"СОГЛАСОВАНО" Директор ФГУП НИИ КП Начальник 32 ГНИИИ МО РФ Ю.Н.Королев В.Н. Храменков

1999 г.

1999 г.

МЕТОДИКА ПОВЕРКИ навигационной аппаратуры потребителей "Грот" (индекс 14Ц820)

1. ОБЩИЕ СВЕДЕНИЯ

Настоящая методика поверки распространяется на средство измерений военного назначения - навигационную аппаратуру потребителей "Грот" (индекс 141(820) производства ФГУП "НИИ КП" и устанавливает методы и средства первичной, периодической и внеочередной поверок, проводимых в соответствии с Правилами по метрологии Госстандарта ПР 50.2.006 "ГСИ. Порядок проведения поверки средств измерений".

2. ОПЕРАЦИИ ПОВЕРКИ

- 2.1. Перед проведением поверки проводится осмотр и операция подготовки навигационной аппаратуры потребителя "Грот" к работе.
- 2.2. Метрологические характеристики навигационной аппаратуры потребителя "Грот", подлежащие поверке, в том числе периодической, приведены в таблице 1.

Таблица 1 - Операции поверки

Наименование поверяемых метрологических характеристик и параметров	Номер пункта методики	Обязательность поверки параметров			
• •	Первичная поверка		ая поверка	Периодическая поверка	
		при выпуске	после ремонта		
1. Проверка предельной погрешности определений координат местополо- жения на стоянке и в движении.	8.3.1	да	да	да	
2. Проверка предельной погрешности определений составляющих вектора скорости на стоянке и в движении	8.3.2	да	н ег	нет	
3. Проверка предельной погрешности определений поправок относительно шкалы времени UTS(SU) на стоянке.	8.3.3	да	нет	нет	
4. Параметры формы импульса 1 Гц на на выходе НАП "Грот"	8.3.4	да	да	нет	

3. СРЕДСТВА ПОВЕРКИ

- 3.1 Рекомендуемые средства поверки, в том числе рабочие эталонные средства измерений, приведены ниже в таблице 2. Вместо указанных в таблице 2 средств поверки допускается применять другие аналогичные средства поверки, обеспечивающие определение метрологических характеристик с требуемой точностью.
- 3.2 Все средства поверки должны быть исправны, применяемые при поверке средства измерений поверены и иметь свидетельства о поверке или оттиск поверительного клейма на приборе или технической документации.

Таблица 2 - Перечень средств поверки

Наименование		технические	Рекомендуемое	
средств	характеристики средства поверки		средство	Приме-
поверки	Пределы измерения	Погрешность	поверки (тип)	чание
1	2	3	4	5
1. Осциллограф	Полоса (0÷350) МГц Минимальный коэффициент от- клонения 10 мВ/дел. Диапазон дли- тельности раз- вертки 1 нс/дел÷ 10 мс/дел.	±1,6 % по амплиту- де и ±0,9 % вре- менных интервалов	C1-116	
2. Геодезиче- ский пункт	Координаты в системе ПЗ-90 и WGS-84	Разность координат при передачи от сети геодезических пунктов не более 0,03 м; Погрешность определения координат относительно пунктов сети IGS не более 0,05 м	Геодезический пункт 32 ГНИИИ МО РФ	

Таблица 2 - Перечень средств поверки (окончание)

1	2	3	4	5
3. Военный эталон времени и частоты МО РФ		не более 1·10 ⁻¹³	ВЭ-31-97	
	суммарная погрешность эталона допустимое расхождение шкалы времени	не более 5-10 ⁻¹⁴ не более 10 нс		
4. Специально оборудованная (размеченная) трасса на полигоне	Мерный базис с известными координатами в системе ПЗ-90 и WGS-84	Погрешность определения длины мерного базиса не более 1м		

4. ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

Поверка должна осуществляться лицами, аттестованными в качестве поверителей в порядке, установленном в ПР 50.2.012-94.

5. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

При проведении поверки должны быть соблюдены все требования безопасности в соответствии с ГОСТ 12.3.019-80.

6. УСЛОВИЯ ПОВЕРКИ

Температура окружающего воздуха, ${}^{0}C$ 20 \pm 5

Относительная влажность воздуха, % 65 ± 15

Атмосферное давление, кПа $100 \pm 4 \ (750 \pm 30 \text{ мм рт.ст.})$

Питание от сети переменного тока

напряжением, B 220 ± 4.4

частотой, Γ ц 50 ± 0,5

7.ПОДГОТОВКА К ПОВЕРКЕ

- 7.1 Поверитель должен изучить техническое описание и инструкцию по эксплуатации поверяемой навигационной аппаратуры потребителя "Грот" и используемых средств поверки.
 - 7.2 Перед проведением операций поверки необходимо:
- произвести внешний осмотр навигационной аппаратуры потребителя
 "Грот", убедиться в отсутствии механических повреждений и неисправностей;
- проверить комплектность поверяемой навигационной аппаратуры потребителя "Грот" для проведения поверки (наличие шнуров питания, измерительных шнуров и пр.);
- проверить комплектность рекомендованных (или аналогичных им) средств поверки, заземлить (если это необходимо) необходимые рабочие эталоны, средства измерений и включить питание заблаговременно перед очередной операцией поверки (в соответствии с временем установления рабочего режима, указанным в технической документации).

8. ПРОВЕДЕНИЕ ПОВЕРКИ

8.1 Внешний осмотр

При проведении внешнего осмотра проверяется:

- сохранность пломб;
- чистота и исправность разъемов и гнезд;
- наличие предохранителей (если они имеются снаружи прибора);
- отсутствие механических повреждений корпуса и ослабления элементов конструкции;
- сохранность механических органов управления (если они имеются) и четкость фиксации их положения.

Приборы, имеющие дефекты (механические повреждения), бракуют и направляют в ремонт.

8.2 Опробование

Опробование (проверка функционирования) навигационной аппаратуры потребителя "Грот" проводится следующим образом:

- 8.2.1. Заземлите корпуса приборов.
- 8.2.2. Подайте на НАП "Грот" внешнее питание (постоянное напряжение 12 В) и переключите тумблер "Внешнее/Внутреннее питание" в положение "Внешнее питание".
- 8.2.3. Через время, не превышающее 30 с, на экране индикатора должны высветиться:

на первой строке - технологическое время, соответствующее времени по СЕВ;

на второй строке - текущая дата.

Через время, не превышающее 2 мин. от включения, на экране индикатора должны высветиться:

на первой строке - точное время и служебные признаки (признак оценки качества решения навигационной задачи, признак системы координат СК, признак используемой навигационной системы Σ);

на второй строке - географическая широта (В);

на третьей строке - географическая долгота (L);

на четвертой строке - высота (Н) относительно уровня Балтийского моря. Включите НАП с помощью тумблера "Вкл".

8.2.4. Результаты опробования считаются положительными если тестовые проверки указанные в п.8.2.3 прошли успешно.

Неисправные приборы бракуются и отправляются в ремонт.

8.3. Определение метрологических характеристик.

- 8.3.1 Проверка предельной погрешности определений координат местоположения (на стоянке и в движении).
- 8.3.1.1. Проверка предельной погрешности определений координат местоположения на стоянке производится на геодезическом пункте (реперной точке). С этой целью:
- 8.3.1.2. Установите антенный модуль на реперной точке (геодезическом пункте).
 - 8.3.1.3. Заземлите корпуса приборов.
- 8.3.1.4. Подайте на НАП "Грот" внешнее питание (постоянное напряжение 12 В) и переключите тумблер "Внешнее/Внутреннее питание" в положение "Внешнее питание".
- 8.3.1.5. Через время, не превышающее 30 с, на экране индикатора должны высветиться:

на первой строке - технологическое время, соответствующее времени по СЕВ;

на второй строке - текущая дата.

Через время, не превышающее 2 мин. от включения, на экране индикатора должны высветиться:

на первой строке - точное время и служебные признаки (признак оценки качества решения навигационной задачи, признак системы координат СК, признак используемой навигационной системы Σ);

на второй строке - географическая широта (В);

на третьей строке - географическая долгота (L);

на четвертой строке - высота (Н) относительно уровня Балгийского моря.

- 8.3.1.6. Включите IBM PC и вызовите программу RSTT (представляется разработчиком НАП).
 - 8.3.1.7. На приглашение введите координаты реперной точки.
 - 8.3.1.8. Проведите не менее 30 серий (циклов) навигационных измерений

по различным созвездиям НКА при геометрическом факторе не более 3, по 30 измерений с интервалом в 1 минута в каждой серии

- 8.3.1.9. На экране IBM PC выдаются разности dX, dY и dZ в виде неподвижной таблицы с меняющимися значениями. После заданного времени усреднения, на экран выдаются усредненные значения dX_j , dY_j и dZ_j в j-ой серии (j = 1,...30).
- 8.3.1.10. Вычислите среднее значение погрешности измерения по совокупности серий по формуле

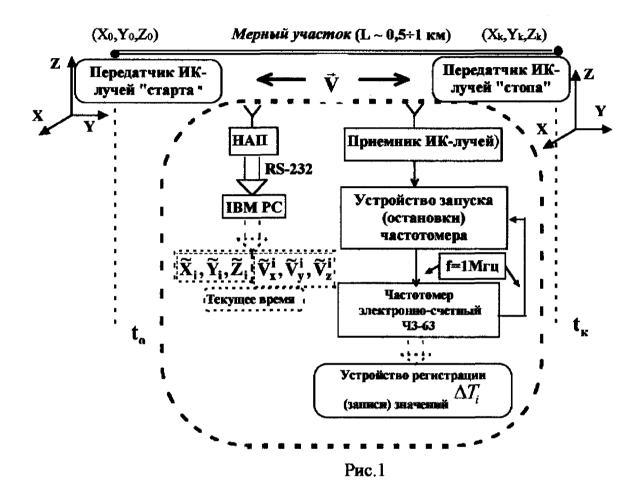
$$d\overline{\mathbf{X}} = \frac{1}{30} \sum_{j=1}^{30} d\mathbf{X}_{j}.$$

Аналогичным образом вычисляются средние значения погрешностей $d\overline{Y}, d\overline{Z}$.

8.3.1.11. Если погрешность эталонных координат реперной точки не превышает 1 м, то среднеквадратическое значение погрешностей по сово-купности серий определяется по формуле (например, для dX):

$$\sigma_{\mathbf{x}} = \sqrt{\frac{\sum_{j=1}^{30} (\mathbf{dX}_{j} - \mathbf{d\overline{X}})^{2}}{29}}.$$

Аналогичным образом проводятся вычисления для σ_y , σ_z .


8.3.1.12. Предельная погрешность определения координат местоположения на стоянке (Δ) вычисляется по формуле (например, как для dX):

$$\Delta = \mathbf{d}\overline{\mathbf{X}} + 3\mathbf{\sigma}_{\mathbf{x}}.$$

Аналогичная оценка выполняется для величин dY и dZ.

- 8.3.1.13. Если хотя бы одно из полученных значений Δ превышает величину 30 м то прибор бракуется и отправляется в ремонт.
- 8.3.1.14. Проверка предельной погрешности определений координат местоположения в движении производится на специально оборудованной (размеченной) трассе с 1-2 мерными участками ("пронумерованными" точками с известными координатами). Схема измерений представлена на рис. 1.

8.3.1.15. Для измерения координат "пронумерованных" точек рекомендуется использовать усреднение измерений (не менее 10 минут) с помощью НАП "Грот" в режиме ВТ, ГЛОНАСС.

8.3.1.16. Изделие устанавливается на транспортном средстве (например, в специально оборудованной подвижной лаборатории), к разъему RS-232 НАП "Грот" подключается портативный компьютер. В компьютер должна быть загружена программа, позволяющая осуществлять запись координат и времени измерений, а также оцифровывать клавишами "Н" - "К" моменты начала и конца измерений. Транспортное средство (машина) должна быть также оборудована специальным комплексом измерительной аппаратуры (СКИА), включающей в себя: приемник ИК-лучей, устройство запуска (остановки) частотомера, частотомер электронно-счетный ЧЗ-63, устройство регистрации (записи) показаний частотомера. СКИА позволяет измерять с высокой точностью (порядка

единиц микросекунд) моменты прохождения начала и конца мерного интервала.

- 8.3.1.17. На границах мерного интервала (на "пронумерованных" точках с известными координатами) устанавливаются передатчики ИК-лучей "старта" и "стопа". Машина, проезжая начало мерной трассы, пересекает первый ИК-луч при этом расположенные на ней приемник ИК-лучей и устройство запуска (остановки) частотомера производят запуск частотомера в режиме измерения интервала времени, проезжая конец мерной трассы машина пересекает второй ИК-луч, при этом расположенные на ней приемник ИК-лучей и устройство запуска (остановки) частотомера производят остановку измерения интервала времени в частотомере. Регистрация измеренного интервала времени ΔT_i осуществляется в устройстве регистрации (записи) показаний частотомера.
- 8.3.1.18. Машина двигается с постоянной скоростью (не более 100 км/ч), при проезде "точки" вводится ее номер. Регистрация времени осуществляется по измерениям НАП "Грот" и СКИА. В дальнейшем производится распечатка и обработка записанного файла данных портативного компьютера и устройства регистрации (записи) показаний частотомера.
- 8.3.1.19. Количество измерений значений $\widetilde{\mathbf{X}}_{\mathbf{i}}$, $\widetilde{\mathbf{Y}}_{\mathbf{i}}$, $\widetilde{\mathbf{Z}}_{\mathbf{i}}$ должно быть не менее 30. Для достижения такого объема измерений проводится неоднократный проезд подвижной лаборатории по мерному участку.
- 8.3.1.20. Обработка данных осуществляется путем сравнения результатов измерения НАП "Грот" координат $\widetilde{\mathbf{X}}_{\mathbf{i}}$, $\widetilde{\mathbf{Y}}_{\mathbf{i}}$, $\widetilde{\mathbf{Z}}_{\mathbf{i}}$ и координат линии "истинного" движения $\mathbf{X}_{\mathbf{i}}$, $\mathbf{Y}_{\mathbf{i}}$, $\mathbf{Z}_{\mathbf{i}}$ (пример для координаты \mathbf{X} на рис.2).

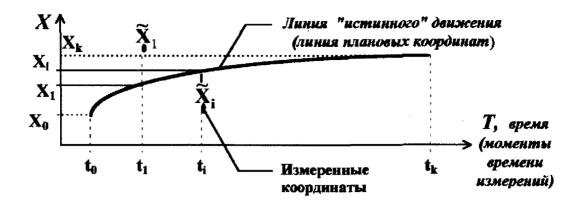


Рис. 2.

8.3.1.21. По результатам измерений координат в движении вычисляются средние квадратические отклонения $\sigma_{x}, \sigma_{y}, \sigma_{z}$ (например, для X):

$$\sigma_{\mathbf{X}} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\widetilde{\mathbf{X}}_{i} - \mathbf{X}_{i})^{2}}$$

Аналогичным образом проводятся вычисления для σ_{v}, σ_{z} .

8.3.1.22. Предельная погрешность определения координат местоположения в движении (Δ) вычисляется по формуле (например, как для dX):

$$\Delta = 3\sigma_{x}$$

Аналогичная оценка выполняется для величин dY и dZ.

- 8.3.1.23. Если хотя бы одно из полученных значений Δ превышает величину 45 м то прибор бракуется и отправляется в ремонт.
- 8.3.2. Проверка предельной погрешности определений составляющих вектора скорости (на стоянке и в движении).
- 8.3.2.1. Проверка предельной погрешности определения составляющих вектора скорости на стоянке.

- 8.3.2.2. Выполните требования п.п.8.3.1.2.-8.3.1.5.
- 8.3.2.3. Включить IBM PC (с установленной программой "RS.EXE"), и после появления списка файлов выбрать программу "RS.EXE".
- 8.3.2.4. На экране сообщений программы должны появиться следующие параметры: Vx(в м/с);Vy(в м/с);Vz(в м/с);X(в м/с);Y(в м/с);Z(в м/с) и текущее время t (час: мин: сек).
- 8.3.2.5. Проведите не менее 30 серий (циклов) навигационных измерений по различным созвездиям НКА при геометрическом факторе не более 3, по 30 измерений с интервалом в 1 мин. в каждой серии.
- 8.3.2.6. Вычислите усредненные значения $V^j_{x}, V^j_{y}, V^j_{z}$ в j-ой серии (j=1,...30).
- 8.3.2.7. Вычислите среднее значение погрешности измерения по совокупности серий по формуле:

$$\overline{\mathbf{V}}_{\mathbf{x}} = \frac{1}{30} \sum_{\mathbf{j}=1}^{30} \mathbf{V}_{\mathbf{x}}^{\mathbf{j}}.$$

Аналогичным образом вычисляются средние значения погрешностей $\overline{\mathbf{V}}_{\mathbf{v}}$, $\overline{\mathbf{V}}_{\mathbf{z}}$.

8.3.2.8. Среднеквадратическое значение погрешностей по совокупности серий определяется по формуле (например, для $\mathbf{V}_{\mathbf{x}}$):

$$\sigma_{\mathbf{V}_{\mathbf{x}}} = \sqrt{\frac{\sum_{j=1}^{30} (\mathbf{V}_{\mathbf{x}}^{j} - \overline{\mathbf{V}}_{\mathbf{x}})^{2}}{29}}.$$

Аналогичным образом проводятся вычисления для $\mathbf{V_y}$, $\mathbf{V_z}$.

8.3.2.9. Предельная погрешность определения составляющих вектора скорости на стоянке (Δ) вычисляется по формуле (например, как для $\mathbf{V}_{\mathbf{v}}$):

$$\Delta = \overline{\mathbf{V}}_{\mathbf{x}} + 3\sigma_{\mathbf{v}_{\mathbf{x}}}.$$

Аналогичная оценка выполняется для величин $\mathbf{V}_{_{\mathbf{y}}}$, $\mathbf{V}_{_{\mathbf{z}}}$.

- 8.3.2.10. Если хотя бы одно из полученных значений Δ превышает величину $5^{CM}/c$. то прибор бракуется и отправляется в ремонт.
- 8.3.2.11. Проверка предельных погрешностей определений составляющих вектора скорости при работе по ГЛОНАСС в движении.
- 8.3.2.12. Для измерения погрешностей определений составляющих вектора скорости при работе в движении проводится эксперимент в соответствии с методикой п.п. 8.3.1.16.-8.3.1.19.
- 8.3.2.13. Изделие устанавливается на транспортном средстве (например, подвижной лаборатории), к разъему RS-232 подключается портативный компьютер. В компьютер должна быть загружена программа осуществления записи составляющих вектора скорости $\widetilde{V}_X^i, \widetilde{V}_Y^i, \widetilde{V}_Z^i$ и времени измерений, а также позволяющая оцифровывать клавишами "H" "K" моменты начала и конца измерений.
- 8.3.2.14. Скорость \vec{V} движения транспортного средства (подвижной лаборатории) вычисляется по результатам измерений ΔT_i (времени прохождения мерного участка, измеренного с погрешностью единицы микросекунд) и длины мерного интервала L (погрешность определения не более единиц десятков см) по формуле

$$\left| \vec{\mathbf{V}} \right| = \frac{\mathbf{L}}{\Delta \mathbf{T_i}}.$$

В этом случае погрешность определения скорости движения транспортного средства (подвижной лаборатории) составит величину менее 1^{CM}

8.3.2.15. По результатам измерений скорости \vec{V} в моменты времени t_i и сглаженной аппроксимирующим полином линии "истинного" движения (для специально размеченной трассы с координатами X_i, Y_i, Z_i), рассчитываются составляющие вектора скорости \vec{V} на моменты времени t_i :

 $V_{\mathbf{x}}^{i}, V_{\mathbf{Y}}^{i}, V_{\mathbf{x}}^{i}$ (пример для координаты X - на рис. 3).

Указанные составляющие определяются как соответствующие проек-

Рис. 3.

ции касательных отрезков $|\vec{\mathbf{V}}(\mathbf{t_i})|$ к линиям в точках $\mathbf{t_i}$.

8.3.2.16. Средние квадратические значения погрешностей определения составляющих вектора скорости вычисляются по формуле (например, для $\mathbf{V}_{\mathbf{x}}$):

$$\sigma_{\mathbf{V}_{\mathbf{X}}} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\widetilde{\mathbf{V}}_{\mathbf{X}}^{i} - \mathbf{V}_{\mathbf{X}}^{i} \right)^{2}}$$

Аналогичным образом проводятся вычисления для $\mathbf{V}_{_{\mathbf{y}}}$, $\mathbf{V}_{_{\mathbf{z}}}$.

8.3.2.17. Предельная погрешность определения составляющих вектора скорости в движении (Δ) вычисляется по формуле (например, как для $\mathbf{V_x}$): $\Delta = 3\sigma_{\mathbf{v_x}}$

Аналогичная оценка выполняется для величин $\mathbf{V}_{\mathbf{v}}$, $\mathbf{V}_{\mathbf{z}}$.

- 8.3.2.18. Если хотя бы одно из полученных значений Δ превышает величину $7^{\it cm}/c$, то прибор бракуется и отправляется в ремонт.
 - 8.3.3. Проверка предельной погрешности определений поправок относи-

тельно шкалы времени UTC(SU) на стоянке.

8.3.3.1. Собрать рабочее место в соответствии с рис. 4.

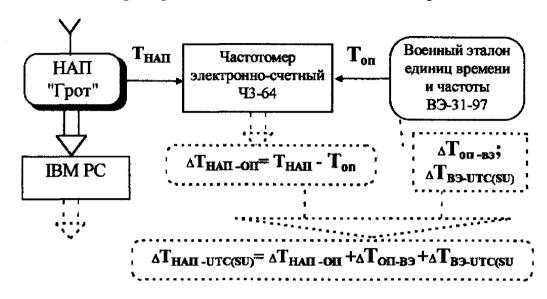


Рис. 4.

- 8.3.3.2. Включите IBM PC с установленной программой "RS.EXE". На экране сообщений программы должны появиться результаты определений значений поправок на расхождение шкалы времени HAП относительно шкалы времени UTS(SU) $\Delta \widetilde{\mathbf{T}}^{i}_{\mathbf{HIII}-\mathbf{UTC(SU)}}$.
- 8.3.3.3. Проведите измерения с помощью частотомера типа Ч3-64 и получите не менее 30 значений $\Delta T^i_{\mbox{HAII-OII}}$ расхождений шкал времени НАП и опорного генератора эталона ВЭ-31.
- 8.3.3.4. Вычислите действительные значения ∂T_i поправок к шкале времени НАП (T_{HAH}) относительно шкалы времени государственного эталона UTS(SU):

$$\partial T_i = -\Delta T^i_{HAII-UTC(SU)} = \Delta T^i_{HAII-OII} + \Delta T_{OII-B3} + \Delta T_{B3-UTC(SU}$$
.

8.3.3.5. Вычислите среднее значение $\partial \overline{\mathbf{T}}$ и среднее квадратическое отклонение $\sigma_{\mathbf{T}}$:

$$\partial \overline{T} = \frac{1}{30} \sum_{i=1}^{30} \partial T_i; \ \sigma_T = \sqrt{\frac{1}{29} \sum_{i=1}^{30} (\partial T_i - \partial \overline{T})^2} \ .$$

- 8.3.3.6. Изделие считать выдержавшим проверку, если величина $\Delta = \partial \overline{T} + 3\sigma_T$ не превышает значения 200 нс, в противном случае прибор бракуется и отправляется в ремонт.
- 8.3.4. Измерение параметров формы импульса 1 Гц на на выходе НАП "Грот"
- 8.3.4.1. Подайте сигнал 1 Гц с выхода НАП "Грот" на вход "А" осциллографа С1-116 на нагрузке 50 Ом.
 - 8.3.4.2. Сделайте следующие установки на осциллографе:
 - развертка "V/дел" " 1 B ";
 - развертка "Время/дел" " 0,2 мкс ";
 - режим работы "ждущий";
 - перепад "фронт работы"- отрицательный;
 - синхронизация "внутренняя".
 - 8.3.4.3. Сравните форму сигнала и его параметры с представленными на рис. 5.

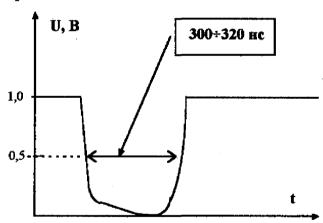


Рис. 5. Форма и параметры сигнала 1 Гц на выходе НАП "Грот".

8.3.4.3. Изделие считать выдержавшим проверку, если форма сигнала и его параметры соответствуют рис. 5.

9. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 9.1. При положительных результатах поверки на навигационную аппаратуру "Грот" (14Ц820) выдается свидетельство установленной формы.
- 9.2. На оборотной стороне свидетельства записываются результаты поверки.
- 9.3. Параметры определенные при поверке, заносят в формуляр на прибор.
- 9.4. В случае отрицательных результатов поверки применение навигационной аппаратуры "Грот" (14Ц820) запрещается, и на него выдается извещение о непригодности его к применению с указанием причин.

Начальник отдела -руководитель разработки

Заместитель начальника отдела 32

ГНИИИ МО РФ

О.Е. Лопатко

С.И.Донченко

Ведущий научный сотрудник

32 ГНИИИ МО РФ

Е.В. Еремин