Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт метрологии имени Д.И. Менделеева» ФГУП «ВНИИМ им.Д.И.Менделеева

УТВЕРЖДАЮ Директор ФГУП «ВНИИМ им.Д.И.Менделеева»

К.В.Гоголинский

марта 2017 г.

Государственная система обеспечения единства измерений

Хроматографы газовые 490 Micro-GC Методика поверки МП-242-2091-2017

> Руководитель отдела Государственных эталонов в области физико-химических измерений ФГУП «ВНИИМ им.Д.И.Менделеева»

Ст.научный сотрудник

ФГУП «ВНИИМ им.Д.И.Менделеева»

М.А.Мешалкин

г. Санкт-Петербург 2017 г. Настоящая методика распространяется на хроматографы газовые 490 Micro-GC фирмы «Agilent Technologies», Китай и устанавливает методы и средства их первичной поверки при вводе в эксплуатацию и после ремонта и периодической поверки в процессе эксплуатации. Интервал между поверками - 1 год.

1. ОПЕРАЦИИ ПОВЕРКИ

1.1. При проведении поверки должны выполняться операции, указанные в табл.1.

Таблица 1 - операции поверки

Наименование операции	Номер	Проведение операции при поверке		
таименование операции	пункта	первичной	периодической	
Внешний осмотр	6.1	Да	Да	
Опробование	6.2	Да	Да	
Проверка соответствия ПО	6.3	Да	Да	
Определение метрологических	6.1	Ло	Π.	
характеристик	6.4	Да	Да	

2. СРЕДСТВА ПОВЕРКИ

- 2.1. При проведении поверки используются следующие средства поверки
- 2.2.1. Стандартные образцы- поверочные газовые смеси

Таблица 2 – Стандартные образцы- поверочные газовые смеси

№ п/п	Номер пункта МП	Компонентный состав	Объёмная доля компонента, млн ⁻¹	Относительная погрешность, %, не более	Номер ГСО
1.	6.3, 6.4 (газ носитель- гелий)	метан/гелий	от 100 до 2500	±20	10256-2013
2.	6.3, 6.4 (газ носитель- ар- гон)	гелий/аргон	от 100 до 2500	±20	10324-2013

- 2.2.2.Термогигрометр электронный утвержденного типа, зарегистрированный в Федеральном информационном фонде по ОЕИ (диапазон измерений отн. влажности от 10 до 100%; абсл. погрешность не более 3.0%; диапазон измерений температуры от +10 до +40 °C; абсл. погрешность не более 0.5 °C).
 - 2.2.3. Барометр-анероид М-110 или аналогичный.
- 2.2.4. Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик с требуемой точностью.
- 2.2.5.Средства измерений должны иметь действующие свидетельства о поверке, а газовые смеси в баллонах под давлением действующие паспорта установленного образца.

3. ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

К проведению поверки допускаются лица, имеющие техническое образование, изучившие Руководство по эксплуатации хроматографа (далее — РЭ) и методику поверки и имеющие удостоверение поверителя. Для снятия данных при поверке допускается участие операторов, обслуживающих хроматограф (под контролем поверителя).

4. УСЛОВИЯ ПОВЕРКИ

При проведении поверки соблюдают следующие условия:

- температура окружающего воздуха от 15 до 25°C;
- относительная влажность воздуха не более 80 %;
- атмосферное давление от 84 до 107 кПа.

5. ПОДГОТОВКА К ПОВЕРКЕ

Перед началом поверки должны быть проведены следующие подготовительные работы:

- подготовка колонок согласно Руководству по эксплуатации;
- проверка герметичности газовых линий хроматографа согласно Руководству по эксплуатации.

6. ПРОВЕДЕНИЕ ПОВЕРКИ

6.1 Внешний осмотр.

При проведении внешнего осмотра должно быть установлено:

- наличие Руководства по эксплуатации
- отсутствие механических повреждений корпуса, влияющих на работу хроматографа.

6.2 Опробование

- 6.2.1. Опробование осуществляется в автоматическом режиме после запуска ПО хроматографа. Хроматограф считается прошедшим опробование, если по окончании тестирования не появляется сообщений об ошибках и на экран выводится главное окно ПО.
- 6.3. Подтверждение соответствия программного обеспечения

Подтверждение соответствия программного обеспечения осуществляется следующим образом:

- в главном окне программы в строке команд щелкнуть мышью на команде **Help**. В открывшемся окне щелкнуть мышью по строке **About**, в результате чего откроется окно, в котором приведены идентификационное название ПО и номер версии. Копии экрана с приведены на рисунках 1 и 2.

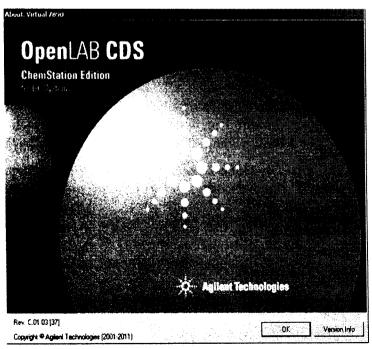


Рис. 1 Окно с идентификационными данными ПО OpenLab CDS ChemStation Edition

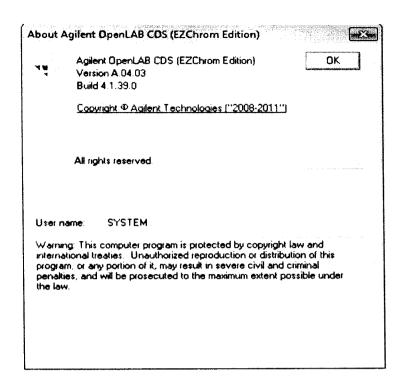


Рис. 2 Окно с идентификационными данными ПО OpenLab CDS EZChrom Edition

Хроматограф считается выдержавшим поверку по п. 6.3, если номер версии ПО не ниже, чем указано в таблице 3.

Таблица 3- Идентификационные данные программного обеспечения

Идентификационное наименование программного обеспечения	Номер версии ПО	
OpenLab CDS ChemStation Edition	Не ниже С.01.03*	
OpenLab CDS EZchrom Edition Не ниже A.04.03*		
Примечание: *версия ПО может иметь дополнительные буквенные или цифровые суффиксы		

- 6.4. Определение метрологических характеристик
- 6.4.1. Определение дрейфа и уровня флуктуационных шумов нулевого сигнала.
- 6.4.1.1 Определение уровня флуктуационных шумов и дрейфа проводятся по полученным хроматограммам с применением программного обеспечения.
- 6.4.1.2 Определение производится через две минуты после выхода хроматографа на рабочий режим. Параметры рабочего режима хроматографа указаны в таблице 4.

Таблица 4 – Параметры хроматографа

Хроматографический ко- лоночный модуль	Температура термостата колонок, °С*	Температура инжек- тора/ детектора, °C	Расход газа-носителя (гелий/аргон) мл/мин*
Капиллярные колонки с жидкой или твердой фазой	50	40 (если установлен термостат инжектора)	2
Микронабивные колонки	50	40 (если установлен термостат инжектора)	12

^{*} Температура термостата колонки и расход газа носителя приведены как рекомендованные. Допускается задание другой температуры и расхода или давления газа-носителя на входе колонки в пределах 50-150 кПа в присутствии поверителя для обеспечения оптимальной формы хроматографического пика.

- 6.4.1.3 Уровень флуктуационных шумов нулевого сигнала определяют в течении 30 секунд после выхода базовой линии на стационарный режим и принимают его равным максимальной амплитуде (размаху) повторяющихся колебаний нулевого сигнала.
- 6.4.1.4. За дрейф нулевого сигнала принимают наибольшее смещение средней линии нулевого сигнала в течение 1 минуты после выхода базовой линии на стационарный режим.
- 6.4.1.5. Дрейф и шум не должны превышать значений, указанных в таблице 5.

Таблица 5 - Дрейф и шум

Тип колонок в хроматографиче- ском модуле	Уровень флуктуационных шумов, не более, мкВ	Дрейф нулевого сигнала, не более, мкВ/мин
Капиллярные колонки с жидкой или	10	25
твердой фазой		
Микронабивные колонки	25	60

6.4.2 Определение предела детектирования

- 6.4.2.1. Для определения предела детектирования на вход хроматографа-шесть раз подают контрольную смесь (в зависимости от газа носителя) при времени ввода пробы 500 мс, регистрируют с помощью системы управления и обработки данных высоту пиков H_i (одновременно зарегистрировать площадь пиков Si) контрольного вещества и вычисляют среднее значение высоты пиков H. При выполнении определений должны соблюдаться условия, указанные в табл.4.
- 6.4.2.2. Предел детектирования (Стіп) рассчитывают по формуле:

$$C_{\min} = \frac{2\Delta xC}{\overline{H}} \tag{1}$$

где: Δx - уровень флуктуационных шумов нулевого сигнала, мкВ; C - объемная (молярная) доля контрольного вещества, млн $^{-1}$;

H - среднее значение высоты пика контрольного вещества для числа измерений N = 10, мкВ

- 6.4.2.3. Значение предела детектирования метана должно быть не более:
 - для капиллярных колонок с жидкой фазой: 0,5 млн⁻¹.
 - для капиллярных колонок с твердой фазой: 2,0 млн 1
 - для микронабивных колонок: 10,0 млн⁻¹.
- 6.4.2.4. Значение предела детектирования гелия (для капиллярных колонок с твердой фазой) должно быть не более: 2.0 млн⁻¹.
- 6.4.3. Определение относительного СКО выходного сигнала
- 6.4.3.1. Относительное СКО выходного сигнала определяют, используя результаты измерения по площади пиков, полученные при выполнении пункта п. 6.4.2.1.
- 6.4.3.2. Относительное СКО выходного сигнала (S_t по площади пика и S_t по времени удерживания), выраженное в процентах, рассчитывают по формулам (2) и (3) соответственно.

$$Sr = \frac{100}{\overline{S}} \cdot \sqrt{\frac{\sum_{i=1}^{N} (S_i - \overline{S})^2}{N - 1}} , \%$$
 (2)

где: N - число измерений (равное 10);

S_i – площадь і-го пика;

 \overline{S} - среднее значение площади пика.

$$S_{t} = \frac{100}{t} \sqrt{\frac{\sum_{i=1}^{n} (t_{i} - \bar{t})^{2}}{n-1}}, \quad \%$$
 (3)

6.4.3.3. Полученное значение относительного СКО не должно превышать 2,0 % для площади пика и 1,0 % для времени удерживания.

7. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 7.1. Данные, полученные при поверке, оформляются в произвольной форме.
- 7.2. Хроматограф, удовлетворяющий требованиям настоящей методики поверки, признается годными и на него оформляется свидетельство о поверке по установленной форме.

На оборотной стороне свидетельства приводится следующая информация:

- -результаты опробования и внешнего осмотра;
- -результат проверки соответствия ПО;
- результаты определения метрологических характеристик;
- 7.3. Хроматографы, не удовлетворяющие требованиям настоящей методики, к дальнейшей эксплуатации не допускается и на них выдается извещение о непригодности.
- 7.4. Знак поверки наносится на лицевую панель хроматографа и (или) на свидетельство о поверке.