УТВЕРЖДАЮ Начальник ГЦИ СИ «Воентест» 32 ГНИИИ МО РФ

_С.И. Донченко

инструкция ОСЛАБИТЕЛЬ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ

Методика поверки

1 ОБЩИЕ ПОЛОЖЕНИЯ

1.1 Настоящая методика поверки распространяется на ослабитель лазерного излучения, предназначенный для воспроизведения коэффициента пропускания, и устанавливает методы и средства его первичной и периодической поверок.

2 ОПЕРАЦИИ ПОВЕРКИ

2.1 При проведении поверки должны выполняться операции, указанные в таблице1.

Таблица 1 – Операции поверки

Наименование операции	Номера пунктов методики поверки
1 Внешний осмотр.	п.8.1
3 Определение коэффициента пропускания.	п.8.2
4 Определение погрешности воспроизведения коэффициента пропуска-	
. кин	п.8.3

3 СРЕДСТВА ПОВЕРКИ

3.1 При проведении поверки должны использоваться средства измерений, представленные в таблице 2.

Таблица 2 – Средства поверки

№ пункта методики	Наименование средств	Основные метрологические
поверки	измерений	характеристики
8.3 8.4	Военный эталон-переносчик единицы энергии импульсного лазерного излучения ВЭПЭ	Диапазон воспроизведения единицы энергии от 10^{-5} до 0.18 Дж; суммарная погрешность воспроизведения размера единицы энергии не более 0.8 % в диапазоне от $5 \cdot 10^{-3}$ до 0.18 Дж и не более 3 % в диапазоне от 10^{-5} до $5 \cdot 10^{-3}$ Дж; погрешность передачи размера единицы энергии не более 1.0 %.

- 3.2 Допускается использование других средств измерений и вспомогательного оборудования, имеющих метрологические и технические характеристики не хуже характеристик приборов, приведенных в таблице 2.
- 3.3 Все средства поверки должны быть исправны, применяемые при поверке средства измерений поверены и иметь свидетельства о поверке или оттиск поверительного клейма на приборе или технической документации.

4 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

4.1 Поверка должна осуществляться лицами, аттестованными в установленном порядке в качестве поверителей и изучившими руководство по эксплуатации на используемые приборы.

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

5.1 При проведении поверки необходимо соблюдать требования техники безопасности, предусмотренные «Правилами технической эксплуатации электроустановок потребителей», «Правилами техники безопасности при эксплуатации электроустановок потребителей» (изд.3), «Санитарными нормами правил устройства и эксплуатации лазеров», ГОСТ 12.2.091-94, а также требования безопасности, указанные в технической документации на применяемые эталоны и вспомогательное оборудование.

6 УСЛОВИЯ ПОВЕРКИ

6.1 При поверке должны соблюдаться следующие условия:

температура окружающего воздуха, 0 С 20 ± 5; относительная влажность воздуха, 6 С 65 ± 15;

атмосферное давление, кПа (мм рт.ст) $100 \pm 4 (750 \pm 30)$;

питание от сети переменного тока:

напряжением, В 220 ± 22 ; частотой, Γ ц 50 ± 0.5 .

7 ПОДГОТОВКА К ПОВЕРКЕ

- 7.1 Перед проведением поверки поверитель должен изучить техническую документацию поверяемого ослабителя и используемых средств поверки.
 - 7.2 Перед проведением операций поверки необходимо:
 - проверить комплектность поверяемого ослабителя;
- подготовить средства поверки и поверяемый ослабитель к работе в соответствии с их технической документацией.

8 ПРОВЕДЕНИЕ ПОВЕРКИ

- 8.1 Внешний осмотр
- 8.1.1 При проведении внешнего осмотра проверить:
- отсутствие механических повреждений;
- чистоту поверхности оптического элемента.

Ослабитель, имеющий дефекты (механические повреждения), бракуют и направляют в ремонт.

- 8.2 Определение коэффициента пропускания
- 8.2.1 Подготовить ВЭПЭ к работе в верхней точке диапазона энергии на длине волны 1,064 мкм. Провести калибровку ВЭПЭ в соответствии с его руководством по эксплуатации. Собрать и отъюстировать оптический тракт, разместив на выходе ВЭПЭ ослабитель, а за ослабителем преобразователь измерительный ПИ-1 из состава ВЭПЭ. Включить ПИ-1 в режиме измерений энергии лазерного излучения.

8.2.2 Подать импульс лазерного излучения с ВЭПЭ на вход измерительного преобразователя. По показаниям ВЭПЭ определить значение поданной на ослабитель энергии $E_{B \ni \Pi \ni_i}$ и измеренной на выходе ослабителя энергии $E_{\Pi u_i}$. Определить по формуле (1) значения коэффициента пропускания τ_i :

$$\tau_i = \frac{E_{\Pi \mathcal{U}_i}}{E_{B \ni \Pi \ni i}},\tag{1}$$

Значение τ_i определить n раз ($n = 7 \div 9$).

Определить среднее значение коэффициента пропускания по формуле (2):

$$\bar{\tau} = \frac{1}{n} \sum_{i=1}^{n} \tau_i \ . \tag{2}$$

Результаты поверки считать удовлетворительными, если среднее значение коэффициента пропускания 0,11.

- 8.3 Определение погрешности воспроизведения коэффициента пропускания
- 8.3.1 Относительную погрешность коэффициента пропускания рассчитать по формуле (3):

$$\Delta = 2\sqrt{\sum \sigma_i^2 + \frac{\sum \theta_i^2}{3}},\tag{3}$$

где σ_i - СКО, характеризующее *i*-ю случайную погрешность, %;

 θ_i - граница интервала i-й погрешности, учитываемой как неисключенная систематическая погрешность (НСП), %.

$$\sum \sigma_i^2 = 2\sigma_{B\Im\Pi\Im}^2 + \sigma_{\Pi}^2 + \sigma_{\tau}^2 \,, \tag{4}$$

$$\sum \theta_i^2 = \theta_\alpha^2 + \theta_{x,y}^2 \,, \tag{5}$$

где $\sigma_{\mathit{BЭЛЭ}}$ - СКО результата измерений ВЭПЭ при сличении его с вышестоящим эталоном;

 σ_{π} - погрешность передачи размера единицы энергии ВЭПЭ;

 $\sigma_{\tau}~$ - CKO результата измерения коэффициента пропускания;

- θ_{a} НСП, обусловленная зависимостью коэффициента пропускания ослабителя от угла падения излучения;
- $\theta_{x,y}$ НСП, обусловленная зависимостью коэффициента пропускания ослабителя от места попадания пучка излучения на его поверхность.
- 8.3.2 Составляющие $\sigma_{B \ni \Pi \ni}$ и σ_{Π} указаны в формуляре ВЭПЭ. СКО σ_{τ} результата измерения коэффициента пропускания рассчитать по формуле (6):

$$\sigma_{\tau} = \frac{1}{\overline{\tau}} \sqrt{\frac{\sum_{i=1}^{n} (\tau_{i} - \overline{\tau})^{2}}{n-1}} \cdot 100\%.$$
 (6)

Проверку составляющей θ_{α} проводить по результатам измерений в соответствии с методикой, изложенной в п.8.2.2. Определить 4 средних значений коэффициента пропускания $\bar{\tau}_n$ (n=1÷4) при 4 различных положениях ослабителя относительно плоскости, перпендикулярной оси распространения лазерного излучения. При этом ослабитель последовательно устанавливать таким образом, чтобы отклонение его от плоскости, перпендикулярной оси распространения излучения, составляло $\alpha = \pm 5^{\circ}$ при повороте ослабителя вокруг вертикальной и горизонтальной оси.

Затем по формуле (7) рассчитать среднее значение коэффициента пропускания:

$$\overline{\tau}_{\alpha} = \frac{1}{4} \left(\overline{\tau}_1 + \overline{\tau}_2 + \overline{\tau}_3 + \overline{\tau}_4 \right). \tag{7}$$

Значение θ_{α} рассчитать по формуле (8):

$$\theta_{\alpha} = \left| \frac{\overline{\tau}_{\alpha} - \overline{\tau}_{1-4}}{\overline{\tau}_{\alpha}} \right| \cdot 100 \%, \tag{8}$$

где $\overline{\tau}_{l-4}$ - значение из ряда $\overline{\tau}_1$; $\overline{\tau}_2$; $\overline{\tau}_3$; $\overline{\tau}_4$ наиболее отличающееся от $\overline{\tau}_\alpha$.

Проверку составляющей $\theta_{x,y}$ проводить по результатам измерений в соответствии с методикой, изложенной в п.8.2.2. Определить 5 средних значений коэффициента пропускания $\overline{\tau}_n'$ (n=1÷5) при 5 различных положениях центра пучка лазерного излучения относительно центра ослабителя. При одном из них пучок лазерного излучения необходимо юстировать в центр ослабителя при допустимом отклонении до 1 мм. В остальных положениях пучок каждый раз следует юстировать таким образом, чтобы его центр попадал в одну из четырех диаметрально противоположных точек в плоскости ослабителя, отстоящих от его центра на расстояние 4 ± 1 мм.

По результатам измерений $\overline{\tau}_n$ определить разности (9):

$$\Delta_{j} = \frac{\overline{\tau}_{1} - \overline{\tau}_{j}}{\overline{\tau}_{1} + \overline{\tau}_{j}}; \quad j = 2 \div 5, \tag{9}$$

где индекс 1 соответствует юстировке луча в центр входного окна, а ${\bf j}$ – остальным положениям. За значение $\theta_{{\bf x},{\bf y}}$ принять максимальное по модулю значение разности Δ_j .

Результаты поверки считать удовлетворительными, если значение относительной погрешности определения коэффициента пропускания находится в пределах \pm 5%.

- 9 Оформление результатов поверки
- 9.1 При проведении поверки ведутся протоколы измерений произвольной формы.
- 9.2 Положительные результаты поверки оформляются выдачей свидетельства о поверке установленной формы.
- 9.3 При отрицательных результатах поверки применение ослабителя запрещается и на него выдается извещение о непригодности с указанием причин.

Начальник отдела ГЦИ СИ «Воентест» 32 ГНИИИ МО РФ

Научный сотрудник ГЦИ СИ «Воентест»32 ГНИИИ МО РФ А.Н. Щипунов

О.В. Колмогоров

A for