УТВЕРЖДАЮ

Начальник ГЦИ СИ «Воентест»

32 ГНИИИ МО РФ

С.И. Донченко

2009 г.

Инструкция

Комплекс геодезических базисов ФГУ «32 ГНИИИ Минобороны России» Методика поверки

г. Мытищи, 2009 г.

1 ОБЩИЕ СВЕДЕНИЯ

1.1 Настоящая методика поверки распространяется на средство измерений военного назначения - комплекс геодезических базисов ФГУ «32 ГНИИИ Минобороны России», заводской номер 01 (далее по тексту – комплекс) и устанавливает методы и средства первичной, периодической и внеочередной поверок, проводимых в соответствии с ПР 50.2.006-94.

2 ОПЕРАЦИИ ПОВЕРКИ

- 2.1 Перед проведением поверки проводится осмотр и операции подготовки комплекса к работе.
- 2.2 Метрологические характеристики комплекса, подлежащие поверке, в том числе периодической, приведены в таблице 1.

Таблица 1 – Операции поверки

Наименование операции	Номер пункта ме- тодики	Обязательность поверки па- раметров	
		первичная поверка	периодиче- ская поверка
1 Внешний осмотр	8.1	да	да
2Опробование	8.2	да	да
3 Определение (контроль) метрологических характеристик:	8.3	да	да
3.1 Определение погрешности (при доверительной вероятности 0,95) хранения значений длин базисов, горизонтальных и вертикальных углов комплекса	8.3.1	да	да
3.2 Определение погрешности (при доверительной вероятности 0,95) хранения значений координат пунктов комплекса относительно пунктов Федеральной астрономогеодезической сети (ФАГС)	8.3.2	да	да
3.3 Определение погрешности (при доверительной вероятности 0,95) хранения значений азимутов базисов комплекса	8.3.3	да	да

3 СРЕДСТВА ПОВЕРКИ

3.1 Рекомендуемые средства поверки, в том числе рабочие эталоны и средства измерений, приведены в таблице 2.

Вместо указанных в таблице 2 средств поверки допускается применять другие аналогичные средства поверки, обеспечивающие определение метрологических характеристик с требуемой точностью.

3.2 Все средства поверки должны быть исправны, применяемые при поверке средства измерений и рабочие эталоны должны быть поверены и иметь свидетельства о поверке или оттиск поверительного клейма на приборе или в технической документации.

Таблица 2

Наименование	Требуемые техни	Рекомендуемое	
средств	стики средо	средство поверки	
поверки	Пределы измере-	Погрешность	(пит)
	ний		
1	2	3	4
1. Тахеометр	Диапазон изме-	СКО измерения	Рабочий эталон
электронный	рений углов:	горизонтальных	1-го разряда - та-
	-горизонтального	углов 1", СКО	хеометр элек-
	от 0 до 360°;	измерения зенит-	тронный ТСА
	-зенитного рас-	ных углов 1",	2003
	стояния от минус	СКО измерения	
	135 до 135°	длины 0,21 мм	
2. Гиротеодо-	Измерение аст-	СКП измерения	Гиротеодолит
ЛИТ	рономических и	азимутов 3"	GYROMAT 3000
	геодезических		
	азимутов в диапа-		
	зоне от 0 до 360°		
3. Комплект	Измерение длины	СКП измерений	Комплект аппа
аппаратуры	базисных линий	приращений ко-	ратуры геодези
геодезической	от 1 до 2·10 ⁴ м.	ординат в плане	ческой спутни
спутниковой		5 + 1·10 ⁻⁶ ·D, по	ковой двухча
двухчастотной		высоте	стотной двухси
двухсистемной		$10 + 1 \cdot 10^{-6} \cdot D$, где	стемной
ГЛО-		D – длина базиса,	ГЛОНАСС/GPS
HACC/GPS		MM	
4. Набор отра-			Вспомогательно
жательных			оборудование
призм.			
5. ПЭВМ			Вспомогательно

оборудование

4 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

4.1 Поверка должна осуществляться лицами, аттестованными в качестве поверителей в порядке, установленном в ПР 50.2.012-94.

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

5.1 При проведении поверки должны быть соблюдены все требования безопасности в соответствии с ГОСТ 12.3.019-80.

6 УСЛОВИЯ ПОВЕРКИ

6.1 При проведении операций поверки должны соблюдаться следующие условия:

ющие условия:	
Температура окружающего воздуха, °С	20 ± 15 .
Относительная влажность воздух, %	65 ± 15 .
Атмосферное давление, кПа (мм рт.ст.)	$100 \pm 4 \ (750 \pm 30).$
Питание от сети переменного тока:	
напряжением, В	$220 \pm 4,4;$
частотой, Гц	50 ± 0.5 ;
содержание гармоник, %, не более	5.

7 ПОДГОТОВКА К ПОВЕРКЕ

- 7.1 Поверитель должен изучить руководство по эксплуатации поверяемого комплекса и используемых средств поверки.
 - 7.2 Перед проведением операций поверки необходимо:

проверить комплектность поверяемого комплекса для проведения поверки;

проверить комплектность рекомендованных (или аналогичным им) средств поверки, заземлить (если это необходимо) необходимые рабочие эталоны, средства измерений и включить питание заблаговременно перед очередной операцией поверки (в соответствии со временем установления рабочего режима, указанным в технической документации).

8 ПРОВЕДЕНИЕ ПОВЕРКИ

8.1 Внешний осмотр

Провести внешний осмотр геодезических реперных пунктов комплекса, убедиться в отсутствии внешних механических повреждений и неисправностей, влияющих на их работоспособность.

При проведении внешнего осмотра проверить:

чистоту и исправность геодезических винтов геодезических и реперных пунктов комплекса;

отсутствие механических повреждений и ослабления элементов конструкции геодезических и реперных пунктов комплекса.

При наличии дефектов (механических повреждений) геодезических и реперных пунктов, комплекс бракуется и производится ремонт поврежденных геодезических и реперных пунктов комплекса.

8.2 Опробование

- 8.2.1 Установить на каждый геодезический пункт и реперный пункт комплекса геодезический трегер.
- 8.2.2 Проконтролировать, чтобы на всех геодезических пунктах комплекса при накручивании, нижняя поверхность трегера, равномерно, без зазоров соприкасалась с верхней плитой геодезического пункта.
- 8.2.3 Проконтролировать, чтобы на всех реперных пунктах комплекса при накручивании, трегер равномерно, без усилий накручивался до ограничителя трегера на геодезический винт реперного пункта.
- 8.2.4 Проконтролировать, чтобы на всех геодезических и реперных пунктах комплекса геодезические винты были жёстко закреплены и не допускают перемещения трегера в горизонтальной и вертикальной плоскости.
- 8.2.5 Провести горизонтирование трегеров на всех геодезических пунктах и реперных пунктах комплекса и проконтролировать, чтобы винты трегера не находились в крайнем верхнем или нижнем положениях.
- 8.2.6 Результаты опробования считать положительными, если выполняются требования п.п. 8.2.2-8.2.5.
- $8.2.7~\mathrm{При}$ невыполнении требований п.п. 8.2.2-8.2.5, комплекс бракуется и производится ремонт поврежденных геодезических и реперных пунктов комплекса.

8.3 Определение (контроль) метрологических характеристик

- 8.3.1 Определение погрешности хранения значений длин базисов (при доверительной вероятности 0,67), горизонтальных и вертикальных углов (при доверительной вероятности 0,95) комплекса.
- 8.3.1.1 Выполнить операции опробования комплекса, указанные в п.п. 8.2.1-8.2.5.
- 8.3.1.2 Установить на геодезический пункт №1 (ГП-1) комплекса рабочий эталон 1-го разряда тахеометр электронный TCA2003 (далее тахеометр электронный TCA2003).
- 8.3.1.3 В соответствии с руководством по эксплуатации, провести горизонтирование и выполнить операции подготовки к работе тахеометра электронного TCA2003.
- 8.3.1.4 Установить отражатели из комплекта тахеометра электронного ТСА2003 на геодезические пункты №2, №3, №4 (ГП-2, ГП-3, ГП-4) и на

реперные пункты №1, №2, №3, №4, №5, №6, №8 (РП-1, РП-2, РП-3, РП-4, РП-5, РП-6, РП-7, РП-8) комплекса и провести их горизонтирование.

- 8.3.1.5 В соответствии с руководством по эксплуатации, провести измерения тахеометром электронным ТСА2003 длин базисов, образованных центрами пунктов ГП-1÷РП-1, ГП-1÷РП-2, ГП-1÷РП-3, ГП-1÷РП-4, ГП-1÷РП-5, ГП-1÷ГП-2, ГП-1÷РП-8, ГП-1÷РП-6, ГП-1÷ГП-4 и горизонтальных углов α_1 , α_2 , α_3 , α_4 , α_5 , α_6 , α_7 , α_8 , α_9 между этими базисами способом круговых приёмов, двенадцатью измерительными приёмами (см. рис. 8.3.1).
- 8.3.1.6 В соответствии с руководством по эксплуатации, провести измерения тахеометром электронным TCA2003 вертикальных углов β_1 , β_2 , образованных центрами пунктов $\Gamma\Pi$ -1÷ $\Gamma\Pi$ -2 $\Gamma\Pi$ -1÷ $P\Pi$ -6, $\Gamma\Pi$ -1÷ $\Gamma\Pi$ -2 $\Gamma\Pi$ -1÷ $P\Pi$ -1 двенадцатью измерительными приемами.
- 8.3.1.7 Переместить тахеометр электронный TCA2003 на геодезический пункт №2 (ГП-2) комплекса.
- 8.3.1.8 В соответствии с руководством по эксплуатации, провести горизонтирование и выполнить операции подготовки к работе тахеометра электронного TCA2003.
- 8.3.1.9 Установить отражатель из комплекта тахеометра электронного TCA2003 на геодезический пункт №1 комплекса и провести его горизонтирование.
- 8.3.1.10 В соответствии с руководством по эксплуатации, провести измерения тахеометром электронным ТСА2003 длин базисов, образованных центрами пунктов ГП-2÷ГП-3, ГП-2÷РП-1, ГП-2÷РП-6, ГП-2÷ГП-4, ГП-2÷ГП-1, ГП-2÷РП-4, ГП-2÷РП-7 и горизонтальных углов α_1 , α_2 , α_3 , α_4 , α_5 , α_6 , α_7 между этими базисами способом круговых приёмов, двенадцатью измерительными приёмами (см. рис. 8.3.2).
- 8.3.1.11 Переместить тахеометр электронный TCA2003 на геодезический пункт №3 (ГП-3) комплекса.
- 8.3.1.12 В соответствии с руководством по эксплуатации, провести горизонтирование и выполнить операции подготовки к работе тахеометра электронного TCA2003.
- 8.3.1.13 Установить отражатель из комплекта тахеометра электронного TCA2003 на геодезический пункт №2 комплекса и провести его горизонтирование.
- 8.3.1.14 В соответствии с руководством по эксплуатации, провести измерения тахеометром электронным ТСА2003 длин базисов, образованных центрами пунктов ГП-3÷РП-1, ГП-3÷РП-6, ГП-3÷ГП-4, ГП-3÷РП-5, ГП-3÷РП-7, ГП-3÷ГП-2 и горизонтальных углов α_1 , α_2 , α_3 , α_4 , α_5 , α_6 между этими базисами способом круговых приёмов, двенадцатью измерительными приёмами (см. рис. 8.3.3).
- 8.3.1.15 Переместить тахеометр электронный TCA2003 на геодезический пункт №4 (ГП-4) комплекса.

- 8.3.1.16 Установить отражатель из комплекта тахеометра электронного TCA2003 на геодезический пункт №3 комплекса и провести его горизонтирование.
- 8.3.1.17 В соответствии с руководством по эксплуатации, провести измерения тахеометром электронным ТСА2003 длин базисов, образованных центрами пунктов ГП-4÷ГП-1, ГП-4÷ГП-2, ГП-4÷РП-8, ГП-4÷ГП-3 и горизонтальных углов α_1 , α_2 , α_3 , α_4 между этими базисами способом круговых приёмов, двенадцатью измерительными приёмами (см. рис. 8.3.4).
- 8.3.1.18 Перенести измерительную информацию с тахеометра электронного TCA2003 на ПЭВМ.
- 8.3.1.19 Проконтролировать, чтобы значения измеренных длин каждого базиса, между измерительными приемами, не отличались на величину более 1 мм.
- 8.3.1.20 Проконтролировать, чтобы между измерительными приемами значения горизонтальных углов не отличались на величину не более 1".
- 8.3.1.21 При невыполнении требований 8.3.19 8.3.20, измерения длин базисов и горизонтальных углов для геодезического пункта, на котором были выполнены измерения с превышением допусков между измерительными приемами, повторить.
- 8.3.1.22 Рассчитать значения измеренных длин базисов (L), горизонтальных (α) и вертикальных (β) углов между базисами комплекса (например, для L):

$$L_{\eta_{\text{tran}}} = \frac{1}{N} \sum_{i=1}^{N} L_{\eta_i} , \qquad (1)$$

где $\eta_{u_{3M}}$ – наименование базиса;

 L_{η_i} — значение длины η -го базиса измеренное тахеометром электронным TCA2003 в i — ом измерительном приёме;

N – количество приёмов измерений длины η -го базиса.

8.3.1.23 Рассчитать абсолютную погрешность измерения значений длин базисов комплекса и значений горизонтальных и вертикальных углов между базисами комплекса (например, для L):

$$\Delta_{L_{\eta_i}} = L_{\eta_i} - L_{\eta_{ucm}}.\tag{2}$$

где $L_{\eta_{ucm}}$ - истинное значение длины η -го базиса, выписанное из формуляра на комплекс.

8.3.1.24 Рассчитать систематическую погрешность измерения значений длин базисов комплекса, значений горизонтальных и вертикальных углов между базисами комплекса (например, для L):

$$\overline{\Delta_{L_{\eta}}} = \frac{1}{N} \sum_{i=1}^{N} \Delta L_{\eta_i}. \tag{3}$$

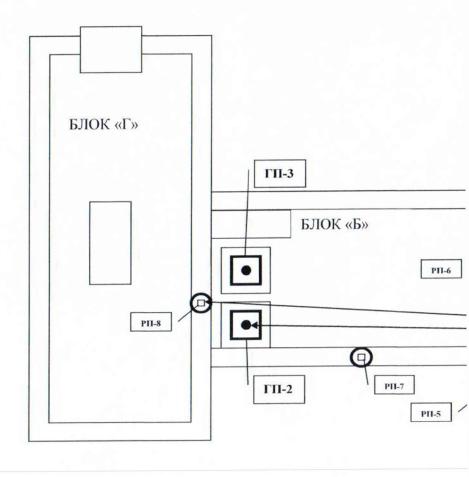
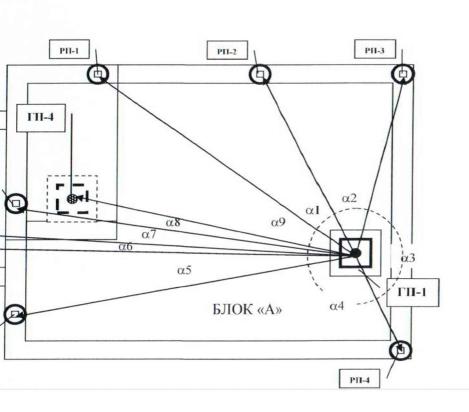



Рис. 8.3.1

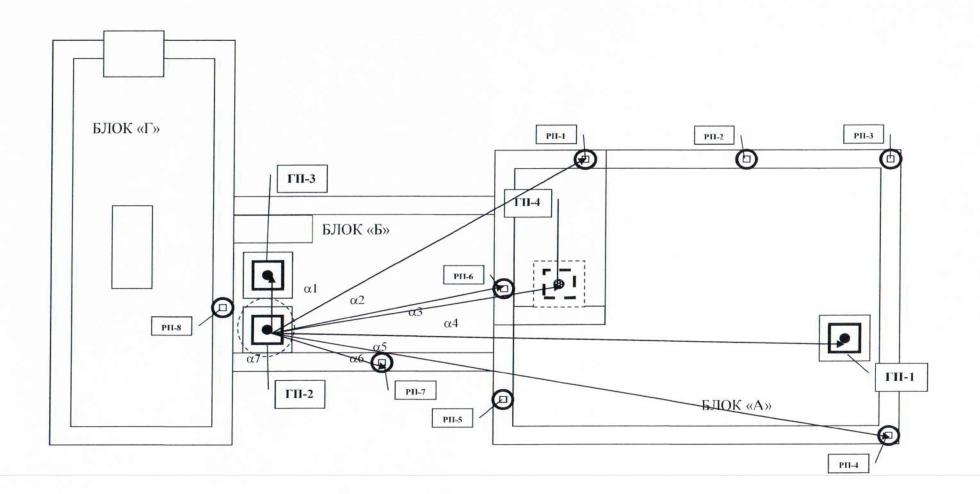


Рис. 8.3.2

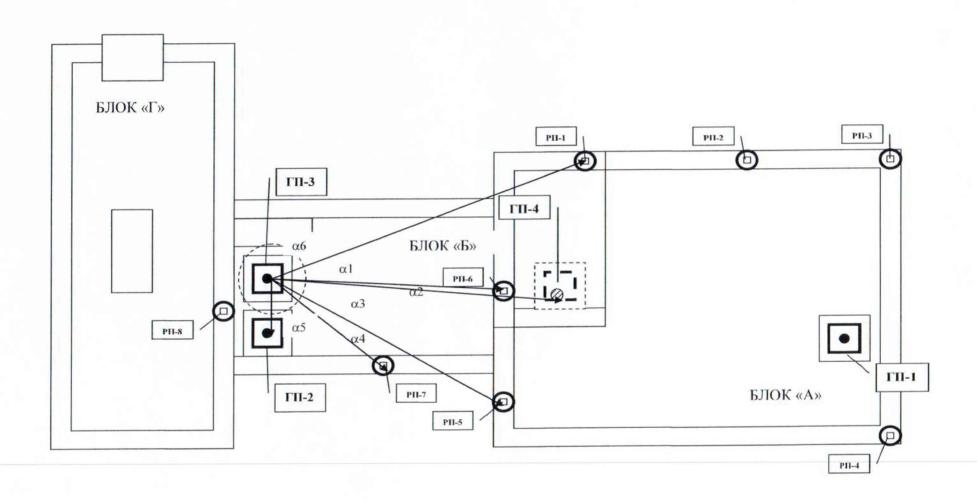


Рис. 8.3.3

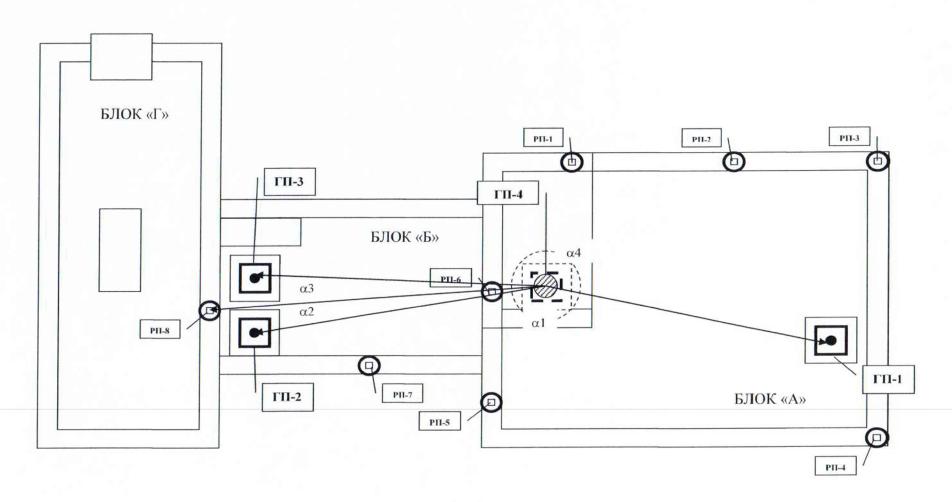


Рис. 8.3.4

8.3.1.25 Рассчитать среднее квадратическое отклонение результата измерения значений длин базисов комплекса, значений горизонтальных и вертикальных углов между базисами комплекса (например, для L):

$$\sigma_{L_{\eta}} = \sqrt{\frac{1}{(N-1)} \sum_{i=1}^{N} \left(\overline{\Delta}_{L_{\eta}} - \Delta_{L_{\eta_{i}}} \right)^{2}} . \tag{4}$$

8.3.1.26 Определить значение погрешности измерений значений длин базисов комплекса (при доверительной вероятности 0,67), значений горизонтальных и вертикальных углов между базисами комплекса (при доверительной вероятности 0,95) (например, для L):

$$\Pi_{L_{\eta}} = \overline{\Delta}_{L_{\eta}} \pm \sigma_{L_{\eta}} \,. \tag{5}$$

- 8.3.1.27 Проконтролировать, чтобы погрешности измерений значений длин базисов комплекса (при доверительной вероятности 0,67) находились в пределах ± 1 мм.
- 8.3.1.28 Проконтролировать, чтобы погрешности измерений значений горизонтальных углов между базисами комплекса (при доверительной вероятности 0.95) находились в пределах ± 3 ".
- 8.3.1.29 При невыполнении требований п.п. 8.3.1.27 8.3.1.28, результаты поверки считать отрицательными.
- 8.3.1.30 Рассчитать погрешности хранения значений длин базисов, горизонтальных и вертикальных углов между базисами комплекса на интервале времени 30 суток (например, для L):

$$P_{L}\eta = L\eta_{\text{M3M}} - L\eta_{\text{MCT}}. \tag{6}$$

Результаты поверки считать удовлетворительными, если значения погрешностей хранения значений длин базисов комплекса на интервале времени 30 суток, находятся в пределах \pm 1мм, а значения погрешностей хранения значений горизонтальных и вертикальных углов между базисами комплекса на интервале времени 30 суток, находятся в пределах \pm 3".

- 8.3.2 Определение погрешности (при доверительной вероятности 0,95) хранения значений координат пунктов комплекса относительно пунктов Федеральной астрономо-геодезической сети (ФАГС)
- 8.3.2.1 Выполнить операции опробования комплекса указанные в п.п. 8.2.1-8.2.5.
- 8.3.2.2 Установить антенны из комплекта аппаратуры геодезической спутниковой двухчастотной двухсистемной ГЛОНАСС/GPS (далее аппаратуры) на геодезические пункты №1, №2, №3, №4 (ГП-1, ГП-2, ГП-3, ГП-4) и на реперные пункты №1, №2, №3, №4, №5, №6, №7, №8 (РП-1, РП-2, РП-3, РП-4, РП-5, РП-6, РП-7, РП-8) комплекса и провести их горизонтирование.
- 8.3.2.3 Провести горизонтирование и ориентирование антенн с помощью магнитного компаса по метке в направлении Севера.
 - 8.3.2.4 Проложить антенные кабеля от места установки антенн до

приемных устройств аппаратуры. Радиусы изгибов антенного кабеля при этом должны быть не менее 5 диаметров кабеля.

- 8.3.2.5 В соответствии с руководством по эксплуатации, выполнить операции подготовки к работе и проверки работоспособности каждого комплекта используемой аппаратуры.
- 8.3.2.6 Выбрать в качестве опорных геодезических пунктов не менее двух пунктов ФАГС или равных им по точности и разместить на них комплект аппаратуры. Координаты опорных геодезических пунктов должны быть известны в системах координат WGS-84, ПЗ-90, СК-95, СК-42.
- 8.3.2.7 Провести синхронные измерения комплектами аппаратуры установленными на пунктах комплекса и на опорных геодезических пунктах. Темп записи измерений установить 1 раз в 15 секунд. Непрерывные измерения проводить в течение не менее 24 часов.
- 8.3.2.8 В течение времени измерений следить за непрерывностью подачи питания на приемное устройство каждого используемого приёмника аппаратуры.
- 8.3.2.9 По окончании измерений остановить запись измерительной информации на каждом используемом приёмнике аппаратуры и перенести накопленные измерения с каждого приёмника на ПЭВМ.
- 8.3.2.10 Провести конвертирование измерительной информации, полученной с приёмников, в формат RINEX с помощью штатного программного обеспечения аппаратуры.
- 8.3.2.11 Провести обработку измерительной информации в формате RINEX с использованием программного обеспечения Trimble Geomatics Office. Для этого выполнить следующие действия:
- 8.3.2.11.1 Создать новый проект, например, проект «ИЗМЕРЕНИЯ», шаблон «Меtric». Установить систему координат, например WGS-84.
- 8.3.2.11.2 Обработать в проекте «ИЗМЕРЕНИЯ» файлы измерительной информации в формате RINEX полученные с каждого приёмника аппаратуры. Для этого в окне программы обработки измерений в меню «Импорт» поочередно указать путь для каждого из файлов измерений.
- 8.3.2.11.3 Для каждого файла измерений указать имя точки, на которой он получен (например, «ГП-1», «РП-1», «ОПОРНЫЙ-1»), возвышение антенны над определяемой (контрольной) точкой, тип используемой антенны, а также метод измерения возвышения антенны.
- 8.3.2.11.4 Каждый раз при возникновении красного кружка в нижнем правом углу программы обработки измерений необходимо производить перевычисление путем двойного нажатия манипулятором типа «мышь» на этот красный кружок, после чего он исчезает.
- 8.3.2.11.5 Для опорных геодезических пунктов («ОПОРНЫЙ X») ввести соответствующие заранее известные координаты.
- 8.3.2.11.6 При вычислениях использовать окончательные уточнённые эфемеридные данные КНС ГЛОНАСС и GPS.
 - 8.3.2.11.7 Выделить все базовые линии идущие от опорных геодези-

ческих пунктов до определяемых и обработать. Для этого в окне программы обработки измерений в меню «Обработка» выбрать «GPS-Обработка Базовых линий».

- 8.3.2.11.8 В появляющемся окне «GPS обработка» по мере обработки базовой линии появляется информация: ID (индивидуальный номер), От станции и До станции (точки, ограничивающие базовую линию), Длина базовой линии, Тип решения, Отношение, Дисперсия координат, СКО).
- 8.3.2.11.9 Проконтролировать, чтобы значения СКО не превышали 0,01 м.
- 8.3.2.11.10 При невыполнении требований п.п. 8.3.2.11.9, измерения на геодезических пунктах с превышением допусков, повторить.
- 8.3.2.11.11 В проекте «ИЗМЕРЕНИЯ» выделить опорные геодезические пункты, определяемые геодезические и реперные пункты комплекса и базисные линии их соединяющие.
- 8.3.2.11.12 Выбрать измерения для уравнивания. Для этого в окне программы обработки измерений в меню «Уравнивание» выбрать «Измерения» и в появившемся окне проконтролировать наличие знака «галочка» напротив каждого измерения для уравнивания.
- 8.3.2.11.13 Назначить коэффициенты для уравнивания. Для этого в окне программы обработки измерений в меню «Уравнивание» выбрать «Назначение весов» и установить в появившемся окне «Автоматически».
- 8.3.2.11.14 Для проведения уравнивания измерений в окне программы обработки измерений в меню «Уравнивание» выбрать «Уравнивание измерений».
- 8.3.2.11.15 Выписать из отчёта по уравниванию значения координат определяемых геодезических и реперных пунктов комплекса, значения длин базисных линий. Для этого в окне программы обработки измерений в меню «Уравнивание» выбрать «Отчёт по уравниванию».
- 8.3.2.11.16 Проконтролировать, чтобы значения длин базисных линий измеренных с помощью тахеометра электронного TCA2003 и с помощью аппаратуры отличались на величину, не более 5 мм.
- 8.3.2.11.17 При невыполнении требований п.п. 8.3.2.11.16, измерения на геодезических пунктах с превышением допусков, повторить.
- 8.3.2.12 Рассчитать абсолютную погрешность измерения каждой координаты, каждого геодезического и реперного пункта комплекса для каждой системы координат (например, для координаты X):

$$\Delta_{X\eta i} = X\eta i - X\eta_{\mu cr} . \tag{7}$$

8.3.2.13 Рассчитать систематическую погрешность измерения каждой координаты, каждого геодезического и реперного пункта комплекса для каждой системы координат (например, для координаты X):

$$\overline{\Delta_{X\eta}} = \frac{1}{N} \sum_{i=1}^{N} \Delta X \eta_i.$$
 (8)

8.3.2.14 Рассчитать систематическую погрешность измерения координат, каждого геодезического и реперного пункта комплекса для каждой системы координат:

$$\overline{\Delta S \eta} = \sqrt{\overline{\Delta_{X\eta}}^2 + \overline{\Delta_{Y\eta}}^2 + \overline{\Delta_{Z\eta}}^2} \quad . \tag{9}$$

8.3.2.15 Рассчитать среднее квадратическое отклонение результата измерения каждой координаты, каждого геодезического и реперного пункта комплекса для каждой системы координат (например, для координаты Х):

$$\sigma_{X\eta} = \sqrt{\frac{1}{(N-1)} \sum_{i=1}^{N} (\overline{\Delta}_{X\eta} - \Delta_{X\eta i})^2} \ . \tag{10}$$

8.3.2.16 Рассчитать среднее квадратическое отклонение результата измерения координат, каждого геодезического и реперного пункта комплекса для каждой системы координат: $\sigma_{S\eta} = \sqrt{\sigma_{X\eta}^2 + \sigma_{Y\eta}^2 + \sigma_{Z\eta}^2} \ .$

$$\sigma_{S\eta} = \sqrt{\sigma_{X\eta}^2 + \sigma_{Y\eta}^2 + \sigma_{Z\eta}^2} \ . \tag{11}$$

8.3.2.17 Определить значение погрешности измерений координат каждого геодезического и реперного пункта комплекса для каждой системы координат (при доверительной вероятности 0,95):

$$\Pi_{\eta} = \overline{\Delta}_{S\eta} \pm 2 \cdot \sigma_{S\eta} \,. \tag{12}$$

- 8.3.2.18 Проконтролировать, чтобы погрешности измерений координат каждого геодезического и реперного пункта комплекса для каждой системы координат (при доверительной вероятности 0,95) находились в пределах \pm 20 мм.
- 8.3.2.19 При невыполнении требований п.п. 8.3.2.18, повторить измерения, указанные в п.п. 8.3.2.1 – 8.3.2.17.
- 8.3.2.20 Рассчитать погрешности хранения значений координат каждого геодезического и реперного пункта комплекса для каждой системы координат на интервале времени 30 суток (например, для координаты X):

$$Px\eta = X\eta_{\text{\tiny H3M}} - X\eta_{\text{\tiny HCT}}. \tag{13}$$

- 8.3.2.21 Результаты поверки считать положительными, если значения погрешностей хранения координат каждого геодезического и реперного пункта комплекса для каждой системы координат на интервале времени 30 суток, находятся в пределах \pm 20 мм.
- 8.3.3 Определение погрешности (при доверительной вероятности 0,95) хранения значений азимутов базисов комплекса
- 8.3.3.1 Выполнить операции опробования комплекса указанные в п.п. 8.2.1 - 8.2.5.

- 8.3.3.2 Установить на геодезический пункт №1 (ГП-1) комплекса гиротеодолит GYROMAT 3000.
- 8.3.3.3. В соответствии с руководством по эксплуатации, провести горизонтирование, выполнить операции подготовки к работе и проверки работоспособности гиротеодолит GYROMAT 3000.
- 8.3.3.4 Установить отражатели из комплекта гиротеодолита GYRO-MAT 3000 на геодезические пункты №2, №3, №4 (ГП-2, ГП-3, ГП-4) комплекса и провести их горизонтирование.
- 8.3.3.5 В соответствии с руководством по эксплуатации, провести измерения гиротеодолитом GYROMAT 3000 астрономических азимутов направлений, образованных центрами пунктов ГП-1÷ГП-2, ГП-1÷ГП-4 двенадцатью измерительными приёмами («пусками»).
- 8.3.3.6 Переместить гиротеодолит GYROMAT 3000 на геодезический пункт №2 (ГП-2) комплекса.
- 8.3.3.7 В соответствии с руководством по эксплуатации, провести горизонтирование и выполнить операции подготовки к работе гиротеодолита GYROMAT 3000.
- 8.3.3.8 Установить отражатель из комплекта гиротеодолита GYRO-MAT 3000 на геодезический пункт №1 комплекса и провести его горизонтирование.
- 8.3.3.9 В соответствии с руководством по эксплуатации, провести измерения гиротеодолитом GYROMAT 3000 астрономических азимутов направлений, образованных центрами пунктов ГП-2÷ГП-1, ГП-2÷ГП-3, ГП-2÷ГП-4 двенадцатью измерительными приёмами («пусками»).
- 8.3.3.10 Переместить гиротеодолит GYROMAT 3000 на геодезический пункт №3 (ГП-3) комплекса.
- 8.3.3.11 В соответствии с руководством по эксплуатации, провести горизонтирование и выполнить операции подготовки к работе гиротеодолитом GYROMAT 3000.
- 8.3.3.12 Установить отражатель из комплекта гиротеодолита GYROMAT 3000 на геодезический пункт №2 комплекса и провести его горизонтирование.
- 8.3.3.13 В соответствии с руководством по эксплуатации, провести измерения гиротеодолитом GYROMAT 3000 астрономических азимутов направлений, образованных центрами пунктов ГП-3÷ГП-2, ГП-3÷ГП-4 двенадцатью измерительными приёмами («пусками»).
- 8.3.3.14 Переместить гиротеодолит GYROMAT 3000 на геодезический пункт №4 (ГП-4) комплекса.
- 8.3.3.15 Установить отражатель из комплекта гиротеодолита GY-ROMAT 3000 на геодезический пункт №3 комплекса и провести его горизонтирование.
- 8.3.3.16 В соответствии с руководством по эксплуатации, провести измерения гиротеодолитом GYROMAT 3000 астрономических азимутов

направлений, образованных центрами пунктов $\Gamma\Pi$ -4÷ $\Gamma\Pi$ -3, $\Gamma\Pi$ -4÷ $\Gamma\Pi$ -1, $\Gamma\Pi$ -4÷ $\Gamma\Pi$ -2 двенадцатью измерительными приёмами («пусками»).

- 8.3.3.17 Проконтролировать, чтобы значения измеренных азимутов каждого направления, между измерительными приёмами, не отличались на величину более 3".
- 8.3.3.18 При невыполнении требований п.п. 8.3.3.17, измерения азимутов направлений на которых были выполнены измерения с превышением допусков между измерительными приёмами, повторить.
- 8.3.3.19 Рассчитать значения измеренных азимутов (А) направлений комплекса:

$$A \eta uзм = \frac{1}{N} \sum_{i=1}^{N} A \eta_i, \tag{14}$$

где η - наименование базиса;

 $A_{\eta i}$ – значение азимута η -го направления, измеренное гиротеодолитом GYROMAT 3000 в i – ом измерительном приёме;

- N количество приёмов измерений азимута η-го направления.
- 8.3.3.20 Рассчитать абсолютную погрешность измерения значений азимутов направлений комплекса:

$$\Delta_{A\eta i} = A\eta i - A\eta_{\text{HCT}}.$$
 (15)

8.3.3.21 Рассчитать систематическую погрешность измерения значений азимутов направлений комплекса:

$$\overline{\Delta_{A\eta}} = \frac{1}{N} \sum_{i=1}^{N} \Delta A \, \eta_i. \tag{16}$$

8.3.3.22 Рассчитать среднее квадратическое отклонение результата измерения значений азимутов направлений комплекса:

$$\sigma_{A\eta} = \sqrt{\frac{1}{(N-1)} \sum_{i=1}^{N} \left(\overline{\Delta}_{A\eta} - \Delta_{A\eta i} \right)^{2}} \ . \tag{17}$$

8.3.3.23 Определить значение погрешности измерений значений азимутов направлений комплекса (при доверительной вероятности 0,95):

$$\Pi_{A\eta} = \overline{\Delta}_{A\eta} \pm 2, 2 \cdot \sigma_{A\eta} \,. \tag{18}$$

- 8.3.3.24 Проконтролировать, чтобы погрешности измерений значений азимутов направлений комплекса, (при доверительной вероятности 0,95) находились в пределах \pm 3".
- 8.3.3.25 При невыполнении требований п.п. 8.3.3.24 повторить измерения, указанные в п.п. 8.3.3.1 8.3.3.24.

8.3.3.26 Рассчитать погрешности хранения значений азимутов комплекса на интервале времени 30 суток:

$$P_{A}\eta = A\eta_{\text{H3M}} - A\eta_{\text{HCT}}. \tag{19}$$

Результаты поверки считать удовлетворительными, если значения погрешностей хранения значений азимутов направлений на интервале времени 30 суток, не превышают 3".

9 ОТЧЕТНОСТЬ

- 9.1 При положительных результатах поверки комплекса выдается свидетельство установленной формы.
- 9.2 На оборотной стороне свидетельства записываются результаты поверки.
- 9.3 Параметры, определенные при поверке, заносят в формуляр на комплекс.
- 9.4 В случае отрицательных результатов поверки применение комплекса запрещается, и на него выдается извещение о непригодности его к применению с указанием причин.

Начальник отдела ГЦИ СИ «Воентест» 32 ГНИИИ МО РФ

О.В. Денисенко