УТВЕРЖДАЮ АО «НИИФИ»

Руководитель ЦИ СИ

обитель Обитель ЦИ СИ

М.Е.Горшенин

исследавательский

измерения

обительной

измерения

обительной

измерения

обительной

измерения

обительной

обительно

ПРЕОБРАЗОВАТЕЛЬ ПЕРВИЧНЫЙ ЛИНЕЙНЫХ И УГЛОВЫХ ПЕРЕМЕЩЕНИЙ Вm 714

МЕТОДИКА ПОВЕРКИ Вm2.787.029 МП

л.р. 63440-16

СОДЕРЖАНИЕ

ВВОДНАЯ ЧАСТЬ	3
1 ОПЕРАЦИИ ПОВЕРКИ	3
2 СДЕЛСТВА ПОВЕРКИ	3
3 ТЕРЕБОВАНИЯ К БЕЗОПАСНОСТИ	4
4 УСЛОВИЯ ПОВЕРКИ	4
5 ПОДГОТОВКА К ПОВЕРКЕ	4
6 ПРОВЕДЕНИЕ ПОВЕРКИ	4
6.1 Проверка внешнего вида, маркировки, определение массы	4
6.2 Проверка габаритных и установочных размеров	5
6.3 Проверка полного сопротивления	6
6.4 Снятие градуировочных характеристик, определение относительных	
значений выходных сопротивлений и определение допускаемой приведенной погреш-	
ности	6
7 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ	9
ПРИЛОЖЕНИЕ А Формы таблин для регистрании результатов поверки	10

Вводная часть

Настоящая методика по поверке распространяется на преобразователь первичный линейных и угловых перемещений Вт 714 (далее по тексту — преобразователь) предназначен для измерений линейных и угловых перемещений объекта и преобразования их в электрический сигнал (сопротивление).

Межповерочный интервал – 2 года.

1 Операции поверки

1.1 При проведении поверки должны выполняться операции, указанные в таблице 1.

Таблица 1	Номер	Проведение операции при		
Наименование операции	пункта ме- тодики по поверке	первичной по-	периодиче- ской повер- ке	
1 Проверка внешнего вида, маркировки, определение массы	6.1	да	да	
2 Проверка габаритных и установочных размеров	6.2	да	да	
3 Проверка полного сопротивления	6.3	да	да	
4 Снятие градуировочных характеристик, определение относительных значений выходных сопротивлений и определение допускаемой приведенной погрешности	6.4	да	да	

1.2 При получении отрицательного результата при проведении любой операции поверка прекращается.

2 Средства поверки

2.1 При проведении поверки рекомендуется применять средства поверки, указанные в таблице 2.
Таблица 2

таолица 2	· · · · · · · · · · · · · · · · · · ·	11
Наименование и тип основного или	Основные метрологические	Номер
вспомогательного средства поверки	характеристики	в Горсреестре
1 Штангенциркуль	Диапазон измерений от 0 до 250 мм,	31063-06
ШЦ-II-250-0,1 ГОСТ 166-89	погрешность ±0,1 мм	
2 Омметр цифровой Щ 34	Диапазон измеряемых сопротивле-	4274-74
Z Gimier Tarth	ний от 1 мОм до 1 ГОм, класс точно-	
	сти (0,02/0,005-0,5/0,1)	
3 Весы настольные циферблатные	Диапазон измерений от 10 до 2000 г,	17132-98
ВНЦ-2	погрешность измерений ±0,3 г	
4 Рулетка измерительная металличе-	Диапазон от 0 до 10 м; класс точно-	15860-12
ская Р10УЗГ	сти 3	
5 Приспособление для градуировки	Диапазон перемещений от 0° до 360°	_
датчиков угловых перемещений		
Bm 5.178.039		
6 Оптическая делительная головка	Лиапазон от 0 ° до 360п °, где	7306-79
ОДГЭ-20	п-1,2,3, погрешность ±20"	
7 Устройство для градуировки датчи-		-
ков линейных перемещений	25000 мм	
	25000 14114	
Bm2.787.013		

2.2 Допускается замена средств поверки, указанных в таблице 2, другими средствами поверки с равным или более высоким классом точности.

3 Требования безопасности

3.1 При проведении поверки необходимо соблюдать общие требования безопасности по ГОСТ 12.3.019-80 и требования на конкретное поверочное оборудование.

4 Условия поверки

- 4.1 Все операции при проведении поверки, если нет особых указаний, должны проводиться в нормальных климатических условиях:
 - температура воздуха от 15 °C до 35 °C;
 - относительная влажность воздуха от 45 % до 75 %;
 - атмосферное давление от $8,6\cdot10^4$ до $10,6\cdot10^4$ Па (от 645 до 795 мм рт.ст.).

Примечание – При температуре воздуха выше 30 °C относительная влажность не должна превышать 70%.

5 Подготовка к поверке

- 5.1 Перед проведением поверки испытательные установки, стенды, аппаратура и электроизмерительные приборы должны иметь формуляры (паспорта) и соответствовать стандартам или техническим условиям на них.
- 5.2 Не допускается применять средства поверки, срок обязательных поверок которых истек.
- 5.3 Коммутации и подключения, связанные с монтажом схем испытаний, производить только при выключенном напряжении питания
- 5.4 Измерительные приборы, используемые при испытаниях, после включения должны быть прогреты в течение времени, предусмотренном инструкцией по эксплуатации на них.
- 5.5 В процессе конкретного вида испытаний менять приборы и оборудование не рекомендуется.
- 5.6 Контрольно-измерительные приборы должны быть надежно заземлены с целью исключения влияния электрических полей на результаты измерений.

6 Проведение поверки

6.1 Проверка внешнего вида, маркировки, определение массы.

6.1.1 Проверка внешнего вида проводить визуальным осмотром. При проверке внешнего вида руководствоваться следующими требованиями.

При проверке внешнего вида необходимо проверить: целостность пломб, маркировку, качество покрытия, отсутствие механических повреждений (вмятин, забоин, царапин, трещин) и следов коррозии на поверхности преобразователя, отсутствие механических повреждений трубки ТКР кабеля (трещин, пор, пузырей и отслоений).

Результаты поверки занести в таблицу, выполненную по форме таблицы A1, приложения A.

6.1.2 Проверка маркировки преобразователя проводить визуальным осмотром.

При проверке маркировки руководствоваться следующими требованиями: на корпусе каждого преобразователя должно быть отчетливо выгравировано:

- шифр преобразователя;
- заводской номер;
- положительное и отрицательное направление углов;

– надпись: ЗАПРЕЩАЕТСЯ РЕЗКО ОТПУСКАТЬ КАНАТ.

Результаты поверки занести в таблицу, выполненную по форме таблицы А1, приложения А.

6.1.3 Проверка массы преобразователя проводится взвешиванием на весах настольных циферблатных ВНЦ-2м.

Масса преобразователя должна быть не более 1,0 кг.

Результаты проверки занести в таблицу, выполненную по форме таблицы А1, приложения А.

6.2 Проверка габаритных и установочных размеров

Габаритные и установочные размеры преобразователя должны соответствовать требованиям:

- габаритные размеры, мм

56±2; 120; 133±3

- длина кабеля, мм

 (500 ± 15)

- установочные размеры, мм

4 отв. Ø M5-7H,

 $(88\pm0,2); (63\pm0,1)$

Проверку габаритных и установочных размеров проводить измерением любым мерительным инструментом, обеспечивающим требуемую точность ± 0.1 мм.

Результаты проверки занести в таблицу, выполненную по форме таблицы А2, приложения А.

6.3 Проверка полного сопротивления

- 6.3.1 Проверку полного сопротивления преобразователя проводить омметром Щ-34 в следующей последовательности:
 - подключить поочередно к омметру контакты 1, 6; 1, 2; 1, 7 разъема;
 - измерить величины полных сопротивлений R $_{\text{пол. L}}$, R $_{\text{пол. }\alpha}$, R $_{\text{пол. }\beta}$.
 - 6.3.2 Значения полных сопротивлений преобразователя должны соответствовать:
 - для линейных перемещений (1500±80) Ом, R пол. L.
 - для угловых перемещений (750 \pm 40) Ом, R _{пол. α}, R _{пол. β}.
- 6.3.3 Результаты поверки занести в таблицу, выполненную по форме таблицы A3, приложения A.

6.4 Снятие градуировочных характеристик, определение относительных значений выходных сопротивлений и определение допускаемой приведенной погрешности

- 6.4.1 Снятие градуировочных характеристик преобразователя производится омметром Щ 34 в следующей последовательности:
 - а) линейные перемещения:
 - установить преобразователь на приспособлении Вт 2.787.013;
 - подключить контакты 1, 5 преобразователя к омметру;
- измерить величины выходных сопротивлений в градуировочных точках согласно таблицы 3 при прямом и обратном ходе каната;
- повторите измерение выходных сопротивлений в градуировочных точках при прямом и обратном ходе каната еще 3 раза.

Номер градуиро-	Диапазон измерений преобразователя, мм									
вочной	0-500	0-1000	0-1400	0-2000	0-2800	0-4000	0-5600	0-8000	0-11000	0-16000
точки		Значение градуировочных точек, мм								
0	0	0	0	0	0	0	0	0	0	0
1	100	200	280	400	400	400	400	400	400	400
2	200	400	560	800	800	800	800	800	800	800
3	300	600	840	1200	1200	1200	1200	1200	1200	1200
4	400	800	1120	1600	1600	1600	1600	1600	1600	1600
5	500	1000	1400	2000	2000	2000	2000	2000	2000	2000

Таблица 3 – Градуировочные данные преобразователя при линейных перемещениях

Результаты измерений выходных сопротивлений при прямом и обратном ходах каната занести в таблицу A4, приложения A.

- б) угловые перемещения (плоскость а)
- –установить преобразователь с помощью приспособления Bm 5.178.039 на делительной головке ОДГЭ-20;
- подключить контакты 1, 3 разъема преобразователя к омметру Щ34, путем поворота каната в плоскости α определить положение, при котором выходное сопротивление равно ($\frac{R_{\text{пол.}\alpha}}{2} \pm 2$) Ом;
- переместить канат от исходного положения в положение минус α на величину диапазона измерения;
- измерить величины выходных сопротивлений в градуировочных точках по таблице 4 при прямом и обратном ходах каната;
- измерение величин выходных сопротивлений в градуировочных точках при прямом и обратном ходах каната повторить еще 3 раза;

Таблица 4 – Градуировочные данные преобразователя при угловых перемещениях

Номер	Диапазон измерений угловых перемещений преобразователя,°					
градуировочной точки	±(32±3)	±63	±70			
10-1811	Знач	нение в градуировочных то	очках, °			
0		-63	-70			
1	-18	-39	-42			
2	-6	-15	-14			
3	0	0	0			
4	+6	+15	+14			
5	+18	+39	+42			
6		+63	+70			

Результаты измерений выходных сопротивлений при прямом и обратном ходах каната занести в таблицу А5, приложения А.

Примечание Для преобразователя с диапазоном измерения $\pm (32^{O} \pm 3^{O})$ 0 и 6-я градуировочные точки соответствуют полученным действительным значениям предела измерения;

в) угловые перемещения (плоскость β);

Произвести измерения по методике п. 6.5.1 б) для плоскости β , подключив к омметру \coprod 34 контакты 1, 4 разъема преобразователя;

Результаты измерений выходных сопротивлений при прямом и обратном ходах каната занести в таблицу А5, приложения А.

- 6.4.2 Обработка результатов измерений и расчет относительных значений выходных сопротивлений
 - 6.4.2.1 Обработка результатов измерений:
- подсчитать средние значения выходных сопротивлений преобразователя в каждой
 і-й градуировочной точке для прямого и обратного хода каната по формуле:

$$R_{np,i}(L,\alpha,\beta) = \frac{R_{1np,i} + R_{2np,i} + R_{3np,i} + R_{4np,i}}{4},$$
 (1)

$$R_{o6p,i}(L,\alpha,\beta) = \frac{R_{1o6p,i} + R_{2o6p,i} + R_{3o6p,i} + R_{4o6p,i}}{4},$$
(2)

где R_{1 пр.і ... R_{4 пр.і – значения выходных сопротивлений для прямого и R_{1 обр.і R_{4 обр.і обратного хода каната при четырехкратных замерах в і-ой градуировочной точке;

–подсчитать средние значения выходных сопротивлений в каждой точке градуирования по формуле:

$$R_{cp,i}(L,\alpha,\beta) = \frac{R_{np,i} + R_{o6p,i}}{2}$$
(3)

 подсчитать относительные значения выходных сопротивлений в каждой точке градуирования по формуле:

$$\Delta = \frac{R_{\text{cp.i}}(L, \alpha, \beta)}{R_{\text{non}}(L, \alpha, \beta)} \cdot 100 \%, \qquad (4)$$

где $R_{\text{пол.}}(L, \alpha, \beta)$ – значения полного сопротивления.

— занести относительные значения выходных сопротивлений в каждой градуировочной точке в таблицу A6, в начале ($\Delta_{\text{нач}}$) и конце ($\Delta_{\text{кон.}}$) диапазона измерений и разницу между ними ($\Delta_{\text{кон.}} - \Delta_{\text{нач.}}$) в таблицу A7 приложения A.

Примечания.

- 1 Для преобразователей с пределом измерения свыше 2000 мм относительное значение выходного сопротивления в конце диапазона измерения не определяют.
- 2 Относительные значение выходного сопротивления при измерении угловых перемещений не определяют.

Подсчитать значение приведенной погрешности преобразователя:

$$\gamma = \sqrt{\gamma_{\rm L}^2 + \gamma_{\rm O,II}^2 + \gamma_{\rm K,II}^2} \cdot 100\%$$
 (5)

где $\gamma_{\rm r}^2$ – приведенное значение дисперсии выходного сигнала от гистерезиса,

 $\gamma_{
m on}^2$ — приведенное значение аддитивной составляющей лабораторной дисперсии,

 $\gamma_{\rm KN}^2$ — значение относительной мультипликативной составляющей лабораторной диперсии.

- подсчитать нормированное значение коэффициента преобразования для прямого и обратного хода каната для линейных (угловых) перемещений по формулам соответственно:

$$K_{np.} = \frac{(m+1)\sum_{i=0}^{m} \left[R_{np.iLi}\right] - \sum_{i=0}^{m} R_{np.i}\sum_{i=0}^{m} L_{i}}{(m+1)\sum_{i=0}^{m} L_{i}^{2} - \left(\sum_{i=0}^{m} L_{i}\right)^{2}}$$
(6)

$$K_{o\delta p.} = \frac{(m+1)\sum_{i=0}^{m} \left[R_{o\delta p.iLi}\right] - \sum_{i=0}^{m} R_{o\delta p.i}\sum_{i=0}^{m} L_{i}}{(m+1)\sum_{i=0}^{m} L_{i}^{2} - \left(\sum_{i=0}^{m} L_{i}\right)^{2}}$$
(7)

где $R_{np.i}$, $R_{oбp.i}$ — средние значения выходных сопротивлений преобразователя для прямого и обратного хода каната,

 L_i – значение линейных (угловых) перемещений каната в i-ой градуировочной точке, (m+1) – число точек градуирования;

 подсчитать нормированное значение начального сигнала для прямого и обратного хода каната по формулам соответственно:

$$B_{np.} = \frac{\sum_{i=0}^{m} R_{np.i} \sum_{i=0}^{m} L_{i}^{2} - \sum_{i=0}^{m} \left[R_{np.i} \cdot L_{i} \right] \sum_{i=0}^{m} L_{i}}{\left(m+1 \right) \sum_{i=0}^{m} L_{i}^{2} - \left(\sum_{i=0}^{m} L_{i} \right)^{2}}$$
(8)

$$B_{o\delta p.} = \frac{\sum_{i=0}^{m} R_{o\delta p.i} \sum_{i=0}^{m} L_{i}^{2} - \sum_{i=0}^{m} \left[R_{o\delta p.i} \cdot L_{i} \right]_{i=0}^{m} L_{i}}{\left(m+1 \right) \sum_{i=0}^{m} L_{i}^{2} - \left(\sum_{i=0}^{m} L_{i} \right)^{2}}$$
(9)

- подсчитать дисперсию от гистерезиса по формуле:

$$\mathcal{A}_{\Gamma} = \frac{\sum_{i=0}^{m} \left[\left(K_{np.} - K_{o\delta p.} \right) Li + \left(B_{np.} - B_{o\delta p.} \right) \right]^{2}}{(m+1) \cdot 12}$$
(10)

 подсчитать приведенное значение дисперсии выходного сигнала от гистерезиса по формуле:

$$\gamma_{\Gamma}^2 = \frac{\mathcal{I}_{\Gamma}}{\left(R_{KOH.} - R_{HA4.}\right)^2} \tag{11}$$

подсчитать нормированное значение начального сигнала для прямого хода каждого градуировочного цикла по формуле:

$$B_{np,l} = \frac{\sum_{i=0}^{m} R_{li_{np}} \sum_{i=0}^{m} L_{i}^{2} - \sum_{i=0}^{m} [R_{li_{np}} \cdot L_{i}] \sum_{i=0}^{m} L_{i}}{(m+1) \sum_{i=0}^{m} L_{i}^{2} - (\sum_{i=0}^{m} L_{i})^{2}},$$
(12)

где l — порядковый номер цикла градуирования (l = 1, 2, 3, 4);

- подсчитать аддитивную составляющую лабораторной дисперсии по формуле:

$$\mathcal{I}_{OR} = \sum_{l=1}^{4} \frac{(B_{np.l} - MB_{np.})^2}{4 - l},$$
(13)

 $\text{где } MB_{np.} = \frac{\sum\limits_{l=1}^{4} B_{np.l}}{4} - \text{математическое ожидание начального значения выходного сигнала;}$

подсчитать приведенное значение аддитивной составляющей лабораторной дисперсии по формуле:

$$\gamma_{O.R.}^2 = \frac{I_{O.R.}}{(R_{KOH.} - R_{HA4.})^2}$$
 (14)

где $R_{\text{нач.}}$, $R_{\text{кон.}}$ – значения сопротивления в начальной и конечной градуировочных точках i=0; 5(6), определяемые по формуле 3;

 подсчитать нормированное значение коэффициента преобразования для прямого хода каждого градуировочного цикла по формуле:

$$K_{np.l} = \frac{(m+1)\sum_{i=0}^{m} [R_{li_{np.}} \cdot L_{i}] - \sum_{i=0}^{m} R_{li_{np.}} \sum_{i=0}^{m} L_{i}}{(m+1)\sum_{i=0}^{m} L_{i}^{2} - (\sum_{i=0}^{m} L_{i})^{2}}$$
(15)

подсчитать относительную мультипликативную составляющую лабораторной дисперсии по формуле:

$$\gamma_{\kappa n}^{2} = \frac{\sum_{l=1}^{4} (K_{np,l} - MK_{np,l})^{2}}{(4-1)(MK_{np,l})^{2}},$$
(16)

где $MK_{np.} = \frac{\sum\limits_{l=1}^{3} K_{np.\,l}}{5}$ — математическое ожидание коэффициента преобразования.

- 6.2.4.2 Значение допускаемой приведенной погрешности преобразователя должно находиться в пределах:
 - при измерении линейных перемещений $-\pm 1,5;$
 - при измерении угловых перемещений ±2.

Значение допускаемой приведенной погрешности преобразователя занести в таблицу A8, приложения A.

7 Оформление результатов поверки

7.1 Результаты поверки преобразователей оформить в соответствии с Приказом Министерство промышленности и торговли РФ от 2 июля 2015 г. № 1815 «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке».

Приложение А

Формы таблиц для регистрации результатов поверки

Таблица А1 – Результаты проверки внешнего вида, маркировки и массы датчиков

	Действительное состояние				
Наименование параметра	Заводской номер				
Внешний вид					
Маркировка					
Масса, кг, не более 1,0					

Таблица А2 – Результаты определения габаритных и установочных размеров

Наименование параметра	Требование ТУ	Действительное значение Заводской номер
Габаритно-установочные размеры, мм: – габаритные размеры; – длина кабеля; -установочные размеры	(56±2; 120 max; 133±3) (500±15) 4 отв. Ø M5-7H, (88±0,2); (63±0,2)	

Таблица А3- Результаты проверки полного сопротивления

Наименование параметра	Требование ТУ	Действительное значение Заводской номер
Полное сопротивление, Ом: – для линейных перемещений R $_{\text{пол. L}}$ – для угловых перемещений R $_{\text{пол. }\alpha}$, R $_{\text{пол. }\beta}$	1500±50 750±75	

Таблица А4 – Результаты снятия градуировочной характеристики преобразователя при линейных перемещениях

Номер градуи-	Значение пе-	ие пе- Значение выходных сопротивлений							
ровочной точки,	ремещения	1 ци	КЛ	2 ци	кл	3 ци	кл	4 ци	кл
i	каната, мм	Прям.	Обр.	Прям.	Обр.	Прям.	Обр.	Прям.	Обр.
		ход,	ход,	ход,	ход,	ход,	ход,	ход,	ход,
		Ом	Ом	Ом	Ом	Ом	Ом	Ом	Ом
0									
1						l !			
2									
3									
4									
5									
6									

Таблица А5 – Результаты снятия градуировочных данных преобразователя при угловых пе-

ремещениях

Номер	Диапазон измерений угловых перемещений преобразователя, \dots°					
градуировочной	±(32±3)	±63	±70			
точки	Значение в градуировочных точках,°					
0		-63	-70			
1	-18	-39	-42			
2	-6	-15	-14			
3	0	0	0			
4	+6	+15	+14			
5	+18	+39	+42			
6		+63	+70			

Таблица А6 – Результаты проверки относительных значений выходного сопротивления

Номер	Значение	Относитель-	Значение уг-	Относитель-	Значение уг-	Относитель-
градуи-	линейного	ное значение	лового пере-	ное значение	лового пере-	ное значение
ровоч-	переме-	выходного	мещения кана-	выходного	мещения ка-	выходного
ной точ-	щения ка-	сопротивле-	та в плоскости	сопротивле-	ната в плос-	сопротивле-
ки, і	ната, мм	ния, Δ_{L} , %	α, °	ния, Δ_{α} , %	кости β, °	ния, Δ_{β} , %
0						
1						
2						
3						
4						
5						
6						

Таблица А7 – Результаты проверки относительных значений выходного сопротивления в начале

и конце диапазона измерений

Наименование параметра	Требование	Фактическое значение
	ТУ	Заводской номер
Относительные значения выходных сопротивлений при		
измерении линейных перемещений, % от $R_{\text{нолн.}}$:	0.5	
– в начале диапазона измерений, ($\Delta_{\text{нач}}$), не менее;	0,5	
– в конце диапазона измерений (при измерении ли-	99,5	
нейных перемещений до 2 м), ($\Delta_{\text{кон.}}$), не более;	99,3	
– разница относительных значений выходных сопро-	90	
тивлений, $(\Delta_{\text{кон.}} - \Delta_{\text{нач.}})$, не менее	90	

Таблица А8 – Результаты определения значения приведенной погрешности

Наименование параметра	Требова- ния ТУ	Расчетное значение Заводской номер
Значение приведенной погрешности, в пределах, %:		
– при линейных перемещениях;	±1,5	
при угловых перемещениях	±2	