ОКМИмастер

Акционерное Общество «АКТИ-Мастер»

АКТУАЛЬНЫЕ КОМПЬЮТЕРНЫЕ ТЕХНОЛОГИИ И ИНФОРМАТИКА

127106, Москва, Нововладыкинский проезд, д. 8, стр. 4 тел./факс (495)926-71-70 E-mail: post@actimaster.ru http://www.actimaster.ru

УТВЕРЖДАЮ

Генеральный директор АО «АКТИ-Мастер»

В.В. Федулов

7« 04 » февраля 2020 г.

Государственная система обеспечения единства измерений

Анализаторы параметров радиотехнических трактов и сигналов портативные S331E, S332E, S361E, S362E, MS2712E, MS2713E, MT8213E

Методика поверки МТ8213E/МП-2020

Заместитель генерального директора по метрологии АО «АКТИ-Мастер» _

Д.Р. Васильев

Настоящая методика поверки распространяется на анализаторы параметров радиотехнических трактов и сигналов портативные S331E, S332E, S361E, S362E, MS2712E, MS2713E, MT8213E (далее – анализаторы), изготавливаемые фирмой "Anritsu Company" (США), и устанавливает методы и средства их поверки.

Интервал между поверками - 1 год.

1 ОПЕРАЦИИ ПОВЕРКИ

1.1 При проведении поверки должны быть выполнены операции, указанные в таблице 1.

Таблица 1 – Операции поверки

Наименование операции		Проведение операции при поверке	
	методики	первичной	периодической
Внешний осмотр	6.1	да	да
Подготовка к поверке	6.2	да	да
Опробование (идентификация и диагностика)	6.3	да	да
Определение погрешности установки частоты генератора в режиме измерителя коэффициентов отражения (все модели, кроме MS2712E, MS2713E)	7.1	да	да
Определение погрешности измерения КСВН (все модели, кроме MS2712E, MS2713E)	7.2	да	да
Определение усредненного уровня собственных шумов анализатора спектра (все модели, кроме S331E/S361E)	7.3	да	да
Определение погрешности измерения частоты анализатором спектра (все модели, кроме S331E/S361E)	7.4	да	да
Определение уровня фазовых шумов анализатора спектра (все модели, кроме S331E/S361E)	7.5	да	да
Определение уровня гармонических искажений 2-го порядка анализатора спектра (все модели, кроме S331E/S361E)	7.6	да	нет
Определение погрешности измерения уровня мощности анализатором спектра (все модели, кроме S331E/S361E)	7.7	да	да
Определение погрешности измерения уровня мощности широкополосным измерителем мощности (МТ8213E; S332E/S362E, MS2712E/MS2713E – при наличии опции 0029)	7.8	да	да

1.2 По письменному запросу пользователя операции поверки могут быть выполнены для меньшего числа измеряемых величин. При этом в свидетельстве о поверке должны быть указаны соответствующие величины.

2 СРЕДСТВА ПОВЕРКИ

- 2.1 Рекомендуется применять средства поверки, указанные в таблице 2. Допускается применять другие аналогичные средства поверки, обеспечивающие определение метрологических характеристик поверяемых анализаторов с требуемой точностью.
- 2.2 Средства поверки должны быть исправны, эталоны (средства измерений) поверены и иметь документы о поверке.

МТ8213Е/МП-2020	Методика поверки	стр. 2 из 14
	The together the second	VEG TO THE OUT OF

Таблица 2 - Средства поверки

Наименование средства поверки	Номер пункта методики	Рекомендуемый тип средства поверки, регистрационный номер реестра
HK FG S. T. F.	Эталоны	и (средства измерений)
Стандарт частоты	7.1, 7.4	Стандарт частоты рубидиевый FS 725; рег. № 31222-06
Частотомер	7.1	Частотомер универсальный Tektronix FCA3003; рег. № 45344-10
Marra WCDII	7.2	Нагрузки с КСВН 1,4 и 2,0 из набора мер КСВН и полного сопротивления 1-го разряда ЭК9-140; рег. № 36021-07
Меры КСВН	7.2	Нагрузки с КСВН 1,4 и 2,0 из набора мер полного и волнового сопротивления 1-го разряда ЭК9-145; рег. № 8935-82 (для S361E, S362E, MT8213E)
Генератор сигналов	7.5 – 7.8	Генератор сигналов MG3710A с опцией 036; рег. № 55303-13
Ваттметр проходящей мощности СВЧ	7.7, 7.8	Ваттметр проходящей мощности СВЧ NRP-Z98; рег. № 43643-10
	I	ринадлежности
Кабели и адаптеры	7.1 - 7.8	BNC, N
Фильтр нижних частот	7.6	Частота среза (6575) MHz

2.2 Средства поверки должны быть исправны, эталоны (средства измерений) поверены и иметь документы о поверке.

3 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

К проведению поверки допускаются лица с высшим или среднетехническим образованием, имеющие практический опыт в области радиотехнических измерений.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 4.1 При проведении поверки должны быть соблюдены требования безопасности в соответствии с ГОСТ 12.3.019-80.
- 4.2 Во избежание несчастного случая и для предупреждения повреждения анализатора необходимо обеспечить выполнение следующих требований:
- подсоединение анализатора к сети должно производиться с помощью сетевого кабеля из комплекта;
- заземление анализатора и средств поверки должно производиться посредством заземляющих контактов сетевых кабелей;
- присоединения анализатора и оборудования следует выполнять при отключенных входах и выходах (отсутствии напряжения на разъемах);
- запрещается подавать на вход анализатора сигнал с уровнем, превышающим максимально допускаемое значение;
 - запрещается работать с анализатором при снятых крышках или панелях;
- запрещается работать с анализатором в условиях температуры и влажности, выходящих за пределы рабочего диапазона, а также при наличии в воздухе взрывоопасных веществ;
 - запрещается работать с анализатором в случае обнаружения его повреждения.

МТ8213Е/МП-2020	Методика поверки	стр. 3 из 14

5 УСЛОВИЯ ОКРУЖАЮЩЕЙ СРЕДЫ ПРИ ПОВЕРКЕ

При проведении поверки должны соблюдаться следующие условия окружающей среды:

- температура воздуха (23 ±2) °C, относительная влажность воздуха от 30 до 70 %;
- атмосферное давление от 84 до 106.7 kPa.

6 ВНЕШНИЙ ОСМОТР, ПОДГОТОВКА К ПОВЕРКЕ, ОПРОБОВАНИЕ (ИДЕНТИФИКАЦИЯ И ДИАГНОСТИКА)

6.1 Внешний осмотр

- 6.1.1 При проведении внешнего осмотра проверяются:
- чистота и исправность разъемов, отсутствие механических повреждений корпуса и ослабления крепления элементов анализатора;
 - сохранность органов управления, четкость фиксации их положений;
 - правильность маркировки и комплектность анализатора.
- 6.1.2 При наличии дефектов или повреждений, препятствующих нормальной эксплуатации поверяемого анализатора, его направляют в сервисный центр для ремонта.

6.2 Подготовка к поверке

- 6.2.1 Перед началом работы следует изучить руководство по эксплуатации анализатора, а также руководства по эксплуатации применяемых средств поверки.
- 6.2.3 Подсоединить анализатор к сети 220 V; 50 Hz через сетевой адаптер из комплекта анализатора.

Включить питание анализатора и средств поверки.

Перед началом выполнения операций средства поверки и анализатор должны быть выдержаны во включенном состоянии в соответствии с указаниями руководств по эксплуатации. Минимальное время прогрева анализатора 30 минут.

6.3 Опробование и идентификация

6.3.1 Нажать на анализаторе клавиши **Shift**, **System**, <u>Status</u>. На дисплее должны отобразиться состояние заряда аккумулятора, наименование модели, серийный номер, установленные опции и номер версии программного обеспечения.

Проверить соответствие идентификационных данных поверяемого анализатора. Нажать клавишу **Esc**.

6.3.2 Выполнить внутреннюю диагностику нажатием клавиш **Shift**, **System**, <u>Self Test</u>. После завершения процедуры внутренней диагностики не должны появиться сообщения об ошибках.

Нажать клавишу Esc.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

Общие указания по проведению поверки

В процессе выполнения операций результаты должны укладываться в пределы допускаемых значений, которые указаны в таблицах настоящего раздела документа.

При получении отрицательных результатов по какой-либо операции необходимо повторить операцию. При повторном отрицательном результате анализатор следует направить в сервисный центр изготовителя для проведения регулировки и/или ремонта.

МТ8213Е/МП-2020	Методика поверки	стр. 4 из 14

7.1 Определение погрешности установки частоты генератора в режиме измерителя коэффициентов отражения (все модели, кроме MS2712E, MS2713E)

- 7.1.1 Выполнить соединения оборудования:
- соединить кабелем N(m-m) разъем "RF Out" поверяемого анализатора с входом высокочастотного канала частотомера.
- соединить кабелем BNC(m-m) вход синхронизации "Ref In" частотомера с выходом "10 MHz" стандарта частоты.
- 7.1.2 Установить на анализаторе режим измерителя коэффициентов отражения, для чего нажать **Menu** и выбрать иконку "Cable-Antenna Analyzer".

Установить режим генерации непрерывного сигнала частотой 2 GHz:

[Freq/Dist], Start Freq, 2, GHz, Stop Freq, 2, GHz

7.1.3 Установить на частотомере режим измерения частоты с автоматическим выбором параметров. Отсчет частотомера должен укладываться в пределы допускаемых значений, указанных в столбцах 2 и 4 таблицы 7.1.

Таблица 7.1 – Погрешность установки частоты генератора

Установленное значение частоты, GHz	Нижний предел допускаемых значений, GHz	Измеренное значение частоты, GHz	Верхний предел допускаемых значений, GHz
1	2	3	4
2.000 000	1.999 995		2.000 005

7.2 Определение погрешности измерения КСВН (все модели, кроме MS2712E, MS2713E)

- 7.2.1 Выполнить заводскую установку на анализаторе, для чего нажать клавиши **Shift**, <u>Preset</u>. Установить режим измерителя коэффициентов отражения, для чего нажать **Menu** и выбрать иконку "Cable-Antenna Analyzer".
- 7.2.2 Выполнить калибровку анализатора, используя калибровочный модуль OSLN50 или "InstaCal" ICN50В из комплекта анализатора.

Предпочтительным является использование калибровочного модуля OSLN50.

Для моделей S331E, S332E, MS2712E калибровку следует выполнить в диапазоне частот Start Freq = 2 MHz, Stop Freq = 4000 MHz.

Для моделей S361E, S362E, MS2713E, MT8213E калибровку следует выполнить в диапазоне частот Start Freq = 2 MHz, Stop Freq = 6000 MHz.

При использовании модуля OSLN50 выполнить следующие действия:

[Freq/Dist], Start Freq (как указано выше), Stop Freq (как указано выше)

[Sweep/Setup], Data Points, "2204"

Shift, Cal

Standard, Start Cal

Следовать инструкциям на дисплее анализатора:

- присоединить к разъему "RF Out" анализатора разъем "Open" модуля и нажать Enter
- присоединить к разъему "RF Out" анализатора разъем "Short" модуля и нажать Enter
- присоединить к разъему "RF Out" анализатора разъем "Load" модуля и нажать Enter На экране должно появиться сообщение: "Cal Status: ON, Standard"

При использовании модуля "InstaCal" ICN50В выполнить следующие действия:

[Freq/Dist], Start Freq (как указано выше), Stop Freq (как указано выше)

[Sweep/Setup], Data Points, "2204"

Shift, Cal

Standard, Start Cal

Следовать инструкциям на дисплее анализатора:

- присоединить к разъему "RF Out" разъем модуля "InstaCal" ICN50B и нажать Enter. На экране должно появиться сообщение: "Cal Status: ON, Standard, Insta"
- 7.2.3 Установить анализатор в режим измерения КСВН, для чего нажать **Menu**, кликнуть на иконке "Cable-Antenna Analyzer", затем выбрать:

[Measurements], VSWR

[Sweep/Setup], Data Points, "2204"

- 7.2.4 Присоединить к разъему "RF Out" анализатора нагрузку с КСВН 1.4 из набора ЭК9-140.
- 7.2.5 Сделать установки на анализаторе:

[Freq/Dist], Start Freq, 2, MHz; Stop Freq, 4000, MHz.

[Amplitude], Autoscale.

На дисплее должна отобразиться траектория КСВН в заданной частотной области.

- 7.2.6 Найти с помощью маркеров максимальное и минимальное значения КСВН в установленном диапазоне частот, для чего выполнить следующие действия:
- [Marker], Marker, "M1", вращающейся ручкой установить маркер на максимальное наблюдаемое значение КСВН;
- [Marker], Marker, "M2", вращающейся ручкой установить маркер на минимальное наблюдаемое значение КСВН.

Зафиксировать максимальное K_{MAX} и минимальное K_{MIN} значения КСВН и соответствующие им значения частоты.

7.2.7 Вычислить значения измеренной абсолютной погрешности КСВН Δ К по формулам

$$\Delta K_{MAX} = K_{MAX} - K_{0MAX}$$
$$\Delta K_{MIN} = K_{MIN} - K_{0MIN},$$

где K_{MAX} и K_{MIN} – отсчитанные по маркеру максимальное и минимальное значения КСВН, K_{0MAX} и K_{0MIN} – указанные в свидетельстве о поверке (протоколе поверки) действительные значения КСВН нагрузки из набора ЭК9-140 на частотах, соответствующих отсчетам K_{MAX} и K_{MIN} .

Значения абсолютной погрешности ΔK не должны превышать пределы допускаемых значений, указанных в столбце 5 таблицы 7.2.1.

Таблица 7.2.1 – Погрешность измерения КСВН на частотах от 2 до 4000 МНz

Измеренное значение КСВН, К _М	Частота, МНz	Значение КСВН эталонной нагрузки на данной частоте, К ₀	Абсолютная погрешность измерения КСВН (K _M – K ₀)	Пределы допускаемой абсолютной погрешности измерения КСВН
1	2	3	4	5
КСВН = 1.4; максим	альное измерен	ное значение		
				±0.056
КСВН = 1.4; миним	альное измерен	ное значение	2 1542	
				±0.056
КСВН = 2.0; максим	иальное измерен	ное значение		
				±0.14
КСВН = 2.0; миним	альное измерен	ное значение	1 1 1 1 1 1 1 1 1 1	
				±0.14

- 7.2.8 Отсоединить нагрузку с КСВН = 1.4 и присоединить к разъему "RF Out" анализатора нагрузку с КСВН = 2.0 набора ЭК9-140.
 - 7.2.9 Выполнить действия по пунктам 7.2.5 7.2.7 для KCBH = 2.0.

МТ8213Е/МП-2020	Методика поверки	стр. 6 из 14
-----------------	------------------	--------------

7.2.10 Отсоединить нагрузку от разъема "RF Out" анализатора.

Для модели S331E выключить анализатор и завершить поверку.

Для модели S332E перейти к выполнению операции 7.3.

Для моделей S361E, S362E, MT8213E перейти к выполнению пункта 7.2.11.

- 7.2.11 Присоединить к разъему "RF Out" анализатора нагрузку с КСВН 1.4 из набора ЭК9-145.
- 7.2.12 Сделать установки на анализаторе:

[Freq/Dist], Start Freq, 4000, MHz; Stop Freq, 6000, MHz.

[Amplitude], Autoscale.

На дисплее должна отобразиться траектория КСВН в заданной частотной области.

- 7.2.13 Установить маркер на частоту 4.5 GHz (наиболее близкое возможное значение): [Marker], Marker, "М1", вращающейся ручкой переместить маркер на указанную частоту.
- 7.3.14 Перемещая подвижную деталь нагрузки, найти максимальное K_{MAX} и минимальное K_{MIN} значения отсчета маркера на анализаторе.
 - 7.3.15 Рассчитать и зафиксировать измеренное значение КСВН K_M по формуле

$$K_{M} = \sqrt{K_{MAX} \cdot K_{MIN}},$$

где K_{MAX} и $K_{MIN}-$ отсчитанные по маркеру максимальное и минимальное значения КСВН в пункте 7.3.2.14.

Вычислить значение измеренной абсолютной погрешности КСВН ΔK по формуле $\Delta K = K_M - K_0$,

где K_M – значение КСВН, рассчитанное по формуле пункта 7.3.15, K_0 – указанное в свидетельстве о поверке (протоколе поверки) действительное значение КСВН нагрузки из набора ЭК9-145 для данной частоты.

Таблица 7.2.2 – Погрешность измерения КСВН на частотах от 4000 до 6000 МНz

Измеренное значение КСВН, К _М	Частота, МНz	Значение КСВН эталонной нагрузки на данной частоте, К ₀	Абсолютная погрешность измерения КСВН (K _M – K ₀)	Пределы допускаемой абсолютной погрешности измерения КСВН
1	2	3	4	5
KCBH = 1.4				
	4500			±0.084
	5000			±0.084
	5500			±0.084
	6000			±0.084
KCBH = 2.0				
	4500	1 3 1 7 7		±0.20
	5000			±0.20
	5500			±0.20
	6000			±0.20

- 7.3.16 Выполнить действия по пунктам 7.3.13 7.3.15 для остальных значений частоты, указанных в столбце 2 таблицы 7.2.2.
- 7.3.17 Отсоединить нагрузку с КСВН = 1.4 и присоединить к разъему "RF Out" анализатора нагрузку с КСВН = 2.0 из набора ЭК9-145.
 - 7.3.18 Выполнить действия по пунктам 7.3.13 7.3.16 для КСВН = 2.0.

МТ8213Е/МП-2020	Методика поверки	стр. 7 из 14
-----------------	------------------	--------------

7.3.19 Отсоединить нагрузку от разъема "RF Out" прибора. Для модели S361E выключить прибор и завершить поверку. Для моделей S362E, MT8213E перейти к выполнению операции 7.3.

7.3 Определение усредненного уровня собственных шумов анализатора спектра (все модели, кроме \$331E/\$361E)

- 7.3.1 Установить на разъем "RF In" анализатора согласованную нагрузку 50 Ω.
- 7.3.2 Установить режим анализатора спектра, для чего нажать **Menu** и выбрать иконку "Spectrum Analyzer".
 - 7.3.3 Выполнить заводскую установку на анализаторе, для чего нажать клавиши Shift, Preset.
 - 7.3.4 Установить на анализаторе опорный уровень, ослабление аттенюатора и усреднения: [Amplitude], <u>Reference Level</u>, **–60**, <u>dBm</u>, <u>AutoAtten Off</u>, <u>Atten Lvl</u>, **0 Shift**, **Trace**, <u>Trace A, Trace A Operations</u>, <u>Average-A</u>, # of Averages 10
 - 7.3.5 Установить на анализаторе значения полосы пропускания и интервал частот: [BW], RBW, 1, MHz, VBW, 10, kHz [Freq], Start Freq, 10, MHz, Stop Freq, 800, MHz
- 7.3.6 После завершения усреднений найти пик сигнала (игнорируя отдельные выбросы) и поместить его в центр дисплея:

[Marker], Marker 1 On, Peak Search, Marker Freq to Center

7.3.7 Перевести анализатор в режим минимальной полосы пропускания 10 Hz: [Span], 1, <u>kHz</u>, [BW], <u>RBW</u>, 10, <u>Hz</u>, <u>VBW</u>, 1, <u>Hz</u>

Таблица 7.3 – Усредненный уровень собственных шумов

Начальная частота обзора, MHz (Start Freq)	Конечная частота обзора, МНz (Stop Freq)	Измеренное значение уровня шумов, dBm/Hz	Верхний предел допускаемых значений, dBm/Hz
1	2	3	4
без предварительного	усилителя (Preamp Of	f)	
10	800		-141
800	1600		-141
1600	2400		-141
2400	3200		-137
3200	4000		-137
следующие значения	для моделей S362E, М	S2713E, MT8213E	
4000	5000		-134
5000	6000		-126
с предварительным ус	илителем (Preamp On)		
10	800	The state of the s	-157
800	1600		-157
1600	2400		-157
2400	3200		-154
3200	4000	The sealing	-154
следующие значения,	для моделей S362E, M	S2713E, MT8213E	
4000	5000		-150
5000	6000		-143

7.3.8 После завершения усреднений зафиксировать отсчет маркера M(10Hz) на анализаторе. Вычислить значение усредненного уровня собственных шумов M(1Hz), нормализованного к полосе пропускания 1 Гц, по формуле

$$M(1Hz) = M(10Hz) - 10.$$

Значение M(1Hz) не должно превышать верхнего предела допускаемых значений, указанного в столбце 4 таблицы 7.3.

- 7.3.9 Выполнить действия по пунктам 7.3.5 7.3.8 для остальных интервалов частоты, указанных в таблице 7.3.
 - 7.3.10 Активировать на анализаторе предварительный усилитель ([Amplitude], <u>Preamp</u>, On). Установить опорный уровень (Reference Level) –80 dBm.
 - 7.3.11 Выполнить действия по пунктам 7.3.5 7.3.9 для режима предварительного усилителя.

7.4 Определение погрешности измерения частоты анализатором спектра (все модели, кроме S331E/S361E)

- 7.4.1 Используя адаптер BNC(f)-N(m), соединить кабелем BNC(m-m) выход "10 MHz" стандарта частоты с входом "RF In" поверяемого анализатора.
 - 7.4.2 Выполнить заводскую установку на анализаторе, для чего нажать клавиши Shift, Preset.
- 7.4.3 Установить режим анализатора спектра, для чего нажать **Menu** и выбрать иконку "Spectrum Analyzer".

Выполнить следующие установки:

[Amplitude], Reference Level, 10, dBm

[Freq], Center Freq, 10, MHz, [Span], 50, kHz, [BW], RBW, 1, kHz, VBW, 30, Hz

7.4.4 Измерить при помощи маркера частоту сигнала:

[Marker], More, Counter Marker On

Записать отсчет частоты F_M по маркеру в столбец 2 таблицы 7.4.

Измеренное значение частоты должно укладываться в пределы допускаемых значений, указанных в столбцах 2 и 4 таблицы 7.3.

Таблица 7.4 – Погрешность измерения частоты анализатором спектра

Установленное значение частоты на входе, МНz	Нижний предел допускаемых значений, МНz	Измеренное значение частоты, МНz	Верхний предел допускаемых значений, МНz
1	2	3	4
10.000 000	$10.000\ 000 - \Delta F$		$10.000\ 000 + \Delta F$

 $\Delta F = F \cdot (\delta_0 + N \cdot \delta_A)$, N – целое число, равное округленному в большую сторону количеству лет со дня выпуска или последней заводской подстройки, $F = 10 \cdot 10^6$, $\delta_0 = 1.5 \cdot 10^{-6}$, $\delta_A = 1 \cdot 10^{-6}$.

7.5 Определение уровня фазовых шумов анализатора спектра (все модели, кроме S331E/S361E)

- 7.5.1 Выполнить заводскую установку на анализаторе, для чего нажать клавиши Shift, Preset.
- 7.5.2 Установить режим анализатора спектра, для чего нажать **Menu** и выбрать иконку "Spectrum Analyzer".

7.5.3 Выполнить соединения:

- соединить кабелем BNC(m-m) выход "Buffer Output 10 MHz" на задней панели генератора сигналов с входом "External Reference In" поверяемого анализатора и убедиться в том, что в меню STATUS (в колонке слева внизу) отобразилось состояние FREQ REFERENCE External;
- соединить кабелем N(m-m) выход "RF Out" генератора сигналов с входом "RF In" поверяемого анализатора.
 - 7.5.4 Установить на генераторе сигналов уровень 0 dBm и частоту 1 GHz.
 - 7.5.5 Выполнить установки на поверяемом анализаторе:

[Freq], Center Freq, 1, GHz, [Freq]

[Span], 40, kHz, [BW], RBW, 1, kHz, VBW, 30, Hz

[Amplitude], Reference Level, 5, Enter

Shift, Trace, Trace A, Trace A Operations, Average-A, # of Averages 10

7.5.6 Найти пик сигнала и включить дельта-маркер:

[Marker], Peak Search, Delta On

7.5.7 Установить при помощи вращающейся ручки маркер на $+(10 \pm 0.1)$ kHz от центральной частоты и зафиксировать отсчет маркера $P_M(+10 \text{kHz})$.

Установить при помощи вращающейся ручки маркер на $-(10\pm0.1)$ kHz от центральной частоты и зафиксировать отсчет маркера $P_M(-10 \text{kHz})$.

7.5.8 Рассчитать измеренные значения уровня фазовых шумов P_N по формулам

$$P_N(+10kHz) = P_M(+10kHz) - 30 dB$$

$$P_N(-10kHz) = P_M(-10kHz) - 30 dB$$

Значения уровня фазовых шумов $P_N(+10kHz)$ и $P_N(-10kHz)$ не должны превышать верхний предел допускаемых значений, указанный в столбце 4 таблицы 7.5.

Таблица 7.5 – Уровень фазовых шумов анализатора спектра

Частота, МНz	Отстройка от центральной частоты, kHz	Измеренный уровень фазовых шумов, dBc/Hz	Верхний предел допускаемых значений, dBc/Hz
1	2	3	4
1000	+10		-100
1000	-10		-100

7.6 Определение уровня гармонических искажений 2-го порядка анализатора спектра (все модели, кроме S331E/S361E)

- 7.6.1 Выполнить заводскую установку на анализаторе, для чего нажать клавиши Shift, Preset.
- 7.6.2 Установить режим анализатора спектра, для чего нажать **Menu** и выбрать иконку "Spectrum Analyzer".

7.6.3 Выполнить соединения:

- соединить кабелем BNC(m-m) выход "Buffer Output 10 MHz" на задней панели генератора сигналов с входом "External Reference In" поверяемого анализатора и убедиться в том, что в меню STATUS (в колонке слева внизу) отобразилось состояние FREQ REFERENCE External;
- присоединить к выходу "RF Output" генератора сигналов фильтр нижних частот с частотой среза (65...75) MHz;
- соединить кабелем N(m-m) выходной разъем фильтра нижних частот с входом "RF In" поверяемого анализатора.
 - 7.6.4 Установить на генераторе сигналов уровень –10 dBm и частоту 50 MHz.
 - 7.6.5 Сделать установки на поверяемом анализаторе:

[Freq], Center Freq, 50, MHz

[Span], 100, kHz, [BW], RBW, 1, kHz, VBW, 10, Hz

[Amplitude], Reference Level, -0, dBm

Нажать клавиши [Marker], Peak Search и зафиксировать отсчет маркера как M1.

7.6.6 Установить центральную частоту на частоту второй гармоники:

[Freq], Center Freq, 100, MHz

Нажать клавиши [Marker], Peak Search и зафиксировать отсчет маркера как M2.

7.6.7 Рассчитать измеренный относительный уровень второй гармоники A2 по формуле A2 = M2 - M1,

где M1 и M2 – отсчеты маркера соответственно на основной и второй гармониках. Относительный уровень второй гармоники не должен превышать верхнего предела допускаемых значений, указанного в столбце 2 таблицы 7.6.

Таблица 7.6 – Уровень гармонических искажений 2-го порядка анализатора спектра

Измеренный уровень второй гармоники, dBc	Верхний допускаемый предел уровня второй гармоники, dВс
1	2
	-56

7.7 Определение погрешности измерения уровня мощности анализатором спектра (все модели, кроме \$331E/\$361E)

- 7.7.1 Выполнить заводскую установку на анализаторе, для чего нажать клавиши Shift, Preset.
- 7.7.2 Установить режим анализатора спектра, для чего нажать **Menu** и выбрать иконку "Spectrum Analyzer".
- 7.7.3 Подготовить к работе ваттметр проходящей мощности СВЧ, выполнить его установку нуля, ввести количество усреднений 32.

7.7.4 Выполнить соединения:

- присоединить к разъему"RF Out" генератора сигналов входной разъем кабеля ваттметра проходящей мощности СВЧ;
- присоединить выходной разъем ваттметра проходящей мощности СВЧ непосредственно к входному разъему "RF In" поверяемого анализатора.
 - 7.7.5 Выполнить установки на поверяемом анализаторе: [Span], **1**, <u>kHz</u>, [BW], <u>RBW</u>, **100**, <u>Hz</u>, <u>VBW</u>, **10**, <u>Hz</u>
- 7.7.6 Устанавливать на генераторе сигналов значения частоты, указанные в столбце 1 таблицы 7.7, и значения уровня таким образом, чтобы отсчет ваттметра проходящей мощности был равен значениям, указанным в столбце 2 таблицы 7.7.

При уровне –50 dBm для уменьшения флуктуаций можно увеличить количество усреднений на ваттметре до 128.

Устанавливать на поверяемом анализаторе соответствующие значения центральной частоты [Freq], Center Freq и значения опорного уровня [Amplitude], Reference Level на 10 dB выше, чем указанные в столбце 2 таблицы 7.7 значения.

Находить на анализаторе пик сигнала вводом [Marker], <u>Peak Search</u> и фиксировать измеренные значения уровня мощности. Они должны находиться в пределах допускаемых значений, указанных в столбцах 3 и 5 таблицы 7.7.

Таблица 7.7 – Погрешность измерения уровня мощности анализатором спектра

Частота	Отсчет уровня мощности по ваттметру, dBm	Нижний предел допускаемых значений, dBm	Измеренное значение уровня мощности, dBm	Верхний предел допускаемых значений, dВm
1	2	3	4	5
	0	-1.25		+1.25
	-10	-11.25		-8.75
100 1.77-	-20	-21.25		-18.75
100 kHz	-30	-31.25		-28.75
	-40	-41.25		-38.75
	-50	-51.25	значение уровня	-48.75
	0	-1.25		+1.25
	-10	-11.25		-8.75
10 MHz	-20	-21.25		-18.75
10 MHZ	-30	-31.25		-28.75
	-40	-41.25		-38.75
	-50	-51.25		-48.75
	0	-1.25		+1.25
1000 MHz	-10	-11.25		-8.75
	-20	-21.25		-18.75
1000 MHZ	-30	-31.25		-28.75
	-4 0	-41.25		-38.75
	-50	-51.25		-48.75

Окончание таблицы 7.7

Частота	Отсчет уровня мощности по ваттметру, dBm	Нижний предел допускаемых значений, dBm	Измеренное значение уровня мощности, dBm	Верхний предел допускаемых значений, dВm
	0	-1.25		+1.25
	-10	-11.25		-8.75
2000 MII-	-20	-21.25		-18.75
3990 MHz	-30	-31.25		-28.75
	-40	-41.25	1449897	-38.75
	-50	-51.25	A Blindy	-48.75
следующие з	начения для S362E, N	MS2713E, MT8213E		
	0	-1.50		+1.50
	-10	-11.50		-8.50
5000 MII-	-20	-21.50		-18.50
3000 MHZ	-30	-31.50		-28.50
	-40	-41.50		-38.50
	-50	-51.50	аемых й, dBm мощности, dBm 25 25 25 25 25 25 25 25 60 50 50 50 50 50 50 50 50 50 50 50 50 50	-48.50
5990 MHz	0	-1.50		+1.50
	-10	-11.50		-8.50
	-20	-21.50		-18.50
	-30	-31.50		-28.50
	-40	-41.50	Thomas in the	-38.50
	-50	-51.50		-48.50

7.8 Определение погрешности измерения уровня мощности широкополосным измерителем мощности (МТ8213E; S332E/S362E, MS2712E, MS2713E – при наличии опции 0029)

- 7.8.1 Выполнить заводскую установку на анализаторе, для чего нажать клавиши Shift, Preset.
- 7.8.2 Установить режим измерителя мощности, для чего нажать **Menu** и выбрать иконку "Power Meter".
- 7.8.3 Подготовить к работе ваттметр проходящей мощности СВЧ, выполнить его установку нуля, ввести количество усреднений 32.
 - 7.8.4 Выполнить соединения:
- присоединить к разъему"RF Out" генератора сигналов входной разъем кабеля ваттметра проходящей мощности СВЧ;
- присоединить выходной разъем ваттметра проходящей мощности СВЧ непосредственно к входному разъему "RF In" поверяемого анализатора.
 - 7.8.5 Выполнить установки на поверяемом анализаторе:

[Freq], Span, 10, MHz

[Average], Acquisition Med

7.8.6 Устанавливать на генераторе сигналов значения частоты, указанные в столбце 1 таблицы 7.7, и значения уровня таким образом, чтобы отсчет ваттметра проходящей мощности был равен значениям, указанным в столбце 2 таблицы 7.8.

При уровне -50 dBm для уменьшения флуктуаций можно увеличить количество усреднений на ваттметре до 128.

Устанавливать на поверяемом анализаторе соответствующие значения центральной частоты [Freq], Center Freq

МТ8213Е/МП-2020	Методика поверки	стр. 13 из 14
-----------------	------------------	---------------

При вводе нового значения уровня мощности на генераторе устанавливать автоматический выбор диапазона на поверяемом анализаторе:

[Amplitude], Auto Scale

Фиксировать измеряемые значения уровня мощности. Они должны находиться в пределах допускаемых значений, указанных в столбцах 3 и 5 таблицы 7.8.

Таблица 7.8 – Погрешность измерения широкополосного измерителя мощности

Частота	Отсчет уровня мощности по ваттметру, dBm	Нижний предел допускаемых значений, dBm	Измеренное значение уровня мощности, dBm	Верхний предел допускаемых значений, dВm
1	2	3	4	5
	0	-1.25		+1.25
15 MHz	-20	-21.25		-18.75
	-50	-51.25		-48.75
	0	-1.25		+1.25
1000 MHz	-20	-21.25		-18.75
	-50	-51.25		-48.75
	0	-1.25		+1.25
3990 MHz	-20	-21.25		-18.75
	-50	-51.25		-48.75
следующие з	начения для S362E, N	MS2713E, MT8213E		
5000 MHz	0	-1.50		+1.50
	-20	-21.50		-18.50
	-50	-51.50		-48.50
	0	-1.50		+1.50
5990 MHz	-20	-21.50		-18.50
	-50	-51.50		-48.50

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

8.1 Протокол поверки

При выполнении операций поверки оформляется протокол в произвольной форме.

В протоколе поверки допускается привести качественные результаты измерений (с выводами о соответствии допускаемым значениям) без указания действительных измеренных значений.

8.2 Свидетельство о поверке и знак поверки

При положительных результатах поверки выдается свидетельство о поверке и наносится знак поверки в соответствии с Приказом Минпромторга России № 1815 от 02.07.2015 г.

8.3 Извещение о непригодности

При отрицательных результатах поверки, выявленных при внешнем осмотре, опробовании или выполнении операций поверки, выдается извещение о непригодности в соответствии с Приказом Минпромторга России № 1815 от 02.07.2015 г.

МТ8213Е/МП-2020	Методика поверки	orn 14 un 14
W110213E/W111-2020	методика поверки	стр. 14 из 14