УТВЕРЖДАЮ

Первый заместитель генерального директора –

заместитель по научной ряботе ФГУП «ВНИИФТРИ»

А.Н. Щипунов

2 2

2014 г.

Инструкция

Аттенюаторы ступенчатые ручные 8494A, 8495A, 8496A, 8494B, 8495B, 8496B, 8495D

Методика поверки

МП 651-1--28

651- 14-28

1 Основные положения

- 1.1 Настоящая методика поверки распространяется на аттенюаторы ступенчатые ручные 8494A, 8495A, 8496A, 8494B, 8495B, 8496B, 3495D (далее аттенюа оры) и устанавливает методы и средства их первичной и периодической поверок.
 - 1.2 Интервал между поверками 1 год.
- 1.3 При проведении поверки необходимо руководствоваться ПР 50.2.006-94, эксплуатационной документацией на аттенюаторы и на используемое при поверке оборудование.

2 Операции поверки

2.1 При проведении поверки должны проводиться операции поверки, указанные в таблице 1.

Таблица 1 – Операции проверки

	Lawan muura	Проведение операции при		
Наименование операции	Номер пункта методики поверки	первичной по- верке (после ремонта)	периодиче- ской поверке	
1 Внешний осмотр	7.1	да	да	
2 Опробование	7.2	да	да	
3 Определение значений КСВН в диа- пазоне рабочих частот	7.3	да	нет	
4 Определение погрешности установ- ки ослабления аттенюаторов в диапа- зоне рабочих частот	7.4	да	да	

3 Средства поверки

2.1 Рекомендуемые средства поверки приведены в таблице 2. Виесто указанных в таблице 2 средств поверки допускается применение других средств, обеспечивающих измерения КСВН и ослабления с требуемой точностьк.

2.2 Все средства поверки должны быть исправны, применяемые при поверке средства измерений и рабочие эталоны должны быть поверены и иметь свидетельства о поверке с не-истекшим сроком действия на время проведения говерки или оттиск поверительного клейма.

Габл	ица 2		
Номер пункта ме- тодики	Наименование рабочих эталонов или во документа, регламентирующего техниче вспомогательным средствам; разряд по (или) метрологические и основные техни	еские требования к ра о государственной г	бочим эталонам или оверочной схеме и
7.4	Государственный первичный эталон еди лебаний в диапазоне частот от 0 до 178 назон от 0 до 120 дБ, диапазон частот о дачи единицы ослабления от 0,0005 до 0	иницы ослабления эл 3 ГГц ГЭТ 193-2011; эт 0 до 178 ГГц, неог	жтромагнитных ко- динамический диа-
7.3. 7.4	Анализатор цепей векторный N5222. Д пределы допускаемой абсолютной погредачи в диапазоне от 0 до минус 60 дВ не	ешности измерений к	

PJ (get Borcineii Torkocta) Ego ming No men sencuson M) 3 op 06 re pega me u ot na ma men M 01

4 Требования безопасности при поверке

- 4.1 При проведении поверки должны быть соблюдены меры безопасности, указанные в соответствующих разделах эксплуатационной документации средств измерений, используемых при поверке.
- 4.2 К проведению поверки аттенюаторов допускается инженерно-технический персонал со среднетехническим или высшим образованием, ознакомленный с р ководством по эксплуатации (РЭ) и документацией по поверке, допущенный к работе с электроустановками и имеющие право на поверку (аттестованными в качестве поверителей).

5 Условия поверки

5.1 При проведении поверки должны соблюдаться следующие условия:

- температура окружающего воздуха. °С	от 15 до 25;
- атмосферное давление, кПа	от 84 до 106.7:
- относительная влажность окружающего врздуха, %	от 30 до 80;
- изменение температуры воздуха в течение этапа поверн	ки, °C, не более 2:
 напряжение питания, В 	220 ± 2.2 ;
- частота питающей сети. Гц	50 ± 0.5 .

6 Подготовка к поверке

- 6.1 Поверитель должен изучить руководства по эксплуатации поверяемого аттенюатора и используемых средств поверки.
- 6.2 Поверяемый аттенюатор должен быть выдержан в помещении, де проводится поверка, не менее 2-х часов.

7 Проведение поверки

7.1 Внешний осмотр

При проведении внешнего осмотра проверяется:

- отсутствие внешних механических повреждений:
- исправность и чистота коаксиальных разнёмов.

Результаты поверки считать положительными, если отсутствуют внешние механические повреждения: коаксиальные разъёмы исправны и отсутствует их загрязнение.

Аттенюаторы, имеющие дефекты бракуют фя и направляются в ремонт.

7.2 Опробование

Опробование аттенюатора заключается в проверке возможности подключения к входному и выходному коаксиальным разъёмам возможности установки ослабления аттенюатора на все точки шкал.

Результаты поверки считать положительными, если аттенюаторы допускают возможность подключения к измерительному оборудованию и обеспечивают возложность установки ослабления на все оцифрованные отметки шкад.

Аттенюаторы, имеющие дефекты бракуются и направляются в ремонт.

7.3 Определение значений КСВП в диалазоне рабочих частот

Определение значений КСВН в днапазоне рабочих частот проводить с помощью анализатора цепей векторного N5222A в соответствии с его руководством по эксплуатации. Анализатор N5222A подготовить к измерению КСВН в днапазоне частог от 0 до 26,5 ГГц. Входной разъём поверяемого аттенюатора подключить к входу измерительного порта 1 анализатора N5222A. Выходной разъём аттенюатора подключить к входу измерительного порта 2 анализатора N5222A. С помощью маркеров анализатора N5222A определить максимальное значение КСВН входа аттенюатора на частотак 30 МГц. 4 ГГц (для аттенюаторов 8494A.

8495A. 8496A. 8494B. 8495B. 8496B, 8495D), 8 ГГц. 18 ГГц (для аттенюат рров 8494B. 8495B, 8496B, 8495D) и 26,5 ГГц (только для аттенюатор ов 8495D) при последовательных установках аттенюаторов на все возможные значения ослабления. Затем все из верения повторить для выхода аттенюатора (измерительного порта 2 анализатора N5222A).

Результаты поверки считать положительными, если значения КСВН не более значе-

ний приведенных в таблице 3.

Таблица 3 Наименование характеристики	Secretary Secretary	and a second	Значент	я характерис	стики		
	8494A	8494B	8495A	8495B	8496A	8496B	8495D
Максимальный							
КСВН, не более							
от 0 до 4 ГГц	1.5	1.5	1.35	1,35	1.5	1,5	1,25
от 4 до 6 ГГц	2.	1.5		1.35	-	1.5	1,25
от 6 до 8 ГГц	-	1.5	-	1,35	/-	1,5	1.45
от 8 до 12,4 ГГц	4	1.6		1,5	-	1,6	1.45
от 12.4 до 18 ГГц	-	1,9		1.7	-	1.9	1,9
от 18 до 26.5 ГГц	-		The control of the co		-	-	2.2

7.4 Определение абсолютной погрешнос и установки ослабления аттенюаторов в диапазоне рабочих частот

Поверку проводить с применением установок из состава ГЭТ 193-2011 или анализа-

тора цепей векторного N5222A.

Измерения ослабления проводить на частотах 30 МГц, 4 ГГц для аттенюаторов 8494A. 8495A. 8496A. 8494B. 8495B. 8496B, 8495D). 8 ГГц, 18 ГГц (для аттенюаторов 8494B. 8495B. 8496B, 8495D) и 26.5 ГГц (только для аттенюаторов 8495D) при всех возможных значениях ослабления в соответствии с руководством по эксплуатации ГЭТ 193-2011.

При использовании анализатора цепей векторного N5222A для измерения ослабления необходимо провести следующие операции:

- входной разъём поверяемого аттенюатора подключить к входу и мерительного порта 1 анализатора N5222A, выходной разъём поверяемого аттенюатора подключить к входу измерительного порта 2 анализатора N5222A;
 - на поверяемом аттенюаторе установить номинальное ослабление | дБ;
 - провести обнужение показаний канала измерения коэффициента передачи;
- последовательно устанавливая поверяемый аттенюатор на оцифрованные отметки шкалы, с помощью маркеров анализатора N522. А определить действительное ослабление аттенюаторов на частотах 30 МГц. 4 ГГц (для аттенюаторов 8494A, 8495A, 8496A, 8494B, 8495B, 8496B, 8495D), 8 ГГц. 18 ГГц (для аттенюаторов 8494B, 8495B, 8496B, 8495D) и 26.5 ГГц (только для аттенюаторов 8495D).

Значение погрешности установки ослабления определить как разность между значениями ослабления, установленными на аттенюторе и измеренными ЭТ 193-2011 или N5222A.

Результаты поверки считать положительными, если значения погрешности установки ослабления находятся в пределах, приведенных в таблице 4.

Таблица 4 Пределы допускаемой погрешность установки ослабления (относительно опорного значения 0 дБ), = дБ 8494 8495 и 8494A 8494B 8495A 8495B 8496A 8496B A/B 8496 A/B от О до Установленное от 0 до or 12.4 OT () TO от 12.4 оп О до от 0 до оп 0 то OT 12,4 ГГц 12.4 зпачение до 18 # ГГи 4 T T II 12.4 4 1114 12,4 ГГц до 18 ослаблення TIL ПП ГГи до 18 ГГЦ

листов 5

		4	12,9	16		89	200			
1	10	0,2	0.3	0.7	0.1	0.5	0,6	0,2	0.5	0.6
2	20	0,2	0.3	0.7	0,4	0.7	0,8	0,4	0,7	0,8
3	30	0.3	0.4	0.7	0.5	0,9	1.2	0,5	0.9	1.2
4	40	0.3	0.4	0.7	0.7	1.2	1.6	0.7	1.2	1,6
5	50	0.3	0,5	0.7	0.8	1,5	2,0	0.8	1.5	2.0
6	60	0.3	0.5	0.8	1.0	1.8	2,4	1,0	1,8	2,4
7	70	0.4	0,6	0.8	1,2	2,1	2,8	1.2	2,1	2,8
8	80	0.4	0.6	0,8	V-Auditorium V	**	_	1.3	2.4	3.2
9	90	0.4	0.6	0.8	-	-	-	1.5	2.7	3.6
10	100	0.4	0,6	0.9	7	-	-	1,6	3.0	4.0
11	110	0.5	0.7	0.9	-	-	-	1,8	3,3	4.4
17			1						<u> </u>	

Пределы допускаемой погрешность установки ос табления (относительно эпорного значения 0 тБ) для модели (495D, ± дБ

-44-	1 4-14 1046-111 4 1775-	4 444	
от 0 до 6 ГГц	от 6.0 до 12.4 ГГц	от 12.4 до 18.0	Гц от 18.0 до 26,5 ГГц
0.3	0.4	0,5	0,7
0.5	0.5	0,6	0,8
0,6	0,7	0.8	1,0
0.7	0.9	1,1	1,5
0.8	1.0	1,2	1,6
1.0	1.3	1,4	1.9
1.1	1.5	1.7	2,3
		0.3 0.4 0.5 0.5 0.6 0.7 0.7 0.9 0.8 1.0 1.0 1.3	0.5 0.5 0,6 0.6 0.7 0.8 0.7 0.9 1,1 0.8 1.0 1,2 1.0 1,3 1,4

8 Оформление результатов поверки

8494E

- 8.1 Положительные результаты поверки формить в соответствии с ПР 50.2.006-94. а поверительные клейма наносят в соответствии с ПР 50.2.007-94.
- 8.2 При поверке аттенюатора данные с отсчетных устройств установки для измерения ослабления заносятся в протокол произвольной формы на бумажном носителе. На оборотной стороне свидетельства и (или) на дополнительных листах обязательно приводятся результаты измерения ослабления для поверяемого аттенюатора.
- 8.3 В случае отрицательных результатов говерки аттенюатор к дальнейшему применению не допускается. На него выдается извещение об его непригодности к дальнейшей эксплуатации с указанием причин забракования.
- 8.4 Информация, обязательная к занесени о в протокол измерений: данные об атмосферном давлении, влажности и температуре воздуха в помещении в момент проведения измерений, дата и время проведения измерений.

Начальник НИО-1 ФГУП «ВНИИФТРИ»

Начальник Центра испытаний и поверки средств измерений ФГУП «ВНИИФТРИ»

О.В. Каминский

А.В. Апрелев