%	%	
	Q_{1e}	Q_{bc}	fp_1		
Q_{j}	Q_{2e}	Q_{2c}	fp_2	fp _{OI}	
	•••	•••		JI QJ	
	Q_{ne}	Q_{bc}	fp_n		

Значения девиации fp_t рассчитывают в процентах по формуле

$$fp_i = \left(\frac{Q_{ic}}{Q_{ic}} - 1\right) \cdot 100\%. \tag{3}$$

Значение среднеарифметической девиации рассчитывают по формуле

$$fp_{Qj} = \frac{1}{n} \sum_{i=1}^{n} fp_i$$
, (4)

где n – число экспериментов проведенных в данной точке по расходу ($n \ge 5$),

 Q_{j} — нижний индекс обозначает текущую точку по расходу и принимает значения Q_{\max} , $0.7Q_{\max}$, $0.5Q_{\max}$, $0.3Q_{\max}$, $0.1Q_{\max}$, $0.1Q_{\min}$.

Рассчитывают отклонение среднего результата измерений объема в процентах для всех точек по расходу по формуле

$$S_{Vj} = \frac{100}{\frac{1}{n} \sum_{i=1}^{n} Q_{ic}} \sqrt{\frac{\sum_{i=1}^{n} \left(Q_{ic} - \frac{1}{n} \sum_{i=1}^{n} Q_{ic} \right)^{2}}{n(n-1)}}.$$
 (5)

Рассчитывают доверительные границы ε случайной составляющей погрешности результата измерений по формуле

$$\varepsilon = t_{n0.95} S_V \,, \tag{6}$$

где $t_{n0.95}$ — коэффициент Стьюдента для доверительной вероятности 95% и степенью свободы n, (определяют по приложению Д ГОСТ Р 8.736-2011);

 $S_{\mathcal{Q}}$ — максимальное среднеквадратическое отклонение среднего результата измерений ($S_{\mathcal{Q}} = \max S_{\mathcal{Q}_j}$).

После заполнения таблицы 3 для всех точек по расходу определяют средневзвешенную девиацию WME по формуле:

$$WME = \frac{\sum_{j=1}^{m} k_{j} f p_{Qj}}{\sum_{j=1}^{m} k_{j}},$$
(7)

где
$$k_{j} = \begin{cases} \frac{Q_{j}}{Q_{\text{max}}}, npu \ Q_{j} < 0, 7Q_{\text{max}} \\ 1, 4 - \frac{Q_{j}}{Q_{\text{max}}}, npu \ Q_{j} > 0, 7Q_{\text{max}} \end{cases}$$

j – индекс поверочного расхода(j = 1...m); m — число точек по расходу (m=5).

Вычисляют корректировочный коэффициент ${\rm AF}^{\ *)}$ по формуле

$$AF = \frac{1}{1 + \frac{WME}{100}} \tag{8}$$

Корректируют показания расходомера по рассчитанному корректировочному коэффициенту АF (умножением на AF), результаты оформляют в виде таблицы 4.

Примечание - *) Допускается использование корректировочных коэффициентов, определенных для каждого значения расхода.

Таблипа 4

Среднее значение расхода	Расход, эталонное значение	Расход, скорректированные показания расходомера	Скоррект. девиация	Среднеарифметическая скорректированная девиация
м ³ /ч	м ³ /ч	м ³ /ч	%	%
	Q_{1e}	Q_{1k}	fpk_1	
Q_{j}	Q_{2e}	Q_{2k}	fpk_2	fpk_{Oi}
£)	•••		•••	JF V Q
	Q_{ne}	Q_{nk}	fpk_n	

Определяют границы неисключенной систематической погрешности по формуле

$$\Theta = \begin{cases} \pm \left(\sum_{l=1}^{N} |\Theta_{l}| + |\Theta_{cal}| \right), & npu \ N < 3 \\ \pm 1, 1 \sqrt{\sum_{l=1}^{N} \Theta_{l}^{2} + \Theta_{cal}^{2}}, & uhave \end{cases}$$

$$(9)$$

где Θ_l – граница l-й составляющей неисключенной систематической погрешности установки;

 Θ_{col} – неисключенная систематическая погрешность калибровки, определяется как максимальное абсолютное значение среднеарифметической девиации с учетом калибровки ($\Theta_{cal} = \max_{Q_i} \left| fpk_{Q_i} \right|$).

Определяют среднеквадратическое отклонение суммы неисключенных систематических погрешностей по формуле

$$S_{\Theta} = \sqrt{\frac{\sum_{l=1}^{N} \Theta_{l}^{2} + \Theta_{cal}^{2}}{3}} . \tag{10}$$

Определяют суммарную среднеквадратическую погрешность по формуле

$$S_{\Sigma} = \sqrt{S_{V}^2 + S_{\Theta}^2} \ . \tag{11}$$

Определяют границу относительной погрешности результата измерений по формуле

$$\delta = S_{\Sigma} \frac{\Theta + \varepsilon}{S_{\Theta} + S_{V}} \,. \tag{12}$$

Расходомер считается прошедшим поверку если значения относительной погрешности не превышают значений, указанных в таблице 2.

- 8.3.2 Определение относительной погрешности измерений объемного расхода и объема в рабочих условиях имитационным методом
- 8.3.2.1 На фланцы расходомера устанавливают заглушки, оснащённые штуцерами для подачи поверочной среды в корпус расходомера, а также гильзами для монтажа датчика температуры. Подключаются датчики давления и температуры.
- $8.3.2.2~\mathrm{B}$ качестве поверочной среды рекомендуется использовать азот газообразный особой чистоты по ГОСТ 9293-74. Для расходомеров, бывших в эксплуатации, его внутренняя полость перед заполнением азотом должна быть продута тем же самым азотом. Заполнив корпус расходомера измеряемой средой до давления $P_{abc} < 0.5~\mathrm{M}\Pi a$, дожидаются стабилизации её температуры и давления.

Допускаемые диапазоны изменения параметров поверочной среды приведены в таблице 5:

Таблипа5

Наименование параметра	Значение
Абсолютное давление рабочей (поверочной) среды, %с	±0,2 (±0,4*)
Температура поверочной среды, °С	±0,2 (±0,4*)
* Значение для расходомеров с пределом допускаемой более 0,7%	относительной погрешности

 Π р и м е ч а н и е: допускается проводить дополнительную поверку по п. 5.5.2 при давлении измеряемой среды равном давлению рабочей среды во время эксплуатации, но не более 12М Π а.

- 8.3.2.3 Проводят конфигурирование базы данных расходомера:
- вносят установившиеся значения давления и температуры в базу данных;
- вводят компонентный состав газа (% молярный);
- запускают программу «Калибровка MPU» (см. рисунок 4);*
- вводят заводской номер расходомера;
- вводят дату выпуска расходомера (дата вводится в формате дд.мм.гггг);
- вводят фамилию калибровщика/поверителя (не более 25 символов);
- выбирают тип расходомера (MPU 200, MPU 600, MPU 800, MPU 1200).

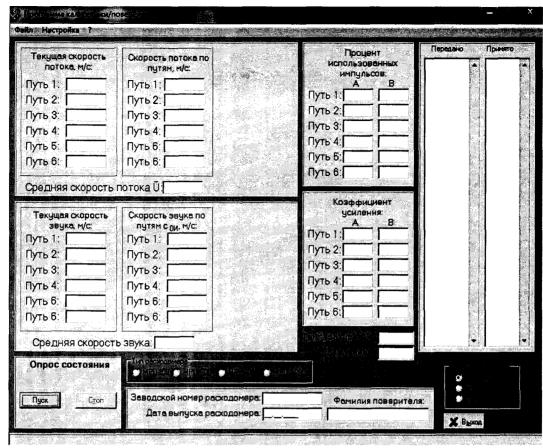


Рисунок 1 - Главное окно программы калибровки/поверки расходомеров.

- *Примечание: допускается для считывания данных с расходомера использовать другое программное обеспечение.
- 8.3.2.4 Производят измерение скорости звука и скорости потока газа при нулевом расходе:
- нажимают на кнопку «Пуск». По прошествии 300 секунд в окне регистрируют значения следующих параметров:
- а) скорость потока для каждого акустического пути (в поле «Скорость потока по путям, м/с»);
 - б) скорость потока, усреднённая по путям («Средняя скорость потока Ü, м/с»);
- в) скорость звука для каждого акустического пути (в поле «Скорость звука по путям C_{OU} , м/с»);
 - г) скорость звука, усреднённая по путям («Средняя скорость звука»);
- контролируют качество сигналов, определяющих оптимальный режим работы расходомера:
- а) процент использованных пакетов импульсов составляет не менее 90 % для всех преобразователей;
 - б) разница между коэффициентами усиления для всех путей не превышает ± 20 %.
- 8.3.2.5 Рассчитывают значение скорости звука в поверочной среде. Скорость звука в поверочной среде определяют в соответствии с нормативными документами, устанавливающими методы расчета физических свойств. Допускается применение методов расчета скорости звука с относительной методической погрешностью не более 0,3%. Допускается применение аттестованного программного обеспечения реализующего методы определения скорости звука.
- 8.3.2.6 Определяют относительное отклонение измеренных значений скорости звука от расчетных значений для всех путей, δC_{oi} , по формуле:

$$\delta C_{oi} = \frac{c_{oui} - c_{op}}{c_{op}} \cdot 100\% \tag{13}$$

где $\,C_{\it oui}\,$ - измеренное значение скорости звука, м/с;

 C_{op} - расчетное значение скорости звука, м/с.

Наибольшее относительное отклонение значений скорости звука между путями определяют по формуле:

$$\delta C_{omax} = \frac{C_{omax} - C_{omin}}{\overline{C_o}} \cdot 100\% \tag{14}$$

где $\,C_{o\,{
m max}}\,$ - максимальное значение скорости звука по путям, м/с;

 $C_{o\,{
m min}}\,$ - минимальное значение скорости звука по путям, м/с;

 \overline{C}_0 - среднее значение скорости звука по путям, м/с.

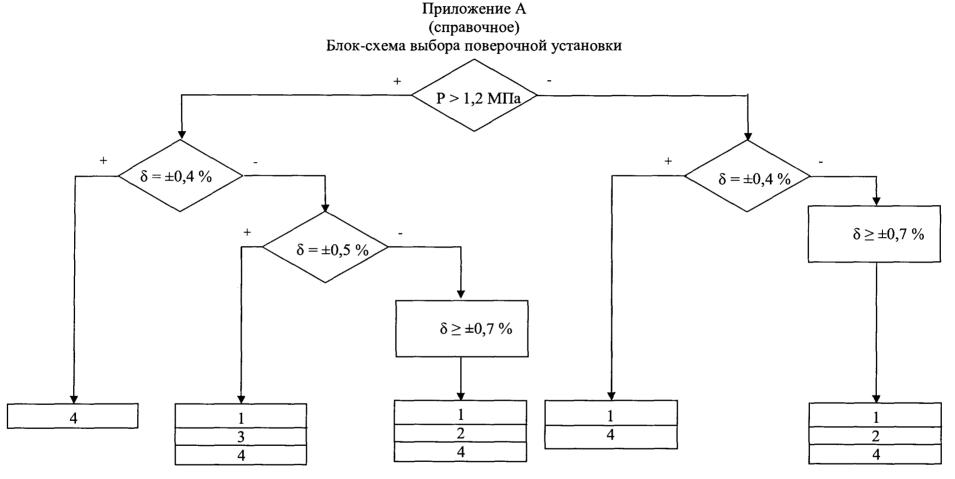
- 8.3.2.7 Расходомер считается прошедшим поверку, если:
- а) среднее измеренное за 300 с значение скорости потока газа при нулевом расходе не превышает:
 - 0,006 м/с для расходомеров моделей MPU1200 и MPU800;
 - 0,012 м/с для расходомеров модели МРU600;
 - 0,024 м/с для расходомеров модели MPU200.
- б) относительное отклонение измеренных за $300 \, \mathrm{c}$ значений скорости звука от расчетной величины для всех путей с каждой пары приемо-передатчиков не превышает $\pm 0.3\%$;
- в) наибольшее относительное отклонение значений скорости звука между путями не превышает:
 - 0,1% для расходомеров моделей MPU1200 и MPU800;
 - 0,2% для расходомеров модели МРU600;
 - 8.3.3 Данные и результаты измерений вносят в протокол поверки.
- 8.3.3 Определение метрологических характеристик имитационным методом без демонтажа с измерительного трубопровода.

Для проведения поверки участок измерительного трубопровода с поверяемым расходомером изолируют от потока газа путем закрытия запорной арматуры, установленной до и после расходомера. Для обеспечения удобства контроля отсутствия утечек газа через запорную арматуру производят частичное стравливание газа из изолированного участка, понижая величину его давления, по отношению к давлению газа в остальном трубопроводе, на величину, не менее 0,1 МПа. Расходомер и участки трубопровода, прилегающие к нему, не должны подвергаться воздействию осадков, солнечных лучей и источников тепла.

Допускаемые диапазоны изменения параметров поверочной среды приведены в таблице 3.

Определение метрологических характеристик расходомера аналогично процедуре, изложенной в п.п. 5.5.3-5.5.6.

Расходомер считается прошедшим поверку, если:


- а) среднее измеренное за 300 с значение скорости потока газа при нулевом расходе по каждому акустическому каналу-не превышает:
 - 0,006 м/с для расходомеров моделей MPU1200 и MPU800;
 - 0,012 м/с для расходомеров модели МРU600;
 - 0,024 м/с для расходомеров модели MPU200.
- б) относительное отклонение измеренных за $300\,\mathrm{c}$ значений скорости звука от расчетной величины для всех путей с каждой пары приемо-передатчиков не превышает $\pm 0.3\%$;

- в) наибольшее относительное отклонение значений скорости звука между путями не превышает:
 - 0,1% для расходомеров моделей MPU1200 и MPU800;
 - 0,2% для расходомеров модели MPU600;

Данные и результаты измерений вносят в протокол поверки.

9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 9.1. Результаты поверки заносят в протокол произвольной формы.
- 9.2. Положительные результаты поверки оформляют свидетельством в соответствии с «Порядком проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке», утвержденным Приказом Минпромторга России №1815 от 02 июля 2015 года.
- 9.3. При отрицательных результатах поверки расходомера не допускают к применению и выполняют процедуры, предусмотренные «Порядком проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке», утвержденным Приказом Минпромторга России №1815 от 02 июля 2015 года.

- 1- Установка поверочная, работающая на воздухе при атмосферном давлении СКО 0,05%% (при 11 независимых измерениях), НСП 0,04%, поверка согласно п. 8.3.1.1;
- 2- Установка поверочная, работающая на воздухе при атмосферном давлении, с расширенной неопределенностью воспроизведения величины объемного расхода $U_{0.95}$ =0.3%, поверка согласно п. 8.3.1.1;
- 3- Установка поверочная, работающая на воздухе при атмосферном давлении, с расширенной неопределенностью воспроизведения величины объемного расхода U_{0.95}=0.3%, поверка согласно п. 8.3.1.2;
- 4 Установка поверочная расходоизмерительная, поверочная среда: природный газ, диапазон задаваемого объемного расхода должен соответствовать рабочему диапазону поверяемого расходомера-счетчика, с пределом основной относительной погрешности ±0,23%, %, поверка согласно п. 8.3.1.2;

Условные обозначения:

- Р рабочее абсолютное давление расходомеров, МПа;
- δ пределы допускаемой основной относительной погрешности измерения объемного расхода и объема газа в рабочих условиях расходомеров,%.