Федеральное государственное унитарное предприятие «Всероссийский научно - исследовательский институт расходометрии» (ФГУП «ВНИИР»)

УТВЕРЖДАЮ

Руководитель ЦИ СИ — Первый заместитель директора по научной работе — Заместитель директора по качеству ФЕУПАВИКИР»

В.А. Фафурин

30 м апреля 2015 г.

ИНСТРУКЦИЯ

Государственная система обеспечения единства измерений

Система измерений количества и параметров нефти сырой МНС СУ-26 «Винно-Банновское» (ОАО «Самаранефтегаз») Методика поверки

MΠ 0119-9-2014

n.p.63052-16

Казань 2015 г.

A

РАЗРАБОТАНА

ФГУП «ВНИИР»

исполнители

Левин К.А., Шабалин А.С.

УТВЕРЖДЕНА

ФГУП «ВНИИР»

Настоящая инструкция распространяется на «Систему измерений количества и параметров нефти сырой МНС СУ-26 «Винно-Банновское» (ОАО «Самаранефтегаз») (далее – система), принадлежащую ОАО «Самаранефтегаз» и предназначенную для автоматизированного измерения количества и параметров нефти сырой.

Интервал между поверками – один год.

1 Операции поверки

При проведении поверки выполняют операции, приведенные в таблице 1.

Таблица 1 – Операции поверки

	Номер пункта документа по поверке	Проведение операции при	
Наименование операции		первичной поверке	периодической поверке
Проверка комплектности технической документации	6.1	Да	Нет
Подтверждение соответствия программного обеспечения (ПО) системы	6.2	Да	Да
Внешний осмотр	6.3	Да	Да
Опробование	6.4	Да	Да
Определение метрологических характеристик	6.5	Да	Да

2 Средства поверки

- передвижная поверочная установка (далее - ПУ) с диапазоном измерений расхода, обеспечивающим возможность проведения поверки СРМ в их рабочем диапазоне измерений, с пределами допускаемой относительной погрешности не более \pm 0,1 %.

3 Требования безопасности

При проведении поверки соблюдают требования, определяемые:

- ПБ 08-624-03 «Правила безопасности в нефтяной и газовой промышленности», ПБ 03-585-03 «Правила устройства и безопасной эксплуатации технологических трубопроводов», а также другими действующими отраслевыми нормативными документами (НД);
- правилами безопасности при эксплуатации используемых СИ, приведенными в их эксплуатационной документации;
 - правилами технической эксплуатации электроустановок;
- правилами техники безопасности при эксплуатации электроустановок потребителей.

4 Условия поверки

При проведении поверки соблюдают условия в соответствии с требованиями НД на методики поверки СИ, входящих в состав системы.

Характеристики измеряемой среды при проведении поверки должны соответствовать требованиям, приведенным в таблице 2.

Таблица2 – Характеристики системы и измеряемой среды

Наименование характеристики	Значение характеристики
Измеряемая среда	Нефть сырая
Диапазон измерений расхода, т/ч	От 13 до 79
Количество измерительных линий, шт.	2 (1 рабочая, 1
·	контрольно-резервная)
Диапазон плотности, кг/м ³	От 860 до 880
Диапазон кинематической вязкости,мм ² /с (сСт)	От 10 до 26,1
Диапазон давления, МПа	От 0,25 до 0,6
Диапазон температуры, °С	От плюс 10 до плюс 40
Диапазон массовой доли воды, %, не более	От 10 до 65
Массовая концентрация хлористых солей, мг/дм3, не более	5441,7
Массовая доля механических примесей, %, не более	0,04
Массовая доля сероводорода, млн ⁻¹ (ppm), не более	0,48
Массовая доля серы, %, не более	3,5
Массовая доля парафина, %, не более	4,0
Давление насыщенных паров, кПа (мм рт.ст.), не более	66,7 (500)
Массовая доля метил- и этилмеркаптанов в сумме, млн ⁻¹ , (ppm), не более	39,8
Суммарные потери давления в системе при максимальном	
расходе и максимальной вязкости, МПа, не более:	
при проведении измерений	0,2
 при проведении поверки и КМХ 	0,4
Содержание свободного газа, %, не более	1,0
Режим работы системы	Непрерывный
Электроснабжение	
Параметры электропитания:	
Напряжение переменного тока, В	380, 3-х фазное, 50 Гц 220±22, однофазное, 50 Гц
Климатические условия эксплуатации системы:	
температура воздуха в помещениях, где установлено оборудование системы, °С	От плюс 5 до плюс 39
Климатическое исполнение	У1

5 Подготовка к поверке

При подготовке к поверке проводят работы в соответствии с инструкцией по эксплуатации системы и НД на методики поверки СИ, входящих в состав системы.

6 Проведение поверки

6.1 Проверка комплектности технической документации

Проверяют наличие действующих свидетельств о поверке и эксплуатационно-технической документации на СИ, входящие в состав системы.

- 6.2 Подтверждение соответствия ПО системы
- 6.2.1 Должно быть установлено соответствие идентификационных данных ПО системы сведениям, приведенным в описание типа на систему.
 - 6.3 Внешний осмотр

При внешнем осмотре должно быть установлено соответствие системы следующим требованиям:

- комплектность системы должна соответствовать технической документации;
- на компонентах системы не должно быть механических повреждений и дефектов покрытия, ухудшающих внешний вид и препятствующих применению;
- надписи и обозначения на компонентах системы должны быть четкими и соответствовать технической документации.
 - 6.4 Опробование
- 6.4.1 Опробование проводят в соответствии с НД на поверку СИ, входящих в состав системы.
- 6.4.2 Проверяют действие и взаимодействие компонентов системы в соответствии с инструкцией по эксплуатации системы, возможность получения отчета.
 - 6.4.3 Проверяют герметичность системы.

На элементах и компонентах системы не должно быть следов протечек нефти.

- 6.5 Определение метрологических характеристик
- 6.5.1 Определение метрологических характеристик СИ, входящих в состав системы.

Определение метрологических характеристик СИ, входящих в состав системы, проводят в соответствии с НД, приведенными в таблице 3.

Таблица3 – СИ и методики их поверки

Наименование СИ	нд		
Счетчики-расходомеры массовые Micro Motion модификации CMF 300 с измерительным преобразователем модели 2700 (далее-CPM)	«Рекомендация. ГСИ. Счетчики-расходомеры массовые с частотно-импульсным выходом. Методика поверки передвижной поверочной установкой «ПУМА»		
Влагомеры нефти поточные ВСН-2	«Инструкция. ГСИ. Влагомер сырой нефти ВСН-2. Методика поверки»		
Счетчик нефти турбинный МИГ-32	Раздел «Методика поверки» БН.10-02РЭ		
Термопреобразователь с унифицированным цифровым сигналом Метран-2700	МИ 4211-018 «Термопреобразователь с унифицированным цифровым сигналом Метран-2700. Методика поверки»		
Датчик давления «Метран 150»	МИ 4212-012 «Датчик давления Метран-150. Методика поверки»		
Вычислитель УВП 280	«Вычислитель УВП 280. Методика поверки» КГПШ407074.001МП.		
Термометры ртутные стеклянные лабораторные ТЛ-4 № 2	ГОСТ 8.279-78 «ГСИ. Термометры стеклянные жидкостные рабочие. Методика поверки»		
Манометры для точных измерений МТИ	МИ 2124-90 «Рекомендация. ГСИ. Манометры, вакуумметры, мановакуумметры, напоромеры, тягомеры и тягонапоромеры показывающие и самопишущие. Методика поверки».		
Манометры показывающие сигнализирующие ДМ 2005Сг1Ех	МИ 2124-90 «Рекомендация. ГСИ. Манометры, вакуумметры, мановакуумметры, напоромеры, тягомеры и тягонапоромеры показывающие и самопишущие. Методика поверки».		

Счетчик-расходомер массовый Micro Motion модификации CMF300 с измерительным преобразователем модели 2700, предназначенный для измерения массового расхода сырой

нефти в блоке измерений параметров нефти сырой, и датчики давления, предназначенные для измерения избыточного давления, подлежат калибровке.

6.5.2 Определение относительной погрешности измерений массы сырой нефти

Относительную погрешность измерений массы сырой нефти, δM_{ch} %, при прямом методе динамических измерений принимают равной относительной погрешности СРМ.

Поверку СРМ на месте эксплуатации в рабочем диапазоне измерений массового расхода выполняют в автоматизированном режиме с применением передвижной поверочной установки.

Все операции, связанные с подготовкой и проведением поверки, выполняют в соответствии с НД на методики поверки, приведенными в таблице 3.

Относительная погрешность измерений массы сырой нефти для рабочего CPM не должна превышать \pm 0,25 %, для контрольного CPM – \pm 0,2 %.

- 6.5.3 Определение относительной погрешности измерений массы нетто сырой нефти системой.
- 6.5.3.1 Определение относительной погрешности измерений массы нетто сырой нефти системой проводят расчетным методом в соответствии с ГОСТ Р 8.595-2004 «ГСИ. Масса нефти и нефтепродуктов. Общие требования к методикам выполнения измерений».

Относительную погрешность измерений массы нетто сырой нефти, δM_{H} %, вычисляют по формуле

Относительную погрешность измерений массы нетто сырой нефти $\delta M_{\text{H}},$ %, вычисляют по формуле

$$\delta M_{H} = \pm 1, 1 \cdot \sqrt{M_{C}^{2} + \left(\frac{\Delta W_{C\Gamma}}{1 - \frac{W_{C\Gamma}}{100}}\right)^{2} + \left(\frac{\Delta W_{B}}{1 - \frac{W_{B}}{100}}\right)^{2} + \left(\frac{\Delta W_{M\Pi}}{1 - \frac{W_{M\Pi}}{100}}\right)^{2} + \left(\frac{\Delta W_{XC}}{1 - \frac{W_{XC}}{100}}\right)^{2}}$$
(1)

где $\delta M_{\rm c}$ - погрешность измерения массовой доли сырой нефти в системе, %;

 $\Delta W_{\rm cr}$ - абсолютная погрешность измерений массовой доли свободного газа в сырой нефти, %,

$$\Delta W_{C\Gamma} = \frac{\delta_{C\Gamma} \cdot \rho_{\Gamma}}{\rho_{C}^{C\Gamma}},\tag{2}$$

 $\delta_{\rm cr}$ - абсолютная погрешность измерений объемной доли свободного газа, %, принимаемая равной значениям, указанным в МИ 2575;

 $ho_{\rm r}$ - плотность газа при условиях измерений объемной доли газа в сырой нефти, $\kappa_{\rm r}/{\rm M}^3$:

 $\rho_{\rm c}^{\rm cr}$ - плотность сырой нефти при условиях измерений объемной доли свободного газа в сырой нефти, кг/м³;

 $\Delta W_{\rm g}$ - абсолютная погрешность измерений массовой доли воды в системе, %;

$$\Delta W_B = \frac{\Delta \varphi_B \cdot \rho_B^B}{\rho_C^B},\tag{3}$$

 $\Delta \varphi_{\mathtt{B}}$ - абсолютная погрешность измерений объемной доли воды, %;

 $\rho_{\mathtt{E}}^{\mathtt{E}}$ - плотность пластовой воды при условиях измерений $\varphi_{\mathtt{B}}$, кг/м³;

 $ho_{\rm c}^{\rm B}$ - плотность сырой нефти при условиях измерений $\phi_{\rm B}$, кг/м 3 ;

W_• - максимальное значение массовой доли воды в системе, %;

$$W_{B} = \frac{\varphi_{B} \cdot \rho_{B}^{B}}{\rho_{C}^{B}}, \tag{4}$$

 $\Delta W_{\text{мп}}$ - абсолютная погрешность измерений массовой доли механических примесей в сырой нефти в системе, %;

 $W_{\text{мит}}$ - максимальное значение массовой доли механических примесей в системе, %:

 $W_{\rm xc}$ - максимальное значение массовой доли хлористых солей в системе, %;

$$\Delta W_{XC} = 0.1 \cdot \frac{\Delta \varphi_{XC}}{\rho_H^{XC}},\tag{5}$$

 $\Delta arphi_{
m xc}$ - абсолютная погрешность измерений массовой концентрации хлористых солей в обезвоженной дегазированной нефти, мг/дм³;

$$W_{XC} = 0, 1 \cdot \frac{\varphi_{XC}}{\rho_H^{XC}},\tag{6}$$

 $\varphi_{\rm xc}$ - массовая концентрация хлористых солей в обезвоженной нефти, мг/дм³.

Абсолютные погрешности измерений массовой доли воды, массовой доли механических примесей, массовой концентрации хлористых солей в нефти по лабораторному методу определяют в соответствии с ГОСТ Р 8.580-2001 «ГСИ. Определение и применение показателей прецизионности методов испытаний нефтепродуктов».

Для доверительной вероятности P=0.95 и двух измерений соответствующего показателя качества нефти абсолютную погрешность его измерений Δ , %, вычисляют по формуле

$$\Delta = \pm \frac{\sqrt{R^2 - 0.5 \cdot r^2}}{\sqrt{2}},\tag{7}$$

где R и r - воспроизводимость и сходимость метода определения соответствующего показателя качества нефти.

Значения воспроизводимости и сходимости определяют:

- для массовой доли воды по ГОСТ 2477-65 «Нефть и нефтепродукты. Метод определения содержания воды»;
- для массовой доли механических примесей по ГОСТ 6370-83 «Нефть нефтепродукты и присадки. Методы определения механических примесей»;
- для массовой концентрации хлористых солей по ГОСТ 21534-76 «Нефть. Методы определения содержания хлористых солей».

Воспроизводимость метода определения массовой концентрации хлористых солей по ГОСТ 21534 принимают равной удвоенному значению сходимости.

- 6.5.3.2 Относительная погрешность при измерении массы нетто сырой нефти системой не должна превышать:
 - при измерении массовой доли воды в аккредитованной испытательной лаборатории:
 - при содержании массовой доли воды в сырой нефти 10% $\pm 1,0;$
 - при содержании массовой доли воды в сырой нефти от 10% до 20% $\pm 1,0;$
 - при содержании массовой доли воды в сырой нефти от 20% до 50% \pm 4,0;
 - при содержании массовой воды в сырой нефти от 50% до 65% \pm 7,0;
- при вычислении массовой доли воды по результатам измерений объемной доли с применением влагомера сырой нефти BCH-2:
 - при содержании массовой воды в сырой нефти 10% $\pm 3.0;$
 - при содержании массовой воды в сырой нефти от 10% до 20% $\pm 3,5;$
 - при содержании массовой воды в сырой нефти от 20% до 50% \pm 5,5;
 - при содержании массовой воды в сырой нефти от 50% до 65% \pm 7,5.

7 Оформление результатов поверки

- 7.1 При положительном результате поверки оформляют свидетельство о поверке в соответствии с Приказом Минпромторга России от 02.07.2015 № 1815 «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке» и допускают систему к эксплуатации.
- 7.2 При отрицательных результатах поверки систему к эксплуатации не допускают, свидетельство о поверке аннулируют и выдают извещение о непригодности в соответствии с Приказом Минпромторга России от 02.07.2015 № 1815 «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке».