10+1

УТВЕРЖДАЮ Начальник ГЦИ СИ «Воентест» 32 ГНИИИ МО РФ

ЕНТЕСТ ДО. Кузин

2008 г.

инструкция

ИСТОЧНИКИ ПИТАНИЯ ПОСТОЯННОГО ТОКА AGILENT N5766A ФИРМЫ «AGILENT TECHNOLOGIES, INC.», США

МЕТОДИКА ПОВЕРКИ

введение

Настоящая методика распространяется на источники питания постоянного тока Agilent N5766A, заводские номера US27E6448H, US27E6449H фирмы «Agilent Technologies, Inc.», США, (далее - источники питания).

Межповерочный интервал – один год.

1 ОПЕРАЦИИ ПОВЕРКИ

1.1 При проведении поверки должны выполняться операции, указанные в таблице 1.

Наименование операции	Номер пункта	Проведение операции при		
	методики поверки	первичной поверке (вво- зе импорта)	периодичес- кой поверке	
1 Внешний осмотр и проверка	5.1	+	+	
комплектности				
2 Опробование	5.2	+	+	
3 Проверка электрического сопротивления изоляции и электрической прочности изоляции	5.3	+	-	
4 Определение метрологических характеристик:	5.4	+	+	
4.1 Определение погрешности установки напряжения постоянного тока.	5.4.1	+	+	
4.2 Определение погрешности установки силы постоянного тока.	5.4.2	+	+	
4.3 Определение нестабильности выходного напряжения при изменении напряжения питающей сети.	5.4.3	+	+	
4.4 Определение нестабильности выходного тока при изменении напряжения питающей сети.	5.4.4	+	+	
4.5 Определение нестабильности выходного напряжения при изменении тока нагрузки.	5.4.5	+	+	
4.6 Определение нестабильности выходного тока при изменении напряжения на нагрузке.	5.4.6	+	+	
4.7 Определение пульсаций выходного напряжения.	5.4.7	+	+	
4.8 Определение пульсаций выходного то- ка.	5.4.8	+	+	

2 СРЕДСТВА ПОВЕРКИ

2.1 При проведении поверки должны применяться средства поверки, указанные в таблице 2.

Таблица 2

таолица 2	
Номер	Наименование и тип (условное обозначение) основного или вспомогательного
пункта	средства поверки. Обозначение нормативного документа, регламентирующего
методики	технические требования, и (или) метрологические и основные технические ха-
поверки	рактеристики средства поверки
5.3	Универсальная пробойная установка УПУ-10 (испытательное напряжение до
	10 кВ), мегаомметр М4100/3 (диапазон измерений от 1 до 10 ⁸ Ом, кл.т. 1,0)
5.4.1	Мультиметр В7-64/1 (диапазон измерений от 1 мкВ до 1000 В, пределы допус-
	каемой погрешности измерений ± 0,004 %)
5.4.2	Мультиметр В7-64/1 (диапазон измерений от 1 нА до 2 А, пределы допускаемой
	погрешности измерений \pm 0,02 %),
	катушка электрического сопротивления Р310 (номинальное значение электри-
	ческого сопротивления 0,001 Ом, кл.т. 0,02)
5.4.3	Мультиметр В7-64,
j r	автотрансформатор РНО-250
5.4.4	Мультиметр В7-64,
	катушка электрического сопротивления Р310,
3	автотрансформатор РНО-250
5.4.5	Мультиметр В7-64,
	автотрансформатор РНО-250
5.4.6	Мультиметр В7-64,
	катушка электрического сопротивления Р310,
	автотрансформатор РНО-250
5.4.7	Милливольтметр В3-48А (диапазон измерений от 0,3 мВ до 300 В, пределы до-
	пускаемой погрешности измерений $\pm 2,5 \%$)
5.4.8	Милливольтметр В3-48А,
1	катушка электрического сопротивления Р310

Примечания

- 1 Вместо указанных в таблице средств поверки разрешается применять другие аналогичные меры и измерительные приборы, обеспечивающие измерения соответствующих параметров с требуемой точностью.
- 2 Применяемые средства поверки должны быть исправны, поверены и иметь свидетельства (отметки в формулярах или паспортах) о поверке с неистекшим сроком действия.

3 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

3.1 При проведении поверки должны быть соблюдены требования безопасности, предусмотренные «Правилами технической эксплуатации электроустановок потребителей», «Правилами техники безопасности при эксплуатации электроустановок потребителей», а также изложенные в технической документации фирмы-изготовителя источников питания, в технической документации на применяемые при поверке рабочие эталоны и вспомогательное оборудование.

4 УСЛОВИЯ ПОВЕРКИ И ПОДГОТОВКА К НЕЙ

4.1 При проведении поверки должны быть соблюдены следующие условия:

• температура окружающего воздуха, °C 20 ± 2 ; • относительная влажность воздуха, % 65 ± 15 ;

• атмосферное давление, кПа (мм рт.ст.) $100 \pm 4 \ (750 \pm 30)$;

• напряжение питающей сети, В $220 \pm 4,4;$ • частота питающей сети, Γ ц $50 \pm 0,5.$

- 4.2 Перед проведением поверки необходимо выполнить следующие подготовительные работы:
 - выдержать источник питания в условиях, указанных в п. 4.1, в течение не менее 2 ч;
- выполнить операции, оговоренные в технической документации фирмы изготовителя на источник питания по его подготовке к измерениям;
- выполнить операции, оговоренные в технической документации на применяемые средства поверки по их подготовке к измерениям;
- осуществить предварительный прогрев приборов для установления их рабочего режима.

5 ПРОВЕДЕНИЕ ПОВЕРКИ

5.1 Внешний осмотр и проверка комплектности

При внешнем осмотре установить соответствие источника питания требованиям эксплуатационной документации. При внешнем осмотре убедиться в:

- отсутствии механических повреждений;
- функционировании органов управления и коммутации;
- чистоте гнезд, разъемов и клемм;
- исправности соединительных проводов и кабелей;
- целостности лакокрасочных покрытий и четкости маркировки;
- наличии и соответствии документации номиналов предохранителей;
- отсутствии внутри прибора незакрепленных предметов.

Проверить комплектность источника питания в соответствии с технической документацией.

Результаты поверки считаются положительными, если источник удовлетворяет вышеперечисленным требованиям, комплектность источника полная. В противном случае источник дальнейшей поверке не подвергается, бракуется и направляется в ремонт.

5.2 Опробование

Провести опробование работы источника питания для оценки его исправности в следующей последовательности.

Включить источник питания в сеть.

Установить переключатель «Power» в положение «I».

Убедиться в правильности прохождения встроенной тестовой программы на отсутствие индицируемых ошибок. Тестовая программа выполняется автоматически после включения источника питания.

Результаты поверки считать положительными, если отсутствуют ошибки тестирования. В противном случае источник питания дальнейшей поверке не подвергается, бракуется и направляется в ремонт.

5.3 Проверка электрического сопротивления изоляции и электрической прочности изоляции

5.3.1 Электрическое сопротивление изоляции источника питания проверить между закороченными разъемами питания и «корпусом» (при включенной кнопке «Power») и между каждой из потенциальных клемм и «корпусом». Источник питания при этом должен быть отключен от сети.

Соединить клеммы испытательной установки с сетевыми разъемами источника питания.

Включить питание испытательной установки.

Измерить электрическое сопротивление изоляции.

Результаты поверки считать положительными, если сопротивление изоляции не менее 20 МОм. В противном случае источник питания дальнейшей поверке не подвергается, бракуется и направляется в ремонт.

5.3.2 Электрическую прочность изоляции источника питания проверить между закороченными разъемами питания и «корпусом» (при включенной кнопке «Power») на переменном токе и между каждой из потенциальных клемм и «корпусом» на постоянном токе. Источник питания при этом должен быть отключен от сети.

Подключить к высоковольтному выходу установки сетевые разъемы источника питания.

Подключить к общему выходу установки «корпус» источника питания.

Включить питание испытательной установки.

Выдержать источник питания под воздействием испытательного напряжения 1,5 кВ в течение 1 минуты.

Результаты поверки считать положительными, если отсутствуют пробой, на что указывает внезапное возрастание тока. В противном случае источник дальнейшей поверке не подвергается, бракуется и направляется в ремонт.

5.4 Определение метрологических характеристик

5.4.1 Определение погрешности установки напряжения постоянного тока

Погрешность установки напряжения постоянного тока определить с помощью метода прямых измерений.

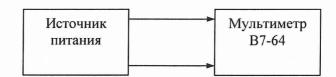


Рисунок 1 - Структурная схема соединения приборов

Соединить клеммы источника питания, расположенные на задней панели, с потенциальными клеммами мультиметра В7-64 в соответствии с рисунком 1.

Перевести мультиметр В7-64 в режим измерений напряжения постоянного тока.

Провести измерения воспроизводимых источником питания значений напряжений в соответствии с таблицей 3.

	-					1
Га	n	T	KTI	TT	2	4

таолица 3						
Поверяемые	3	6	15	30	45	60
отметки, В			10	50	,,,	
Пределы допус-						
каемой погреш-	± 43	± 46	± 55	± 70	± 85	± 100
ности установки,		1 40	1 33	170	± 63	± 100
мВ						

Абсолютную погрешность установки напряжения вычислить по формуле:

$$\Delta U = U_{\rm B} - U_{\rm H},\tag{1}$$

где U_в – воспроизведенное значение напряжения, В;

U_и – измеренное мультиметром B7-64 значение напряжения, В.

Результаты поверки считать положительными, если значения погрешности установки напряжения для каждой поверяемой отметки находятся в пределах, указанных в таблице 3.

В противном случае источник питания дальнейшей поверке не подвергается, бракуется и направляется в ремонт.

5.4.2 Определение погрешности установки силы постоянного тока

Погрешность установки силы постоянного тока определить с помощью метода прямых измерений для токов до 2 A включительно и с помощью метода косвенных измерений для токов выше 2 A.

Измерения токов до 2 А включительно провести в следующей последовательности.

Соединить клеммы источника питания с токовыми клеммами мультиметра В7-64 в соответствии с рисунком 1.

Перевести мультиметр В7-64 в режим измерения силы постоянного тока.

Провести измерения воспроизводимых источником питания значений силы постоянного тока в соответствии с таблицей 4 (для отметок 1 А и 2 А).

Таблица 4

ле:

I woming '						
Поверяемые отметки, А	1	2	4	10	20	38
Пределы допускаемой погрешности установки, мА	± 115	± 116	± 118	± 124	± 134	± 152

Абсолютную погрешность установки силы тока для этих отметок вычислить по форму-

$$\Delta I = I_{B} - I_{H}, \tag{2}$$

где I_в – воспроизведенное значение силы тока, A,

I_и – измеренное мультиметром B7-64 значение силы тока, А.

Измерения токов выше 2 А провести в следующей последовательности.

Соединить клеммы приборов в соответствии с рисунком 2.

Перевести мультиметр В7-64 в режим измерений напряжения постоянного тока.

Провести измерения воспроизводимых источником питания значений силы постоянного тока в соответствии с таблицей 2 (для токов выше 2 А).

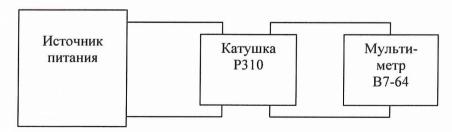


Рисунок 2 - Структурная схема соединения приборов

Рассчитать силу тока, протекающего через катушку P310 (модификация с $I_{max} = 55 \,$ A), по формуле:

$$I_{\mu} = U_{\mu} / R , \qquad (3)$$

где $U_{\text{и}}$ – значение напряжения на катушке P310, измеренное с помощью мультиметра B7-64, R – номинальное значение катушки P310 (0,001 Ом).

Абсолютную погрешность установки силы тока вычислить по формуле (2), где I_{μ} – измеренное значение силы тока в соответствии с формулой (3).

Результаты поверки считать положительными, если значения погрешности установки силы тока для каждой поверяемой отметки находятся в пределах, указанных в таблице 4.

В противном случае источник питания дальнейшей поверке не подвергается, бракуется и направляется в ремонт.

5.4.3 Определение нестабильности выходного напряжения при изменении напряжения питающей сети

Нестабильность выходного напряжения при изменении напряжения питающей сети определяется с помощью метода прямых измерений.

Соединить клеммы приборов в соответствии с рисунком 3.

Рисунок 3 - Структурная схема соединения приборов при определении нестабильности выходного напряжения.

С помощью автотрансформатора установить напряжение питающей сети 220 В.

На выходе источника питания установить значение напряжения 60 В и ток нагрузки 90 % от максимального значения (при данном напряжении) с помощью реостата.

Измерить выходное напряжение с помощью мультиметра В7-64 и записать как U₁.

Плавно уменьшить напряжение питающей сети с помощью автотрансформатора до 170 В.

Выждать 1 мин.

Измерить выходное напряжение с помощью мультиметра В7-64 и записать как U2.

Определить нестабильность выходного напряжения (как разность напряжений U_1 и U_2) для этой точки.

Плавно увеличить напряжение питающей сети с помощью автотрансформатора до 265 B.

Выждать 1 мин.

Измерить выходное напряжение с помощью мультиметра В7-64 и записать как U₃.

Определить нестабильность выходного напряжения (как разность напряжений U_1 и U_3) для этой точки.

Результаты поверки считать положительными, если значения величины нестабильности находятся в пределах ± 6 мВ для каждой крайней точки.

В противном случае источник питания дальнейшей поверке не подвергается, бракуется и направляется в ремонт.

5.4.4 Определение нестабильности выходного тока при изменении напряжения питающей сети

Нестабильность выходного тока при изменении напряжения питающей сети определить с помощью метода косвенных измерений.

Соединить клеммы приборов в соответствии с рисунком 4.

Рисунок 4 - Структурная схема соединения приборов при определении нестабильности выходного тока

С помощью автотрансформатора установить напряжение питающей сети 220 В.

На выходе источника питания установить значение тока 38 А и напряжение 90 % от максимального значения (при данном токе) с помощью реостата.

Измерить напряжение на катушке P310 с помощью мультиметра B7-64, записать как U_{4} . Плавно уменьшить напряжение питающей сети с помощью автотрансформатора до 170~B.

Выждать 1 мин.

Измерить напряжение на катушке P310 с помощью мультиметра B7-64, записать как U_5 . Определить нестабильность выходного тока для этой точки по формуле:

$$\Delta I_{\rm H} = \left(U_4 - U_5 \right) / R, \tag{4}$$

где R – номинальное значение катушки P310.

Плавно увеличить напряжение питающей сети с помощью автотрансформатора до 265 В.

Выждать 1 мин.

Измерить напряжение на катушке Р310, записать как U₆

Определить нестабильность выходного тока для этой точки (соответственно для разности напряжений U_4 и U_6).

Результаты поверки считать положительными, если значения величины нестабильности выходного тока находятся в пределах \pm 5,8 мA для каждой крайней точки.

В противном случае источник питания дальнейшей поверке не подвергается, бракуется и направляется в ремонт.

5.4.5 Определение нестабильности выходного напряжения при изменении тока нагрузки

Нестабильность выходного напряжения при изменении тока нагрузки определить с помощью метода прямых измерений.

Соединить клеммы приборов в соответствии с рисунком 3 (без автотрансформатора).

На выходе источника питания выставить значение напряжения 60 В и ток нагрузки 0 мА, отсоединив одну из клемм источника питания.

Измерить напряжение с помощью мультиметра В7-64 и записать как U₇.

Подключить клемму обратно, на выходе источника питания выставить максимально возможный ток нагрузки для данного напряжения (источник не должен выходить из режима стабилизации напряжения) с помощью реостата.

Выждать 1 мин.

Измерить напряжение с помощью мультиметра В7-64 и записать как U₈.

Определить нестабильность выходного напряжения (как разность напряжений U₇ и U₈).

Результаты поверки считать положительными, если значения величины нестабильности находятся в пределах ± 6 мВ.

В противном случае источник питания дальнейшей поверке не подвергается, бракуется и направляется в ремонт.

5.4.6 Определение нестабильности выходного тока при изменении напряжения на нагрузке

Нестабильность выходного тока при изменении напряжения на нагрузке определить с помощью метода косвенных измерений.

Соединить клеммы приборов в соответствии с рисунком 4 (без автотрансформатора).

На выходе источника питания установить значение тока 38 A и максимально возможное значение напряжения для данного тока (источник не должен выходить из режима стабилизации силы тока) с помощью реостата.

Измерить напряжение на катушке P310 с помощью мультиметра B7-64 и записать как U_9 .

На выходе источника питания выставить минимально возможное напряжение с помощью реостата, уменьшая его сопротивление.

Выждать 1 мин.

Измерить напряжение на катушке P310 с помощью мультиметра B7-64 и записать как U_{10}

Определить нестабильность выходного тока (для разности напряжений U_9 и U_{10}) по формуле (4).

Результаты поверки считать положительными, если значения величины нестабильности находятся в пределах \pm 12,6 мA.

В противном случае источник питания дальнейшей поверке не подвергается, бракуется и направляется в ремонт.

5.4.7 Определение пульсаций выходного напряжения

Пульсации выходного напряжения определить методом прямых измерений.

Соединить клеммы приборов в соответствии с рисунком 3 (без автотрансформатора), включив вместо мультиметра В7-64 милливольтметр В3-48А.

Измерения провести при значении выходного напряжения источника 60 В и токе нагрузки, равном 90 % от максимально возможного значения (при данном напряжении).

Результаты поверки считать положительными, если значения величины пульсаций находятся в пределах от 0 до 8 мВ.

В противном случае источник питания дальнейшей поверке не подвергается, бракуется и направляется в ремонт.

5.4.8 Определение пульсаций выходного тока

Пульсации выходного тока определить методом косвенных измерений.

Соединить клеммы приборов в соответствии с рисунком 4 (без автотрансформатора), включив вместо мультиметра В7-64 милливольтметр В3-48А.

Измерения провести при значении выходного тока источника 38 А и напряжении, равном 90 % от максимально возможного значения (при данном токе).

Величину пульсаций выходного тока рассчитать по формуле:

$$I_{n} = U_{n} / R, \tag{5}$$

где R – номинальное значение катушки $P310,\,U_n$ – величина пульсаций напряжения на катушке P310.

Результаты поверки считать положительными, если значения величина пульсаций находятся в пределах от 0 до 95 мА.

В противном случае источник питания бракуется и направляется в ремонт.

6 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 6.1 Результаты поверки оформляются протоколом.
- 6.2 При положительных результатах поверки в формуляре на источник питания оформляется запись о поверке или выдается свидетельство установленного образца.
- 6.3 При отрицательных результатах поверки источник питания бракуется. На забракованный источник питания выдается извещение о непригодности с указанием причин забракования.

Начальник отдела ГЦИ СИ «Воентест» 32 ГНИИИ МО РФ

О.В. Каминский

Начальник лаборатории ГЦИ СИ «Воентест» 32 ГНИИИ МО РФ

А.В. Заболотнов