УТВЕРЖДАЮ

Первый заместитель генерального директора – заместитель по научной работе

ФГУП «ВНИИФТРИ»

А.Н. Щипунов

<u>Ю</u> 2015 г.

ИНСТРУКЦИЯ

Модернизированные БИВС

МЕТОДИКА ПОВЕРКИ

84-15-05МП

1 p.63058-16

Общие сведения 1

- 1.1 Настоящая методика распространяется на модернизированные БИВС (далее -МБИВС), изготавливаемые акционерным обществом "Российская корпорация ракетнокосмического приборостроения и информационных систем", г. Москва.
 - 1.2 Интервал между поверками один год.

2 Операции поверки

2.1 При проведении поверки должны выполняться операции, указанные в таблице 1.

Таблица 1

Наименование операции	Номер пункта методики поверки	Проведение операции	
		при первичной поверке	при периодичес- кой поверке
1 Внешний осмотр	8.1	да	да
2 Опробование	8.2	да	да
3 Определение метрологических характеристик: 3.1 Определение среднеквадратического отклонения результата измерений текущих навигационных параметров 3.2 Определение аппаратурной	8.3 8.3.1	да	да
систематической погрешности измерений псевдодальности с учетом юстировки и диапазона изменения аппаратурной систематической погрешности измерений псевдодальности с учетом юстировки			
3.3 Определение разности систематических погрешностей измерений псевдодальности для измерительных каналов с учетом юстировки	8.3.3	да	да

Средства поверки 3

- Рекомендуемые средства поверки, в том числе рабочие эталонные средства 3.1 измерений приведены в таблице 2.
- Все средства поверки, применяемые при поверке средства измерений, должны быть исправны, поверены и иметь свидетельства о поверке или оттиск поверительного клейма на приборе или технической документации.

Наименование средств поверки	Требуемые технические характеристики средства поверки	Рекомендуемое средство поверки (тип)
Аппаратура для высокоточного сравнения шкал времени	Средняя квадратическая погрешность определения расхождения шкал времени не более 0,03 нс	GTR51

3.3 Вместо указанного в таблице 2 средства поверки допускается применять другие аналогичные средства поверки, обеспечивающие определение метрологических характеристик с требуемой точностью.

4 Требования к квалификации поверителей

4.1 Поверка должна осуществляться лицами, аттестованными в качестве поверителей в порядке, установленном в ПР 50.2.012-94.

5 Требования безопасности

5.1 При проведении поверки должны быть соблюдены все требования безопасности в соответствии с ГОСТ 12.3.019-80.

6 Условия поверки

7 Подготовка к поверке

- 7.1 Поверитель должен изучить «Модернизированная БИВС. Руководство по эксплуатации. ИВЯФ.461214.087 РЭ» и руководства по эксплуатации (РЭ) применяемых средств поверки.
 - 7.2 Перед проведением операций поверки необходимо:
- проверить комплектность рекомендованных (или аналогичных им) средств поверки;
- заземлить (если это необходимо) рабочие эталоны, средства измерений и включить питание заблаговременно перед очередной операцией поверки (в соответствии со временем установления рабочего режима, указанным в РЭ).

8 Проведение поверки

- 8.1 Внешний осмотр
- 8.1.1 При внешнем осмотре проверить:
- комплектность поверяемой МБИВС;
- отсутствие внешних механических повреждений и неисправностей, влияющих на работоспособность МБИВС;
 - исправность органов управления.
- 8.1.2 Результаты внешнего осмотра считать положительными, если комплектность поверяемой МБИВС соответствует РЭ, отсутствуют внешние механические повреждения.
 - 8.2 Опробование
- 8.2.1 При выключенном состоянии МБИВС включить питание МБИС CH-4002, серверной стойки из состава ИВК МБИВС, табло Sharp, ЮК112М5, ЮК112М8.
- 8.2.2 Убедиться в отображении на терминале наличия физических связей элементов МБИВС. Убедиться, что измерения от МБИС поступают в ИВК МБИВС.
- 8.2.3 Проверить идентификационные признаки программного обеспечения (ПО) в соответствии с таблицей 3.

Таблица 3

Идентификационные (признаки)	данные	Значение		
Идентификационное наименование ПО		Комплекс программ ИВК МБИВС ИВЯФ.06378-01	Комплекс программ обеспечения МБИВС ИВЯФ.063080-01	
Номер	версии	1.0.0	1.0.0	
(идентификационный номер) ПО		не ниже	не ниже	

- 8.2.4 Результаты опробования считать положительными, если выполняются требования п.п. 8.2.2 и номер версии ПО соответствует указанному в п. 8.2.3.
 - 8.3 Определение метрологических характеристик
- 8.3.1 Определение среднеквадратического отклонения результата измерений текущих навигационных параметров
 - 8.3.1.1 Собрать схему для проведения измерений в соответствии с рисунком 1.

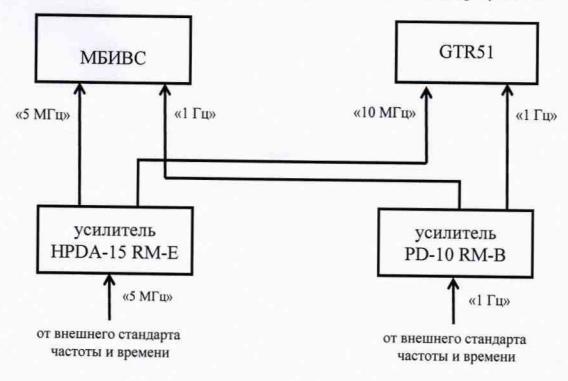


Рисунок 1 – Схема проведения измерений

- 8.3.1.2 Провести измерения текущих навигационных параметров МБИВС и GTR51 по сигналам космических навигационных систем ГЛОНАСС и GPS с интервалом 30 с в течение 7 суток с записью результатов измерений:
- течение 7 суток с записью результатов измерений: S_{Ik}^{MC} , S_{Ik}^{MP} , S_{Ik}^{GC} , S_{Ik}^{GP} , S_{Ik}^{GP} , псевдодальность [м], измеренная по коду (L номер частотного диапазона 1,2,3 для ГЛОНАСС, f номер точки спутника, С код СТ, Р код ВТ, М измерения МБИВС, G измерения GTR51);
 - L_{Lk}^{M} псевдодальность [м], измеренная по фазе несущей.
- 8.3.1.3 Определить среднеквадратическое отклонение результата измерений псевдодальности по коду:

$$\sigma_{Lk}^{S} = \sqrt{\frac{1}{N_{k}-1}\sum_{i=1}^{N_{k}} \left(\left(S_{Lk}^{M}\left(i\right) - L_{Lk}^{M}\left(i\right) - \Delta \tilde{S}_{Lk}^{2}\left(i\right) \right) - \frac{1}{N_{k}}\sum_{j=1}^{N_{k}} \left(S_{Lk}^{M}\left(i\right) - L_{Lk}^{M}\left(i\right) \right) \right)^{2}},$$

где N_k – количество измерений по сигналам k-го спутника, i – i-ый момент времени, $\Delta \tilde{S}^2_{lk}(i)$ - полином второй степени, аппроксимирующий разность измерений псевдодальностей по коду и по фазе.

8.3.1.4 Определить среднеквадратическое отклонение результата измерений псевдодальности по фазе:

$$\sigma_{Lk}^{L} = \sqrt{\frac{1}{2(N_{k}-1)} \sum_{i=1}^{N_{k}} \left(\left(L_{Lk}^{M}(i) - L_{1k}^{M}(i) - \Delta \tilde{L}_{Lk}^{6}(i) \right) - \frac{1}{N_{k}} \sum_{j=1}^{N_{k}} \left(L_{Lk}^{M}(i) - L_{1k}^{M}(i) \right) \right)^{2}},$$

где $\Delta \tilde{L}_{Lk}^6\left(i\right)$ - полином шестой степени, аппроксимирующий разность измерений псевдодальностей по фазе в разных частотных диапазонах.

- 8.3.1.5 Результаты поверки считать положительными, если для всех значений L и k значение σ_{Lk}^S не превышает 0,15 м для кода BT и частотного диапазона L3 ГЛОНАСС, 0,3 м для кода СТ ГЛОНАСС и GPS, значение σ_{Lk}^L не превышает 0,01 м.
- 8.3.2 Определение аппаратурной систематической погрешности измерений псевдодальности с учетом юстировки и диапазона изменения аппаратурной систематической погрешности измерений псевдодальности с учетом юстировки
- 8.3.2.1 Определить юстировочные поправки к измерениям псевдодальности МБИВС следующим образом.
- 8.3. 2.1.1 Рассчитать первые разности псевдодальности на каждый момент времени для каждой литеры в каждом частотном диапазоне:

$$\begin{split} \Delta S_{Lk}\left(i\right) &= S_{Lk}^{M}\left(i\right) - S_{Lk}^{G}\left(i\right) - \Delta D_{k}\left(i\right), \\ \text{где } \Delta D_{k}\left(i\right) &= \sqrt{\left(X_{k}\left(i\right) - X^{M}\right)^{2} + \left(Y_{k}\left(i\right) - Y^{M}\right)^{2} + \left(Z_{k}\left(i\right) - Z^{M}\right)^{2}} - \\ &- \sqrt{\left(X_{k}\left(i\right) - X^{G}\right)^{2} + \left(Y_{k}\left(i\right) - Y^{G}\right)^{2} + \left(Z_{k}\left(i\right) - Z^{G}\right)^{2}} \;, \end{split}$$

 (X^M, Y^M, Z^M) и (X^G, Y^G, Z^G) – координаты антенн МБИВС и GTR51 соответственно, (X_k, Y_k, Z_k) – координаты k-го спутника.

8.3. 2.1.2 Провести усреднение первых разностей для каждого сеанса измерения для k-го спутника:

$$\Delta \overline{S}_{Lk}\left(i_{\scriptscriptstyle H},i_{\scriptscriptstyle K}\right) = \frac{1}{N_k} \sum_{i=i_{\scriptscriptstyle H}}^{i_{\scriptscriptstyle K}} \Delta S_{Lk}\left(i\right)$$

где $i_{\rm H},\,i_{\rm K}$ – моменты времени начала и конца сеанса измерений соответственно.

8.3. 2.1.3 Рассчитать юстировочные поправки к измерениям псевдодальности МБИВС путем усреднения сеансных первых разностей на интервале измерений 2 суток:

$$\Delta \widetilde{S}_{Lk} = \frac{1}{M_k} \sum_{1}^{M_k} \Delta \overline{S}_{Lk} \left(i_u, i_k \right)$$

8.3.2.2 Для определения границ изменения и диапазона изменения аппаратурной систематической погрешности измерений псевдодальности рассчитать среднесуточные значения аппаратурной систематической погрешности как среднее значение всех усредненных измерений по сеансам за данные сутки с учетом юстировочных поправок следующим образом:

$$\Delta \hat{S}_{l} = \frac{1}{K_{l}} \sum_{k} \left(\Delta \overline{S}_{Lk} \left(i_{n}, i_{k} \right) - \Delta \tilde{S}_{Lk} \right),$$

где l – номер суток, K_l – количество сеансов измерений за l-ые сутки.

8.3.2.3 Рассчитать границы изменения аппаратурной систематической погрешности измерений псевдодальности:

$$\Gamma_{S} = \pm \frac{1}{2} \left(\max_{l} \left\{ \Delta \hat{S}_{l} \right\} - \min_{l} \left\{ \Delta \hat{S}_{l} \right\} \right).$$

8.3.2.4 Рассчитать приращения аппаратурной систематической погрешности за сутки:

$$\Delta\Delta\hat{S}_{l+1} = \Delta\hat{S}_{l+1} - \Delta\hat{S}_l \; .$$

8.3.2.5 Определить диапазон изменения аппаратурной систематической погрешности измерений псевдодальности:

$$A_S = \pm \max_{l} \left\{ \left| \Delta \Delta \hat{S}_{l} \right| \right\}.$$

- 8.3.2.6 Результаты поверки считать положительными, если границы изменения аппаратурной систематической погрешности измерений псевдодальности не превышают $\pm 0,2$ м, а диапазон ее изменения не превышает $\pm 0,2$ м/сутки.
- 8.3.3 Определение разности погрешностей измерений систематических псевдодальности для измерительных каналов с учетом юстировки
- 8.3.1 Рассчитать границы разностей систематических погрешностей измерений псевдодальности измерительных каналов на каждый момент времени с учетом юстировочных поправок:

$$\Gamma_{\Delta S}\left(i\right) = \max_{L,k} \left\{ \Delta \overline{S}_{Lk}\left(i,i_{n},i_{k}\right) - \Delta \widetilde{S}_{Lk} \right\} - \min_{L,k} \left\{ \Delta \overline{S}_{Lk}\left(i,i_{n},i_{k}\right) - \Delta \widetilde{S}_{Lk} \right\}.$$

8.3.2 Определить границы разности систематических погрешностей на интервале измерений:

$$\Gamma_{\Delta S} = \pm \frac{1}{2} \max_{i} \left\{ \Gamma_{\Delta S} \left(i \right) \right\}.$$

8.3.3 Результаты поверки считать положительными, если разности систематических погрешностей измерений псевдодальности для измерительных каналов с учетом юстировки находятся в границах $\pm 0,1$ м.

Оформление результатов поверки

- 9.1 При положительных результатах поверки оформить «Свидетельство о поверке» в соответствии с приложением 1 к «Порядку проведения поверки средств измерений, требований к знаку поверки и содержанию свидетельства о поверке», утвержденному приказом Министерства промышленности и торговли РФ от 2 июля 2015 г. N 1815. На «Свидетельство о поверке» нанести знак поверки.
- 9.2 При отрицательных результатах поверки оформляется Извещение о непригодности к применению с указанием причин согласно приложению 2 к «Порядку проведения поверки средств измерений, требований к знаку поверки и содержанию свидетельства о поверке», утвержденному приказом Министерства промышленности и торговли РФ от 2 июля 2015 г. N 1815.

Заместитель начальника НИО-8 по научной работе

В.Н. Федотов Му А.М. Каверин

Начальник отдела № 84