УТВЕРЖДАЮ

Руководитель ГЦИ СИ
ФГ 32 ГНИИИ Минобороны России»

С.И. Донченко

2010 г.

ИНСТРУКЦИЯ

Приемники бортовые спутниковые «СБТИ-Б»

Методика поверки

1 ОБЩИЕ СВЕДЕНИЯ

- 1.1 Настоящая методика поверки распространяется на приемники бортовые спутниковые «СБТИ-Б» (далее – приемники), зав. №№ 001-032 и устанавливает методы и средства их первичной и периодической поверок.
 - 1.2 Межповерочный интервал 1 год.

2 ОПЕРАЦИИ ПОВЕРКИ

2.1 При поверке выполняют операции, представленные в таблице 1.

	Номер	Проведение операций при		
Наименование операции	пункта методики	первичной поверке	периодической поверке	
1 Внешний осмотр.	8.1	да	да	
2 Опробование.	8.2	да	да	
3 Определение (контроль) метрологических характеристик:	8.3			
3.1 Определение погрешности (при доверительной вероятности 0,95) определения широты*, долготы*, высоты*, составляющих скорости и путевого угла в автономном режиме при геометрическом факторе ухудшения точности PDOP не более 3.	8.3.1	да	да	
Определение погрешности (при доверительной вероятности 0,95) определения широты**, долготы**, высоты**, составляющих скорости, путевого угла в автономном режиме при геометрическом факторе ухудшения точности PDOP не более 3.	8.3.2	да	да	
3.2 Определение погрешности (при доверительной вероятности 0,95) определения широты*, долготы*, высоты*, составляющих скорости и путевого угла в кодовом дифференциальном режиме при удалении от базовой станции не более 200 км и геометрическом факторе ухудшения точности PDOP не более 3.	8.3.3	да	да	

- * характеристика нормирована для следующих динамических диапазонов работы объекта носителя:
 - высота полета от 0 до 10000 м;
 - путевая скорость от 0 до 300 м/с;
 - вертикальная скорость от минус 15 до 25 м/с;
 - угол курса от 0° до 360°;
 - угол крена от минус 20° до 20°;
 - угол тангажа от минус 10° до 10°;
 - ускорение от 0 до 40 M/c^2 .
- ** характеристика нормирована для следующих динамических диапазонов работы объекта носителя:
 - высота полета от 10000 до 18000 м;
 - путевая скорость от 0 до 500 м/с;
 - вертикальная скорость от 0 до 300 м/с;
 - угол курса от 0° до 360°;
 - угол крена от минус 60° до 60° ;
 - угол тангажа от минус 30° до 30°;
 - ускорение от 0 до 40 M/c^2 .

3 СРЕДСТВА ПОВЕРКИ

3.1 При проведении поверки используют средства измерений и вспомогательное оборудование, представленное в таблице 2.

	-					1
а	0	П	и	П	ıa	2

Taonini	ια 2 ·
Номер	Наименование и тип (условное обозначение) основного или вспомогательного
пункта ме-	средства поверки; обозначение нормативного документа, регламентирующего
тодики по-	технические требования, и (или) метрологические и основные технические
верки	характеристики средства поверки
1	2
8.3.1	Имитатор сигналов СН-3803М (предел допускаемого среднего квадратическо-
	го отклонения случайной составляющей погрешности формирования безза-
	просной дальности до НКА КНС ГЛОНАСС и GPS по фазе дальномерного
	кода 0,1 м).
8.3.2	Имитатор сигналов СН-3803М.
8.3.3	Имитатор сигналов СН-3803М.

- 3.2 Допускается использование других средств измерений и вспомогательного оборудования, имеющих метрологические и технические характеристики не хуже характеристик приборов, приведенных в таблице 2.
- 3.3 Все средства поверки должны быть утверждённого типа, исправны и иметь действующие свидетельства о поверке.

4 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

4.1 Поверка должна осуществляться лицами, аттестованными в качестве поверителей в порядке, установленном в ПР 50.2.012-94 «ГСИ Порядок аттестации поверителей средств измерений».

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

5.1 При проведении поверки должны быть соблюдены все требования безопасности в соответствии с ГОСТ 12.3.019-80 «ССБТ Испытания и измерения электрические. Общие тре-

бования безопасности».

6 УСЛОВИЯ ПОВЕРКИ

6.1 Поверку проводить при следующих условиях:

- температура окружающего воздуха, °C 20 \pm 5; - относительная влажность воздуха, % 65 \pm 15;

- атмосферное давление, кПа (мм рт. ст.) $100 \pm 4 (750 \pm 30)$.

7 ПОДГОТОВКА К ПОВЕРКЕ

- 7.1 Поверитель должен изучить техническую документацию фирмы-изготовителя и руководство по эксплуатации (РЭ) применяемых средств поверки.
 - 7.2 Перед проведением операций поверки необходимо:
 - проверить комплектность рекомендованных (или аналогичных им) средств поверки;
- заземлить (если это необходимо) рабочие эталоны, средства измерений и включить питание заблаговременно перед очередной операцией поверки (в соответствии со временем установления рабочего режима, указанным в РЭ).

8 ПРОВЕДЕНИЕ ПОВЕРКИ

- 8.1 Внешний осмотр
- 8.1.1 При внешнем осмотре проверить:
- комплектность поверяемого приемника;
- отсутствие внешних механических повреждений и неисправностей, влияющих на работоспособность приемника;
 - исправность органов управления.
- 8.1.2 Результаты внешнего осмотра считать положительными, если комплектность поверяемого приемника соответствует РЭ, отсутствуют внешние механические повреждения и неисправности, влияющие на работоспособность приемника, органы управления находятся в исправном состоянии.
 - 8.2 Опробование
- 8.2.1 Установить антенну приемника так, чтобы обеспечить возможность приема радиосигналов навигационных космических аппаратов КНС ГЛОНАСС/GPS с верхней полусферы.
- 8.2.2 Проложить антенный кабель от места установки антенны до приемника и состыковать. Подключить приемник к сети постоянного тока.
- 8.2.3 Включить тумблер «Питание». При этом двухцветный индикатор начинает мигать красным светом с частотой 2 Гц. По мере захвата спутников между красными импульсами индикатора появляются зеленые (по количеству спутников GPS), светло-красный и вновь зеленые (по количеству спутников ГЛОНАСС) вспышки.
- 8.2.4 Результаты опробования считать положительными, если между красными миганиями светодиода имеется не менее четырех миганий зеленым цветом (по числу наблюдаемых спутников).
 - 8.3 Определение (контроль) метрологических характеристик
- 8.3.1 Определение погрешности (при доверительной вероятности 0,95) определения широты*, долготы*, высоты*, составляющих скорости и путевого угла в автономном режиме при геометрическом факторе ухудшения точности PDOP не более 3
- 8.3.1.1 Определение погрешностей провести с использованием имитатора сигналов КНС ГЛОНАСС, GPS, SBAS (далее имитатор) в следующей последовательности:

8.3.1.2 Собрать схему в соответствии с рисунком 1.

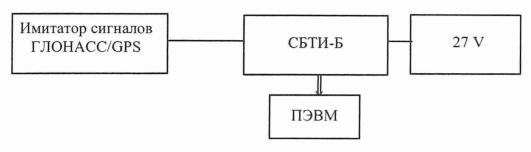


Рисунок 1

- 8.3.1.3 Провести опробование аппаратуры согласно п. 8.2.
- 8.3.1.4 Подготовить имитатор к работе в соответствии с ТД на него. Запустить сценарий имитации системы ГЛОНАСС с параметрами траектории движения потребителя, приведенными в таблице 3.

Таблица 3

таолица 5	
Формируемые спутниковые навигационные сигналы	ГЛОНАСС СТ (L1) GPS C/A (L1)
Количество имитируемых спутников ГЛОНАСС	8
GPS	8
Погрешности эфемеридной информации, частотновременных поправок и т.д. Погрешности, вызванные распространением навигационного сигнала от НКА до потребителя (погрешности при распространении в тропосфере, ионосфере, многолучевость и т.д.)	имитируются
Начальная точка стояния	55°55′ с. ш., 37°44′ в. д.
Стоянка в течение	15 мин
Разгон	изменение высоты: от 0 до 10000 м; изменение путевой скорости от 0 до 300 м/с за 7 с; изменение вертикальной скорости от 0 до 25 м/с за 6 с до 5000 м и от 25 м/с до 0 за 6 с от 5000 м до 1000 м
Движение по окружности с постоянной скоростью 300 м/с	2 ч (угол курса от 0° до 360°; угол крена от минус 20° до 20°; угол тангажа от минус 10° до 10°)

- 8.3.1.5 Провести измерения в течение 2 ч по различным созвездиям НКА при геометрическом факторе PDOP не более 3. По окончанию проведения измерений прекратить запись измерительной информации.
- 8.3.1.6 Выделить из файла измерений информацию об измеренных координатах (6, 8 и 10 столбцы строки «PASHR»)..
- 8.3.1.7 Определить систематическую погрешность измерений координат на интервалах стационарности по формулам (1), (2), например, для координаты В (широта):

$$\Delta \mathbf{B}(\mathbf{j}) = \mathbf{B}(\mathbf{j}) - \mathbf{B}_{\mathsf{ucrj}}, \tag{1}$$

$$d\mathbf{B} = \frac{1}{N} \cdot \sum_{j=1}^{N} \Delta \mathbf{B}(\mathbf{j} ,$$
 (2)

где Вистј – истинное значение координаты В в ј-ый момент времени, угл. сек;

В_і – измеренное значение координаты В в ј–ый момент времени, угл. сек;

N - количество измерений.

Аналогичным образом определить систематические погрешности результата измерений координат L (долготы), H (высоты).

8.3.1.8 Определить среднее квадратическое отклонение (СКО) результата измерений координат по формуле (3), например, для координаты В:

$$\sigma_{\mathrm{B}} = \sqrt{\frac{\sum_{j=1}^{N} (\mathbf{B}(\mathbf{j}) - \mathbf{dB})^{2}}{N-1}}$$
 (3)

Аналогичным образом определить СКО результата измерений координат L и H.

8.3.1.9 Перевести погрешность измерений широты и долготы из угловых секунд в метры по формулам (4) - (5):

- для широты:

$$\mathbf{B}(\mathbf{M}) = 2 \cdot \frac{\mathbf{a}(1 - \mathbf{e}^2)}{(1 - \mathbf{e}^2 \sin^2 \varphi)^{3/2}} \cdot \frac{0.5'' \cdot \pi}{180 \cdot 3600''}, \tag{4}$$

- для долготы:

$$L(M) = 2 \cdot \frac{a \cdot \cos\varphi}{\sqrt{1 - e^2 \sin^2 \varphi}} \cdot \frac{0.5'' \cdot \pi}{180 \cdot 3600''}, \qquad (5)$$

где а – большая полуось эллипсоида, м

е - первый эксцентриситет

ф – текущая широта, рад.

8.3.1.10 Определить погрешность (при доверительной вероятности 0,95) определения широты в автономном режиме при геометрическом факторе ухудшения точности PDOP не более 3 по формуле (6):

$$\Pi_{\mathbf{B}} = \Delta_{\mathbf{B}} + 2 \cdot \sigma_{\mathbf{B}} \,, \tag{6}$$

Аналогичным образом определить погрешность (при доверительной вероятности 0,95) определения долготы и высоты.

- 8.3.1.11 Выделить из файла измерений информацию об измеренной скорости (13 и 15 столбцы строки «PASHR»).
- 8.3.1.12 Определить систематическую погрешность и среднее квадратическое отклонение определения составляющей скорости (например горизонтальной) по формулам (7) (9):

$$\Delta V(j) = V(j) - V_{\text{HCT}_{i}}, \qquad (7)$$

$$dV = \frac{1}{N} \cdot \sum_{i=1}^{N} \Delta V(j) , \qquad (8)$$

$$\sigma_{V} = \sqrt{\frac{\sum_{j=1}^{N} (V(j) - dV)^{2}}{N-1}}$$
(9)

где $V_{\text{ист}j}$ – истинное значение составляющей скорости в j-ый момент времени, м/с;

 V_{j} – измеренное значение составляющей скорости в j–ый момент времени, м/с;

N - количество измерений.

8.3.1.13 Определить погрешность (при доверительной вероятности 0,95) определения составляющей скорости (например горизонтальной) объекта по формуле (10):

$$\Pi_{V} = dV + 2\sigma_{V} \tag{10}$$

- 8.3.1.14 Выполнить действия п.п. 8.3.1.12 8.3.1.13 для вертикальной составляющей скорости.
- 8.3.1.15 Выделить из файла измерений информацию об измеренном путевом угле (12 столбец строки «PASHR»).
- 8.3.1.16 Определить систематическую погрешность и среднее квадратическое отклонение определения путевого угла по формулам (11) (13):

$$\Delta PU(j) = PU(j) - PU_{\mu c \tau j}, \qquad (11)$$

$$dPU = \frac{1}{N} \cdot \sum_{j=1}^{N} \Delta PU(j) , \qquad (12)$$

$$\sigma_{PU} = \sqrt{\frac{\sum_{j=1}^{N} (PU(j) - dPU)^2}{N - 1}}$$
 (13)

где PU_{ucri} – истинное значение путевого угла в ј-ый момент времени, угл. сек;

 PU_{i} – измеренное значение путевого угла в j–ый момент времени, угл. сек;

N – количество измерений.

8.3.1.17 Определить погрешность (при доверительной вероятности 0,95) определения путевого угла по формуле (14):

$$\Pi_{PU} = dPU + 2\sigma_{PU} \tag{14}$$

- 8.3.1.18 Результаты поверки считать положительными, если в автономном режиме при геометрическом факторе ухудшения точности PDOP не более 3 погрешности (при доверительной вероятности 0,95) определения не более:
 - широта*, долгота*, высота* 10 м;
 - составляющие скорости 0,3 м/с;
 - путевой угол 5'.
- 8.3.2 Определение погрешности (при доверительной вероятности 0,95) определения широты ** , долготы ** , высоты ** , составляющих скорости, путевого угла в автономном режиме при геометрическом факторе ухудшения точности PDOP не более 3

- 8.3.2.1 Собрать схему в соответствии с рисунком 1.
- 8.3.2.2 Выполнить действия по п. 8.2.
- 8.3.2.3 Подготовить имитатор к работе в соответствии с ТД на него. Запустить сценарий имитации системы ГЛОНАСС/GPS с параметрами траектории движения потребителя, приведенными в таблице 4.

Таблица 4

1 аолица ч		
Формируемые спутниковые навигационные сигналы	ГЛОНАСС СТ (L1) GPS C/A (L1)	
Количество имитируемых спутников ГЛОНАСС	8	
GPS	8	
Погрешности эфемеридной информации, частотно-		
временных поправок и т.д.		
Погрешности, вызванные распространением навига-	имитируются	
ционного сигнала от НКА до потребителя (погрешно-		
сти при распространении в тропосфере, ионосфере,		
многолучевость и т.д.)		
Начальная точка стояния	55°55′ с. ш., 37°44′ в. д.	
Стоянка в течение	15 мин	
Разгон	изменение высоты: от 0 до	
	18000 м;	
	изменение путевой скорости	
	от 0 до 500 м/с за 11 с;	
	изменение вертикальной	
	скорости от 0 до 300 м/с за	
	7 с. до 9000 м и от 300 м/с до	
	0 за 7 с. от 9000 м от 18000 м	
Движение по окружности с постоянной скоростью	2 ч (угол курса от 0° до 360°;	
500 м/с	угол крена от минус 60° до	
	60°; угол тангажа от минус	
	30° до 30°)	

- 8.3.2.4 Выполнить действия п.п. 8.3.1.5 8.3.1.17.
- 8.3.2.5 Результаты поверки считать положительными, если в автономном режиме при геометрическом факторе ухудшения точности PDOP не более 3 значения погрешности (при доверительной вероятности 0,95) определения не более:
 - широта**, долгота**, высота** 30 м;
 - составляющие скорости 0,3 м/с;
 - путевой угол 5'.
- 8.3.3 Определение погрешности (при доверительной вероятности 0,95) определения широты * , долготы * , высоты * , составляющих скорости и путевого угла в кодовом дифференциальном режиме при удалении от базовой станции не более 200 км и геометрическом факторе ухудшения точности PDOP не более 3
 - 8.3.3.1 Собрать схему в соответствии с рисунком 2.

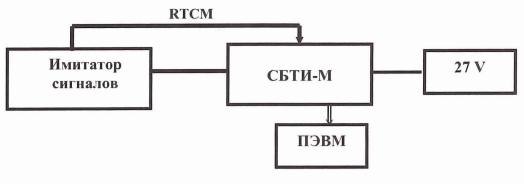


Рисунок 2

- 8.3.3.2 Выполнить действия п.п. 8.3.1.3 8.3.1.17.
- 8.3.2.8 Результаты поверки считать положительными, если в кодовом дифференциальном режиме при геометрическом факторе ухудшения точности PDOP не более 3 значения погрешности (при доверительной вероятности 0,95) определения не более:
 - широта*, долгота*, высота* 5 м;
 - составляющие скорости 0,2 м/с;
 - путевой угол 5'.

9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 9.1 При положительных результатах поверки приемника выдается свидетельство установленной формы.
 - 9.2 На оборотной стороне свидетельства о поверке записывают результаты поверки.
- 9.3 В случае отрицательных результатов поверки поверяемый приемник к дальнейшему применению не допускается. На такой приемник выдается извещение об его непригодности к дальнейшей эксплуатации с указанием причин.

Начальник отдела ГЦИ СИ ФГУ «32 ГНИИИ Минобороны России»

Старший научный сотрудник ГЦИ СИ ФГУ «32 ГНИИИ Минобороны России»

О.В. Денисенко

А.А. Фролов

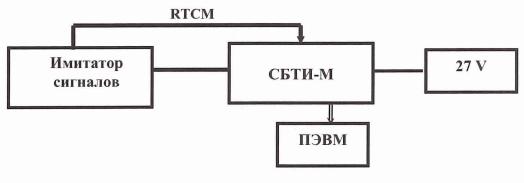


Рисунок 2

- 8.3.3.2 Выполнить действия п.п. 8.3.1.3 8.3.1.17.
- 8.3.2.8 Результаты поверки считать положительными, если в кодовом дифференциальном режиме при геометрическом факторе ухудшения точности PDOP не более 3 значения погрешности (при доверительной вероятности 0,95) определения не более:
 - широта*, долгота*, высота* 5 м;
 - составляющие скорости 0,2 м/с;
 - путевой угол 5'.

9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 9.1 При положительных результатах поверки приемника выдается свидетельство установленной формы.
 - 9.2 На оборотной стороне свидетельства о поверке записывают результаты поверки.
- 9.3 В случае отрицательных результатов поверки поверяемый приемник к дальнейшему применению не допускается. На такой приемник выдается извещение об его непригодности к дальнейшей эксплуатации с указанием причин.

Начальник отдела ГЦИ СИ ФГУ «32 ГНИИИ Минобороны России»

Старший научный сотрудник ГЦИ СИ ФГУ «32 ГНИИИ Минобороны России»

О.В. Денисенко

А.А. Фролов