УТВЕРЖДАЮ

Руководитель ГНИ СИ ФГУП «ВНИИМ им. Д. И. Менделеева»

УТВЕРЖДАЮ

Руководитель ГЦИ СИ ФБ	\mathbf{y}
«ГНМЦ Минобороны Росси	IИ»

All Comments of the Comments o
В.В. Швыдун
«
M.II.

Государственная система обеспечения единства измерений Блоки датчиков установочные контроля параметров газовой среды БДУ

МЕТОДИКА ПОВЕРКИ МП-242-1295-2012

Санкт-Петербург 2012 г.

	СОГЈ	ІАСОВАНО
Руководитель науч	но-исследователь	ского отдела
	государственн	ых эталонов
в области с	ризико-химически	х измерений
ГЦИ СИ ФГУП "І	ВНИИМ им. Д.И. N	Ленделеева''
	Л.А.	Конопелько
	11 11	2012 г.
		Разработал
	Руководит	гель сектора
	<u> </u>	Г.Б. Соколов

Настоящая методика поверки распространяется на блоки датчиков установочные контроля параметров газовой среды БДУ (далее - БДУ), выпускаемые ЗАО "ИНСОВТ", Санкт-Петербург, и устанавливает методы их первичной поверки при выпуске из производства и после ремонта и периодической поверки в процессе эксплуатации.

Интервал между поверками – один год.

1 Операции поверки

1.1 При проведении поверки должны быть выполнены операции, приведенные в таблице 1.
 Таблица 1

	Номер	Проведени	е операции при
Наименование операции		первичной поверке	периодической поверке
1 Внешний осмотр	6.1	Да	Да
2 Опробование	6.2	Да	Да
3 Подтверждение соответствия программного обеспечения	6.3	Да	Нет
4 Определение метрологических характеристик	6.4		
4.1 Определение диапазона измерений и основной погрешности измерения парциального давления кислорода и диоксида углерода при нормальном давлении	6.4.1	Да	Да
4.2 Определение диапазона измерений и погрешности измерения давления	6.4.2	Да	Да
4.3 Определение диапазона измерений и погрешности измерения температуры	6.4.3	Да	Да
4.4 Определение диапазона измерений и погрешности измерения относительной влажности 1)	6.4.4	Да	Да
4.5 Определение диапазона измерений и погрешности измерения объемной доли водорода ²⁾	6.4.5	Да	Да

Примечания:

2 Средства поверки

2.1 При проведении поверки должны быть применены средства, указанные в таблице 2.

¹⁾ Только для модификации АРГБ 304269.006 -02;

 $^{^{2)}}$ Только для модификации АРГБ 304269.006-01 совместно с блоком датчика водорода установочным АРГБ.304269.008.

^{1.2} Если при проведении той или иной операции поверки получен отрицательный результат, дальнейшая поверка прекращается.

Таблица 2

· · · · · · · · · · · · · · · · · · ·	
Номер пунк-	Наименование и тип основного или вспомогательного средства поверки; обозна-
та методики	чение нормативного документа, регламентирующего технические требования и
поверки	(или) метрологические и основные технические характеристики средства поверки
6	Барометр М110 ТУ 25–11.1513–79, диапазон измерения от 0 до 800 мм рт. ст.
	Измеритель влажности и температуры ИВТМ-7, ТУ 4311-001-70203816-06, диапазон измерений: температура от минус 20 до плюс 60 °C; влажность от 2 до 98 %
6.4	Стандартные образцы состава - газовые смеси (ГСО-ПГС) в баллонах под давле-
	нием, выпускаемые по ТУ 6-16-2956-92 (технические характеристики приведены в
	таблице А.1 приложения А)
	Камера малогабаритная АРГБ.306228.002
	Манометр образцовый по ГОСТ 6521-60, верхний предел измерения давления
	25 кгс/см ² , класс точности 0,15
	Ротаметр РМК-А-0,025 по ГОСТ 13045-81, верхняя граница измерения расхода 0,4
	$дм^3/мин$
	Редуктор БКО-50-12,5
	Вакуумметр образцовый ВО-1227 по ТУ 25-05-1664-74;
	диапазон измерений 1 кгс/см ² , класс точности 0,25
	Кран запорный шаровой по ТУ 3742-001-47392912- 98;
	рабочее давление 1,6 МПа
	Насос форвакуумный НВР-1,25Д по ТУ 3-2360-90;
	остаточное давление до 2·10 ⁻² Па, откачиваемый объем до 1 м ³
	Вентиль точной регулировки ВТР-1 (или ВТР-1-М160), диапазон рабочего давле-
	ния (0-150) кгс/см ² , диаметр условного прохода 3 мм
	Набор термометров стеклянных ртугных для точных измерений по ГОСТ 13646-
	68, цена деления 0,1°C, диапазон измерений от 0 до 100°C.
	Климатическая камера типа ТХВ-150, АРГБ 3.069.000 ТУ, температура от минус
	60 до плюс 100 °C, относительная влажность от 30 до 100 %
	Блек управления и контроля нарометров БУКТ АРГБ 425468 (0) 22 СМ ОТ
	ПРИВЕСТИ Х-КИ

- 2.2 Допускается применение других средств измерений, не приведенных в таблице, но обеспечивающих определение метрологических характеристик с требуемой точностью.
- 2.3 Все средства поверки должны иметь действующие свидетельства о поверке или аттестации; газовые смеси в баллонах под давлением действующие паспорта.

3 Требования безопасности

- 3.1 Помещение, в котором проводится поверка, должно быть оборудовано приточновытяжной вентиляцией.
- 3.2 При работе с баллонами с поверочными газовыми смесями необходимо руководствоваться "Правилами устройства и безопасности эксплуатации сосудов, работающих под давлением", утвержденных постановлением Госгортехнадзора РФ №91 от 11 июня 2003 года.
- 3.3 Должны соблюдаться "Правила технической эксплуатации электроустановок потребителей".

4 Условия поверки

- 4.1 При проведении поверки должны быть соблюдены следующие условия:
- температура окружающей среды, °C

 $25 \pm 2;$

- атмосферное давление, кПа (мм рт. ст.)

 $96 \pm 10.0 (720 \pm 75);$

- относительная влажность воздуха при температуре (25 ± 2)°C, %

 60 ± 15 ;

– расход поверочной газовой смеси ($\Pi\Gamma$ C), см³ / мин

от 50 до 100.

5 Подготовка к поверке

- 5.1 Перед проведением поверки должны быть выполнены следующие подготовительные работы:
- поверяемые блоки датчиков должны быть подготовлены к работе в соответствии с руководствами по эксплуатации: АРГБ.413411.003 РЭ, АРГБ.413411.006 РЭ, АРГБ.421451.000 РЭ;
- блок управления и контроля параметров БУКП должен быть подготовлен к работе в соответствии с руководством по эксплуатации БУКП АРГБ.425468.001 РЭ;
- ГСО-ПГС в баллонах должны быть выдержаны в помещении, в котором проводится поверка, в течении 24 ч, поверяемые БДУ – не менее 4 ч;
- помещение для проведения поверки должно быть оборудовано приточно-вытяжной вентиляцией.

6 Проведение поверки

- 6.1 Внешний осмотр
- 6.1.1 Для БДУ должны быть установлены:
- надежность крепления (прочность установки) датчиков в блоке;
- отсутствие повреждений защитных покрытий, вмятин и царапин на корпусах блоков;
- соответствие комплектации и надписей на Знаке заводском паспортным данным.
- 6.1.2 БДУ считать выдержавшим внешний осмотр, если он соответствует перечисленным выше требованиям.
 - 6.2 Опробование
- 6.2.1 Опробование БДУ и проведение его поверки производится с использованием блока управления и контроля параметров БУКП АРГБ.425468.001 согласно п. 2.2 АРГБ.425468.001 РЭ.
- 6.2.2 Результат опробования БДУ считать положительным, если по окончании режим самодиагностики на экране БУКП отсутствует сигнализация об отказах.
 - 6.3 Подтверждение соответствия программного обеспечения

Подтверждение соответствия программного обеспечения (ПО) БДУ проводится путем проверки соответствия ПО БДУ тому ПО, которое было зафиксировано (внесено в банк данных) при испытаниях в целях утверждения типа БДУ.

Проверку соответствия ПО проводят визуально путем считывания с экрана БУКП наименования, номера версии и цифрового идентификатора (контрольной суммы) программного обеспечения (ПО), выводимых в режиме индикации результатов самодиагностики.

Результат подтверждения соответствия ПО БДУ считать положительным, если идентификационные данные совпадают с данными, указанными в таблице 3.

Таблица 3

Наименование ПО	Идентификационное наименование ПО	Номер версии (идентифика- ционный но- мер) ПО	Цифровой идентификатор ПО (контрольная сумма исполняемого кода)	Алгоритм вычисления идентифи-катора ПО
АРГБ.304269.006 П О	8BD7.HEX	2.1		

- 6.4 Определение метрологических характеристик
- 6.4.1 Определение диапазона измерений и основной абсолютной погрешности измерений парциального давления кислорода и диоксида углерода

Определение диапазона измерений и основной абсолютной погрешности измерений парциального давления кислорода и диоксида углерода проводить в следующем порядке:

- 1) Подключить поверяемый БДУ к БУКП.
- 2) Поместить БДУ в камеру малогабаритную АРГБ.306228.002.

Для определения основной абсолютной погрешности измерения парциального давления диоксида углерода и кислорода в диапазоне от 0 до 100 кПа собрать газовую схему, приведенную на рисунке Б.1 Приложения Б.

Для определения основной абсолютной погрешности парциального давления кислорода в диапазоне свыше $100~\rm k\Pi a$ до $250~\rm k\Pi a$ собрать газовую схему, приведенную на рисунке B.1 Приложения B.

- 3) Подать в камеру малогабаритную ГСО-ПГС (таблицу А.1 приложения А) в последовательности:
 - для канала парциального давления кислорода №№ 1-2-3-4-1;
 - для канала парциального давления диоксида углерода №№ 1-5-6-7-1.

Перед подачей каждой ПГС следует отвакуумировать камеру малогабаритную до давления (10 ± 1) кПа и заполнить её соответствующей ПГС, операцию для каждой ПГС повторить дважды.

4) Значение основной абсолютной погрешности измерения парциального давления определяемого компонента (кислорода или диоксида углерода), $\Delta \Pi_{i\,och}$, кПа, следует находить по формуле

$$\Delta \Pi_{i,ocu} = \Pi_i - \Pi_0, \tag{1}$$

где Π_i - результат измерений парциального давления определяемого компонента (кислорода или оксида углерода) по показаниям информационного табло БУКП при подаче i-й ПГС, кПа;

 Π_0 - действительное значение парциального давления определяемого компонента (кислорода или оксида углерода), к Π а.

Действительное значение парциального давления определяемого компонента (кислорода или оксида углерода) следует находить по формуле

$$\Pi_0 = \frac{C_0}{100} \times P_{\delta ap} \,, \tag{2}$$

где C_0 - объемная доля определяемого компонента (кислорода или диоксида углерода), указанная в паспорте соответствующей ПГС, %;

 $P_{\it fap}$ - абсолютное давление в камере малогабаритной по манометру образцовому, кПа.

Результаты определения диапазона измерений и основной погрешности измерений парциального давления кислорода и диоксида углерода считать положительными, если значения абсолютной погрешности измерений не превышают пределов, приведенных в таблице Γ .1 приложения Γ .

6.4.2 Определение диапазона измерений и погрешности измерения давления

Определение диапазона измерений и погрешности измерения давления проводят в следующем порядке:

- 1) Подключить поверяемый БДУ к БУКП.
- 2) Поместить БДУ в камеру малогабаритную АРГБ.306228.002 и собирать газовую схему В.1, приведенную в приложении В.
- 3) Подать в камеру ГСО-ПГС № 2 и повышать в камере давление последовательно до значений:
- для БДУ модификаций АРГБ.304269.006, АРГБ.304269.006-01 (100 \pm 5) кПа, (300 \pm 10) кПа, (700₋₁₀) кПа,

- для БДУ модификации АРГБ.304269.006-02 (100 \pm 5) кПа, (300 \pm 10) кПа, (700-10) кПа, (850 \pm 10) кПа, (1080-10) кПа

со скоростью (100±10) кПа/мин. Контроль избыточного давления проводить по манометру образцовому. Выдерживать каждую ступень давления не менее 20 мин.

- 4) На каждой ступени создаваемого давления в камере определять результат измерений давления по показаниям на информационном табло БУКП.
- 5) Значение основной абсолютной погрешности измерения абсолютного давления $\Delta P_{i\,ocn}$, кПа, следует находить по формуле

$$\Delta P_{i,ocn} = P_i - P_0, \tag{3}$$

где P_i — результат измерения давления по показаниям на информационном табло БУКП при каждом установившемся значении давления, кПа;

 P_0 — действительное значение давления, определяемое по показаниям образцового манометра, кПа.

Результаты определения основной абсолютной погрешности измерения давления считать положительными, если значения абсолютной погрешности измерений абсолютного давления не превыщают пределов, приведенных в таблице Γ .1 приложения Γ

6.4.3 Определение диапазона измерений и основной погрешности измерения температуры

Определение диапазона измерений и основной погрешности измерения температуры проводить в следующем порядке:

- 1) Подключить поверяемый БДУ к БУКП.
- 2) Поместить поверяемый БДУ в климатическую камеру, БУКП должен находиться снаружи.
- 3) Последовательно устанавливать в климатической камере значения температуры (1 \pm 1) °C; (25 \pm 1) °C; (50 \pm 1) °C.
- 4) При достижении заданной температуры выдержать БДУ в течение не менее 2 ч и для каждого установившегося значения температуры зафиксировать показания на информационном табло БУКП.
- 5) Значение основной абсолютной погрешности измерения температуры ΔT_{iocn} , °C, следует находить по формуле

$$\Delta T_{i,ocu} = T_i - T_0 \,, \tag{4}$$

где T_i — результат измерения температуры по показаниям на информационном табло БУКП при каждом установившемся значении температуры в климатической камере, ${}^{\circ}$ С;

 T_0 — действительное значение температуры в климатической камере, определяемое по показаниям образцового термометра, ${}^{\rm o}{\rm C}$.

Результаты определения диапазона измерений и основной погрешности измерения температуры считать положительными, если значения абсолютной погрешности измерения температуры не превышают пределов, приведенных в таблице Γ .1 приложения Γ .

6.4.4 Определение диапазона измерений и основной погрешности измерения влажности

Определение диапазона измерений и основной абсолютной погрешности измерения влажности проводят в следующем порядке:

- 1) Подключить поверяемый БДУ к БУКП.
- 2) Поместить поверяемый БДУ в климатическую камеру, БУКП должен находиться снаружи.
- 3) Установить в камере температуру (30 ± 5) °C и зафиксировать установившиеся показания образцового термометра.

- 4) Последовательно установить относительную влажность в камере (35 ± 5) %, (60 ± 5) % и (95 ± 3) %, выдерживая БДУ при каждом значении влажности в течение не менее 1 ч. Фиксируют показания образцового гигрометра и информационного табло БУКП для каждого значения относительной влажности.
- 5) Значение основной абсолютной погрешности измерения относительной влажности ΔRH_{iocu} , %, следует находить по формуле

$$\Delta R H_{i \, ocu} = R H_i - R H_0 \,, \tag{5}$$

где RH_i — результат измерений относительной влажности по показаниям на информационном табло БУКП при каждом установившемся значении относительной влажности в климатической камере, %;

 RH_0 — действительное значение относительной влажности в климатической камере, определяемое по показаниям образцового измерителя влажности, $^{\%}$.

Результаты определения диапазона измерений и основной абсолютной погрешности измерения относительной влажности считать положительными, если значения абсолютной погрешности измерения относительной влажности не превышают пределов, приведенных в таблице Γ .1 приложения Γ .

6.4.5 Определение диапазона измерений и основной погрешности измерения объемной доли водорода

Определение диапазона измерений и основной абсолютной погрешности измерений объемной доли водорода проводить в следующем порядке:

- 1) Подключить поверяемый БДУ к БУКП
- 2) Поместить БДУ в камеру малогабаритную АРГБ.306228.002 и собрать газовую схему, приведенную на рисунке Б.1 Приложения Б.
- 3) Подать в камеру малогабаритную ГСО-ПГС (см. таблицу Б.1 приложения Б) в последовательности №№ 1—8—9—1;

Перед подачей каждой ГСО-ПГС следует отвакуумировать камеру малогабаритную до давления (10 ± 1) кПа, заполнить её соответствующей ГСО-ПГС, операцию для каждой ГСО-ПГС повторить дважды.

4) Значение основной абсолютной погрешности измерения объемной доли водорода, $\Delta C_{i,ocu}$, %, следует находить по формуле

$$\Delta C_{i\,ocu} = C_i - C_0 \,, \tag{6}$$

где C_i - результат измерений объемной доли водорода по показаниям информационного табло БУКП при подаче i-й ПГС, %;

 C_0 - действительное значение объемной доли водорода в і-ой ПГС, %.

Результаты определения диапазона измерений и основной абсолютной погрешности измерения объемной доли водорода считать положительными, если значения абсолютной погрешности измерений не превышают пределов, приведенных в таблице Γ .1 приложения Γ .

7 Оформление результатов поверки

- 7.1 Результаты поверки оформляют протоколом произвольной формы.
- 7.2 Положительные результаты первичной поверки заносят в раздел 2 паспорта на БДУ соответствующей модификации: АРГБ.304269.006 ПС, АРГБ.304269.006-01ПС, АРГБ.304269.006-02ПС, и/или выдают свидетельство о поверке установленной формы по ПР 50.2.006-94.
- 7.2 Положительные результаты периодической поверки оформляются свидетельством о поверке установленной формы по ПР 50.2.006-94.
- 7.3 При отрицательных результатах поверки БДУ не допускают к применению и выдают извещение о непригодности установленной формы по ПР 50.2.006-94.

Научный сотрудник ГЦИ СИ ФБУ «ГНМЦ Минобороны России»

С.С. Калинин

приложение а

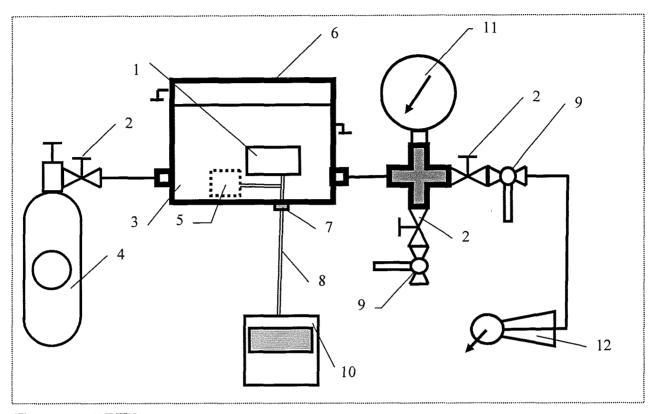
(обязательное)

Технические характеристики ГС, используемых при поверке БДУ

Таблица А.1

№ ГС	Состав ГС	Объемная доля опре-	Пределы допускае-	Номер ГСО по Гос-
		деляемого компонен-	мой погрешности ат-	реестру, ГОСТ, ТУ
		та в ГС и пределы до-	тестации	
		пускаемого отклоне-		
		кин кин		
1	Азот	-	-	О.ч. сорт 2 по ГОСТ 9293-74
2	Кислород – азот	$21 \% \pm 5 \%$ oth.	± (-0,03X + 1,15) %	ГСО 3726-87
			отн.	
3	Кислород – азот	$58\% \pm 5\%$ oth.	$\pm (-0.003X + 0.45)\%$	ГСО 3732-87
			отн.	
4	Кислород	-	-	О.ч. по ТУ 2114-
				0105798345-07
5	Диоксид угле-	$(0,30 \pm 0,025)$ %	± (-4X+6) % отн.	ГСО 3756-87
	рода - азот		, .	
6	Диоксид угле-	$(1,3\pm0,1)\%$	± (-0,2X+1,1) % отн.	ГСО 9741-2011
	рода - азот			
7	Диоксид угле-	$(3.5 \pm 0.5)\%$	± 0,8 % отн.	ГСО 9742-2011
	рода - азот			
8	Водород – азот	$(2,5\pm0,2)\%$	± (-0,4X+2,6) % отн.	ГСО 3915-87
9	Водород – азот	$(4,5\pm0,5)\%$	± 0,8 % отн.	ГСО 3915-87

Примечания


1) Изготовители и поставщики ГС:

- ООО "Мониторинг", 190005, Россия, г. Санкт-Петербург, Московский пр.,19. тел. (812) 315-11-45, факс 327-97-76;
- ФГУП "СПО "Аналитприбор", 214031Россия, г. Смоленск, ул. Бабушкина, 3, тел. (4812) 51-32-39;
- ОАО "Линде Газ Рус", 143907, Россия, Московская обл., г. Балашиха, ул. Белякова, 1-а; тел: (495) 521-15-65, 521-48-83, 521-30-13; факс: 521-27-68;
- ЗАО "Лентехгаз", 192148, Санкт-Петербург, Большой Смоленский проспект, д. 11, тел. (812) 265-18-29, факс 567-12-26.;
- ООО "ПГС Сервис", 624250, Россия, Свердловская область, г. Заречный ул.Попова 9-А, тел. (34377) 7-29-11, тел./факс (34377) 7-29-44.
- и другие предприятия-производители стандартных образцов состава газовых смесей, прослеживаемых к государственному первичному эталону единиц молярной доли и массовой концентрации компонентов в газовых средах ГЭТ 154-01.
- 2) Азот особой чистоты сорт 1 по ГОСТ 9293-87 в баллонах под давлением.
- 3) "X" в формуле расчета пределов допускаемой относительной погрешности значение объемной доли определяемого компонента, указанное в паспорте ΓC .

ПРИЛОЖЕНИЕ Б

(обязательное)

Схема газовая для определения диапазонов измерений и основной абсолютной погрешности измерения парциального давления кислорода, диоксида углерода и объемной доли водорода при нормальном давлении

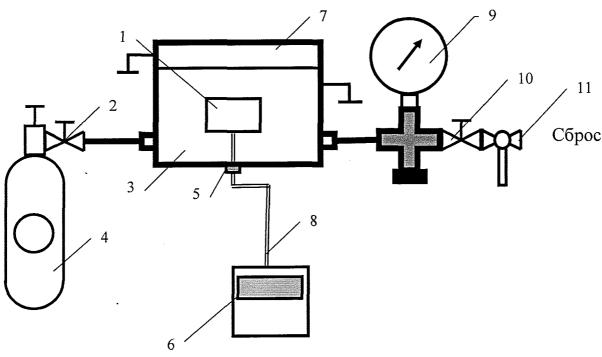

- 1 Поверяемый БДУ;
- 2 Вентиль точной регулировки;
- 3 Корпус камеры малогабаритной;
- 4 Баллон с ПГС;
- 5 Блок датчика водорода установочный;
- 6 Крышка камеры малогабаритной;
- 7 Герморазъем камеры поверочной;
- 8 Кабель соединительный;
- 9 Кран запорный шаровый;
- 10 Блок управления и контроля параметров;
- 11 Вакуумметр;
- 12 Насос форвакуумный.

Рисунок Б.1 - Схема газовая для определения диапазонов измерений и основной абсолютной погрешности измерения парциального давления кислорода, диоксида углерода и объемной доли водорода при нормальном давлении

ПРИЛОЖЕНИЕ В

(обязательное)

Схема газовая для определения диапазона измерений и погрешности измерений парциального давления кислорода при повышенном давлении, диапазона и основной погрешности измерения давления

- 1 БДУ;
- 2 Редуктор БКО-50-12,5;
- 3 Корпус камеры поверочной;
- 4 Баллон с ПГС;
- 5 Герморазъем камеры поверочной;
- 6 Блок управления и контроля параметров;
- 7 Крышка камеры поверочной;
- 8 Кабель соединительный;
- 9 Манометр (вакуумметр);
- 10 Вентиль точной регулировки;
- 11 Кран запорный шаровый.

Рисунок В.1 - Схема газовая для определения диапазона измерений и погрешности измерений парциального давления кислорода при повышенном давлении, диапазона и основной погрешности измерения давления.

ПРИЛОЖЕНИЕ Г

(рекомендуемое)

Диапазоны измерений и пределы допускаемой основной абсолютной погрешности БДУ по измерительным каналам

Таблица Г.1

Измеряемые параметры	Единица из-	Диапазон	Пределы допус-
	мерений	измерений	каемой основной
			абсолютной по-
	_		грешности (Δ)
Парциальное давление кислорода (для (О2-	кПа	от 0 до 60	± 1,5
N ₂ -He) смесей и воздушной среды)		св.60 до 150	± 2,5
Парциальное давление кислорода (для воз-	кПа	св.150 до 250	± 7,5
душной среды) 1)			
Парциальное давление диоксида углерода	кПа	от 0 до 0,6	$\pm 0,06$
		св. 0,6 до 2,0	$\pm 0,12$
		св.2,0 до 4,0	± 0,24
Абсолютное давление	кПа	от 0 до 700	± 6,0
Абсолютное давление 1)	кПа	от 0 до 1200	± 9,8
Температура	°C	от 0 до 50	± 0,5
Относительная влажность 1)	%	от 30 до 100	± 5,0
Объемная доля водорода ²⁾	%	от 0 до 5,0	± 0,3

Примечание:

1) Только для модификации АРГБ 304269.006-02;

2) Только для модификации АРГБ 304269.006-01 совместно с блоком датчика водорода установочным АРГБ.304269.008.