УТВЕРЖДАЮ Генеральный директор ООО «Автопрогресс-М» А.С. Никитин 2015 г. « 14

Системы автоматического ультразвукового контроля Rotoscan

МЕТОДИКА ПОВЕРКИ

МП АПМ 83-15

r.p.63489-16

г. Москва 2015 г. Настоящая методика распространяется на системы автоматического ультразвукового контроля Rotoscan (далее – системы) и устанавливает методику их первичной и периодической поверки.

Интервал между периодическими поверками - 1 год.

1. Операции поверки

При проведении поверки должны выполняться операции, указанные в таблице 1.

		Таблица 1.
	Наименование этапа поверки	№ пункта документа по поверке
1	Внешний осмотр, проверка маркировки и комплектности	7.1
2	Опробование, проверка работоспособности функциональных режимов, идентификация программного обеспечения	7.2
3	Определение метрологических характеристик	7.3
3.1	Определение отклонений допускаемых значений амплитуд им- пульсов возбуждения генератора дефектоскопа от номинального значения на нагрузке 50 ± 1 Ом	7.3.1
3.2	Определение абсолютной погрешности измерений амплитуд сигналов на входе приемника дефектоскопа	7.3.2
3.3	Определение абсолютной погрешности измерений установки усиления приемника дефектоскопа в диапазоне от 0 до 40 дБ с шагом 5 дБ	7.3.3
3.4	Определение абсолютной погрешности измерений временных интервалов	7.3.4
3.5	Определение угла ввода и точки ввода при работе с ПЭП и пре- образователями на фазированной решетке	7.3.5
3.6	Определение абсолютной погрешности измерений глубины за- легания отражателей пьезоэлектрическими преобразователями и преобразователями на фазированной решетке	7.3.6
3.7	Определение абсолютной погрешности измерений расстояний датчиком пути сканера	7.3.7

2. Средства поверки

При проведении поверки должны применяться эталоны и вспомогательные средства, приведенные в таблице 2.

Таблица 2

	Таблица 2
№ пункта до-	Наименование эталонов, вспомогательных средств поверки и их основные
кумента по	метрологические и технические характеристики
поверке	
7.3.1.	Осциллограф цифровой DS2202, полоса пропускания 200 МГц, ПГ $\pm 25 \cdot 10^{-6}$
	Гц;
	Делитель напряжения 1:10, $R_{BX} = 10$ МОм, $C_{BX} = 12$ 15 пФ;
	Резистивная нагрузка 50 Ом ± 0,15%;
7.3.2.	Осциллограф цифровой DS2202, полоса пропускания 200 МГц, ПГ $\pm 25 \cdot 10^{-6}$
	Гц;
	Генератор сигналов произвольной формы DG4102, диапазон частот 1 мГц ÷
	200 МГц, ПГ \pm (0,01 U _{yct} + 2 мВ), выходное напряжение 1 мВ \div 10 В;
	Резистивная нагрузка 50 Ом ± 0,15%;
7.3.3.	Осциллограф цифровой DS2202, полоса пропускания 200 МГц, ПГ $\pm 25 \cdot 10^{-6}$
	Гц;

	Генератор сигналов произвольной формы DG4102, диапазон частот 1 мГц ÷
	200 МГц, ПГ \pm (0,01 · U _{yct} + 2 мВ), выходное напряжение 1 мВ \div 10 В;
	Резистивная нагрузка 50 Ом \pm 0,15%;
7.3.4.	Осциллограф цифровой DS2202, полоса пропускания 200 МГц, ПГ $\pm 25 \cdot 10^{-6}$
	Гц;
	Генератор сигналов произвольной формы DG4102, диапазон частот 1 мГц ÷
	200 МГц, ПГ \pm (0,01 · U _{ycr} + 2 мВ), выходное напряжение 1 мВ \div 10 В;
	Резистивная нагрузка 50 Ом \pm 0,15%;
7.3.5	Комплект контрольных образцов и вспомогательных устройств КОУ-2: кон-
	трольный образец СО-2, СО-3 из набора КОУ-2, скорость продольных УЗК
	= (5900 ±118) м/с; затухание продольной ультразвуковой волны на частоте
	(2,5±0,5) МГц не более ±2,0 дБ; интервал времени между первым и третьим
	донным эхосигналом (40±1) мкс.
7.3.6	Комплект контрольных образцов и вспомогательных устройств КОУ-2: кон-
	трольный образец СО-2, СО-3 из набора КОУ-2, скорость продольных УЗК
	= (5900 ±118) м/с; затухание продольной ультразвуковой волны на частоте
	(2,5±0,5) МГц не более ±2,0 дБ; интервал времени между первым и третьим
	донным эхосигналом (40±1) мкс.
7.3.7	Штангенциркуль ШЦ-II, $(0 - 250)$ мм, ПГ ± 0.05 мм

Примечание: Допускается применять другие средства поверки, обеспечивающие определение метрологических характеристик с точностью удовлетворяющей требованиям настоящей методики.

3. Требования к квалификации поверителей

К проведению поверки допускаются лица, изучившие эксплуатационные документы на системы автоматического ультразвукового контроля Rotoscan, имеющие достаточные знания и опыт работы с подобными устройствами, аттестованные на право выполнения поверочных работ.

4. Требования безопасности

4.1. Перед проведением поверки следует изучить техническое описание и руководство по эксплуатации на поверяемую систему автоматического ультразвукового контроля Rotoscan и приборы, применяемые при поверке.

4.2. К поверке допускаются лица, прошедшие инструктаж по технике безопасности при работе на электроустановках.

5. Условия проведения поверки

При проведении поверки должны соблюдаться следующие нормальные условия измерений:

-	температура окружающей среды,°С	$20 \pm 5;$
-	относительная влажность воздуха,%	не более 70;
-	атмосферное давление, кПа	96,0104,0.

Внешние электрические и магнитные поля должны отсутствовать, либо находиться в пределах, не влияющих на работу системы автоматического ультразвукового контроля Rotoscan.

6. Подготовка к поверке

Перед проведением поверки должны быть выполнены следующие подготовительные работы:

проверить наличие действующих свидетельств о поверке на средства поверки;

- систему автоматического ультразвукового контроля Rotoscan и средства поверки привести в рабочее состояние в соответствии с их эксплуатационной документацией;

- система автоматического ультразвукового контроля Rotoscan и средства поверки должны быть выдержаны в помещении не менее 1ч.

7. Проведение поверки

7.1. Внешний осмотр, проверка маркировки и комплектности

При внешнем осмотре должно быть установлено соответствие системы автоматического ультразвукового контроля Rotoscan следующим требованиям:

- наличие маркировки (наименование или товарный знак изготовителя, тип и заводской номер);

- комплектность системы автоматического ультразвукового контроля Rotoscan должна соответствовать Руководству по эксплуатации;

- отсутствие механических повреждений, а также других повреждений, затрудняющих отсчет показаний и влияющих на их точность;

наличие четких надписей и отметок на органах управления.

В случае обнаружения несоответствия систем автоматического ультразвукового контроля Rotoscan перечисленным требованиям они к поверке не допускаются.

7.2. Опробование, проверка работоспособности функциональных режимов, идентификация программного обеспечения

7.2.1. Выполнить все операции по подготовке системы автоматического ультразвукового контроля Rotoscan к работе согласно руководству по эксплуатации. В случае успешного завершения самоконтроля системы разрешается проводить дальнейшие операции.

7.2.2. Проверку идентификационных данных программного обеспечения проводить следующим образом:

Включить систему автоматического ультразвукового контроля Rotoscan в соответствии с руководством по эксплуатации. После загрузки идентификационные данные программного обеспечения появятся на экране жидкокристаллического дисплея. Данные, полученные по результатам идентификации ПО, должны соответствовать таблице 3.

Таблица 3

Идентификационное наименование ПО	Rotoscan	Rotoclient
Номер версии (идентификационный номер ПО), не ниже	5.1	3

7.2.3. Проверить пределы изменений регулируемых параметров и режимы контроля согласно руководству по эксплуатации.

7.2.4. Произвести внутреннюю проверку преобразователей на фазированной решетке, для этого необходимо: создать новый файл: открыть пункт меню «File» – «New» или

нажать на кнопку, обозначенную пиктограммой 🕒. Задать первичные параметры.

7.2.5. Ввести следующие значения в появившееся окно и нажать «Next».

No. of <u>T</u> otel gates	2	÷
No. of Mapgates	0	•
No. of Pulse Echo gates (x2)	2	•
No. of <u>Root gates (x2)</u>	0	•
 No. of <u>C</u> oupling gates	0	÷

В появившемся окне задать следующие параметры и нажать «Next».

	Mapping all channels
	If this feature is enabled it will allow you to toggle between the standard presentation of a pulse echo gate or a 'mapping' presentation of the same pulse echo gate.
	Disabled
	C Enabled
	Crediting support
В появившемся	окне задать следующие параметры и нажать «Next». Phased Anay
- 100 - 100	Use phased array probes instead of conventional probes.
	C Disabled
	• Enabled
	If you wan't the ability to check the elements of your phased array probes you need extra element check gates.
	C Element check disabled

Element check enabled

После задания всех первичных параметров, нажать кнопку «Finish».

7.2.6. Задать параметры датчиков. Выбираем пункт меню «Settings» - «Probes». В появившемся окне во вкладках «Phased array 1» и «Phased array 2» задать следующие параметры фазированной решетки и нажать «OK».

Probe serial number		
Type array	Single linear array	•
Nr. of elements per array	64	÷
Pitch first element (mm)	0.85	ŧ
Pitch last element (mm)	0.85	ŧ
Ultrasonic frequency (MHz)	4.0	ŧ
Angle (*)	37.00	ŧ
Hor. index (mm)	64.0	÷
Vert. index (mm)	25.0	▲
Soundspeed wedge (m/s)	2475.0	÷
Weld distance (mm)	15.0	÷
Skips allowed	Yes	

7.2.7. Для настройки внутренней проверки элементов предназначены каналы 7 и 8. Для канала 8 задать амплитуду эхосигнала на уровне 30 дБ в графе «Gain» во вкладке «Gates», чтобы увеличить сигнал на выбранном элементе фазированной решетки. Затем перейти во вкладку «Beam» и задать параметры:

Gates Electron Gl	obai
VCoupline I	
Start element	3
# elementen	

7.2.8. Вернуться к таблице параметров и отрегулировать начало и длительность строба (значения «Start» и «Size» на вкладке «Gates») так, чтобы он включал сигнал от последнего элемента фазированной решетки:

7.2.9. Увеличить амплитуду «Gain» 7-го канала до 35 дБ. Для канала 8 копировать настройки с канала 7. Проверить, входит ли сигнал от первого и последнего элемента в зону строба. При этом на вкладке «Beam» должны быть установлены значения «Start element» равными 1 и 64 соответственно.

7.2.10. Установить значение «Start element» равным 64.

7.2.11. Выбрать пункт меню «Inspect» - «РА Element Check», предварительно закрыв режим дефектоскопа

inime PA Element Check Shift+F10 Weld F10 Next Weld F11	
<u>₩eld</u> F10 <u>₩ekt</u> Weld F11	1.0
Next Weld F11	
	L
🛞 Stop inspection	

7.2.12. Завершить проверку каждого элемента.

6

7.2.13. По окончании проверки на экран выводится окно, содержащее отчет о проведенной процедуре. Напротив каждого элемента должно быть значение «TRUE».

Если напротив некоторых элементов присутствует значение «FALSE», то следует повысить амплитуду эхосигнала в каналах, предназначенных для настройки данной проверки.

7.2.14. Если после увеличения амплитуды эхосигнала в отчете присутствуют значения «FALSE», то необходимо выполнить аналогичную проверку в ручном режиме или воспользоваться другой фазированной решеткой с аналогичными параметрами.

Если перечисленные требования не выполняются, систему признают непригодной к применению, дальнейшие операции поверки не производят.

7.3. Определение метрологических характеристик

7.3.1. Определение отклонений допускаемых значений амплитуд импульсов возбуждения генератора дефектоскопа от номинального значения на нагрузке 50 ± 1 Ом

7.3.1.1. Для определения отклонений допускаемых значений амплитуды импульсов возбуждения от номинального значения на нагрузке 50 ± 1 Ом необходимо выполнить соединения в соответствии со схемой на Рис. 1.:

Рис. 1. Схема соединений при проверке параметров импульсов возбуждения

Для предотвращения повреждения осциллографа перед подключением к выходу генератора дефектоскопа убедиться, что используется делитель напряжения 1:10.

- подключить нагрузку 50 Ом к выходу генератора системы;

- провести измерения на 5-ом канале системы. 3-ий канал предназначен для проверки электронного блока.

	Beam	Global								
Gate	Туре	Seq.	Start(m	Size(mm	Gain(dł	PA/CON	Tx	Rx	Wave	Delay(m
1	P.E.1	1	37.6	100.0	0.0	PA	1	1	S	0
2	P.E.2	2	37.6	100.0	0.0	PA	2	2	S	0
3	P.E.4	3	1.0	20.0	0.0	CON	1	5	S	0
4	P.E.3	4	1.0	20.0	0.0	CON	1	1	S	0
5	Tofd1	5	1.0	20.0	0.0	CON	1	5	S	0
6	Tofd2	6	1.0	20.0	0.0	CON	1	1	S	0
7	PA Chk	7	10.0	20.0	20.0	PA	1	1	С	0
8	PA Chk	8	10.0	20.0	20.0	PA	2	2	с	0

Физический канал под номером 1 является генератором (графа « T_x ») и канал 5 является приемником (графа « R_x »).

- выбрать пункт меню «Settings» «Ultrasonics»;
- скопировать настройки 3-го канала в 5-ый канал;
- перейти во вкладку «Global»;

- последовательно установить значения амплитуды 50, 100, 150, 200 В в поле «Pulser voltage (V)» (А_{ном}).

Base line offset (V)	0.00	-
Input impedance (Ohm)	50 Ohm	
Main gain (dB)	0.0	ŀ
Inspection sensitivity +(dB)	0	ŀ
Attenuator	None	
Shear wave (m/s)	3230	ŀ
Compr. wave (m/s)	5950	
Sample frequency (MHz)	50	5
PRF (Hz)	3000	
Pulser voltage (V)	200	
WT Mode dead time (mm)	5.0	ŀ

- осциллографом измерить напряжение на разъеме канала 5 подключения преобразователя (А_{изм}).

7.3.1.2. Определить относительную погрешность амплитуды импульсов возбуждения от номинального значения по формуле:

$$\delta_{\rm A} = \frac{A_{u_{2M}} - A_{u_{0M}}}{A_{u_{0M}}} \cdot 100$$

где δ_A – относительная погрешность амплитуды импульсов возбуждения от номинального значения, %;

Аизм – значение напряжения, измеренное осциллографом, В;

А_{ном} – номинальное значение напряжения системы, В.

Пределы допускаемого отклонения значений амплитуд импульсов возбуждения от номинального значения на нагрузке 50 ± 1 Ом не должны превышать $\pm 10\%$ от измеренной величины во всем диапазоне.

Если требование п. 7.3.1.2. не выполняются, систему признают непригодной к применению, дальнейшие операции поверки не производят.

7.3.2. Определение абсолютной погрешности измерений амплитуды сигнала на входе приемника дефектоскопа

7.3.2.1. Для определения абсолютной погрешности измерений амплитуды сигнала на входе приемника необходимо выполнить соединения в соответствии со схемой на Рис. 2.:

Осциллограф RIGOL DS2202

Рис. 2. Схема соединений для определения абсолютной погрешности измерений амплитуды сигнала на входе приемника

7.3.2.2. Установить на генераторе DG4102:

- · синхронизация внешняя;
- опорный сигнал внутренний;
- число периодов в пачке 1;
- частота заполнения импульсов 2 МГц;
- амплитуда импульсов 360 мВ;
- задержка 1 мкс.

7.3.2.3. Изменяя усиление канала «Gain» (дБ) на вкладке «Gates», добиться того, чтобы анализируемый сигнал имел высоту 50% экрана. Выставить строб на 50% экрана.

7.3.2.4. Согласно таблице 4 изменять суммарный фактор затухания А, компенсируя его увеличением усиление канала «Gain» (дБ) А_{дБ}, таким образом, чтобы полученный сигнал имел высоту 50% экрана.

			Габлица 4
Значение ослабления, дБ	- 6	+ 6	+ 12

7.3.2.5. Определить абсолютную погрешность измерений амплитуды сигнала на входе приемника по формуле:

$$\Delta A_1 = A_1 - A_{ab}$$

где ΔA_1 – абсолютная погрешность измерений амплитуды сигнала на входе приемника, дБ;

*A*₁ – значение задаваемого ослабления амплитуды сигнала на выходе генератора, дБ;

*А*_{*оБ*} - значение усиления амплитуды сигнала на входе приемника дефектоскопа, дБ.

7.3.2.6. Абсолютная погрешность измерений амплитуд сигналов на входе приемника дефектоскопа не должна превышать ± 2 %.

Если требование п. 7.3.2.6. не выполняются, систему признают непригодной к применению, дальнейшие операции поверки не производят.

7.3.3. Определение абсолютной погрешности измерений установки усиления приемника дефектоскопа в диапазоне от 0 до 40 дБ с шагом 5 дБ

7.3.3.1. Для определения абсолютной погрешности измерений установки усиления приемника в диапазоне от 0 до 40 дБ с шагом 5 дБ необходимо выполнить соединения в соответствии со схемой на Рис. 3:

Осциллограф RIGOL DS2202

7.3.3.2. Установить на генераторе DG4102:

- синхронизация внешняя;
- опорный сигнал внутренний;
- число периодов в пачке 1;
- частота заполнения импульсов 2 МГц;
- амплитуда импульсов 360 мВ;
- задержка 1 мкс.

7.3.3.3. На системе установить усреднение равным 1.

7.3.3.4. Изменяя усиление канала «Gain» (дБ) на вкладке «Gates», добиться того, чтобы анализируемый сигнал имел высоту 80% экрана. Выставить строб на 80% экрана.

7.3.3.5. Согласно таблице 5 последовательно изменять суммарный фактор затухания А, компенсируя его увеличением усиление канала «Gain» (дБ) $A_{д B}$ таким образом, чтобы полученный сигнал имел высоту 80% экрана.

Значения ослабления, дБ 0 5 10 15 20 25 30 35 40									13	аолица э
	Значения ослабления, дБ	0	5	10	15	20	25	30	35	40

7.3.3.6. Абсолютная погрешности измерений установки усиления приемника дефектоскопа определяется по формуле:

$$\Delta A_{\partial \mathcal{B}} = A - A_{\partial \mathcal{B}}$$

где $\Delta A_{\partial b}$ – абсолютная погрешности измерений установки усиления приемника дефектоскопа, дБ;

А – значение суммарного фактора затухания амплитуды сигнала канала, дБ;

АдБ – значение усиления амплитуды сигнала канала, дБ.

7.3.3.7. Абсолютная погрешность измерений установки усиления приемника не должна превышать ± (0,4 + 0,02 · Nn), где Nn – установленное усиление приемника, дБ.

Если требование п. 7.3.3.7. не выполняются, систему признают непригодной к применению, дальнейшие операции поверки не производят.

7.3.4. Определение абсолютной погрешности измерений временных интервалов

7.3.4.1. Для определения абсолютной погрешности измерений временных интервалов необходимо выполнить соединения в соответствии со схемой на Рис. 4:

Осциллограф RIGOL DS2202

- 7.3.4.2. Установить на генераторе DG4102:
- синхронизация внешняя;
- опорный сигнал внутренний;
- число периодов в пачке 1;
- частота заполнения импульсов 2 МГц;
- амплитуда импульсов 360 мВ;
- задержка 10 мкс.

7.3.4.3. Во вкладке «Global» установить скорость звука «Shear wave» для продольной волны равную 2000 м/с.

Base line offset (V)	0,00	÷!
input impedance (Ohm)	50 Chm	
Main gain (dB)	0,0	÷
Inspection sensitivity +(dB)	0	÷
Attenuator	None	
Shear wave (m/s)	2000	
Compr: wave (m/s)	5950	÷
Sample frequency (MHz)	50	•
PRF (Hz)	3000	÷
Pulser votage (V)	0	÷
WT Mode dead time (mm)	5,0	A V

7.3.4.4. На канале 3 установить длину строба 200 мм.

100	*]										<u></u>										
UC.																					
U	7 0 ma		· · · · ·	.	• • **	50 800	,	,	7 1		100		, , ,			150 mm	.	r ,	- 1	, ,	200 mm
U	3 0 mm Boem	Giobal			•••	50 ann	· ·	• •	• •		100	1000				150 mm	, ,	,			200 mm
U Gate	2 0 mm Boem Type	Globel Seq.	Startion	j Size(mm	Gain(di	50 mm	r r	, Ru	Wave	Delay(m	100 HPF	nas LPF	Pulse width	Title	, The .(*	150 mm Mode	GAIG(S		Palet	Averag	200 mm
U Gate 1	Boem Type PE.1	Global Seq. 1	Start(na 37.6	1 Size(mm 100.0	Gain(df	50 mm PACON PA	, , Тх 1	, Ro 1	Wave S	Delay(m	100 INPF Disabled	Riss LPF Disabled	Pulse width	Title PE4	7 7 2	150 mm Mode H	G HG(* 20		Palet -	Averag 1	200 rom
U Gate <u>1</u> 2	Boern Type PE1 PE2	Global Seq. 1 2	Start(na 37.6 37.6	1 Size(mm 100.0 100.0	Gain(di 0.0 0.0	50 mm PACON PA PA	τχ 1 2	1 1 2	Wave S S	Delay(m 0 0	100 INPF Disabled Disabled	IND LPF Disabled Disabled	Pulse width 125 125	Title PE4 PE4	2 2	150 mm Mode H H	G HG(* 20 20	 4 4 4 5 7 7 	Palet -	Averag 1 1	200 mm
U Gate 1 2 3	Boam Type PE.1 PE.2 PE.4	Global Seq. 1 2 3	Startina 37.6 37.6 0.0	1 5ize(mm 100.0 100.0 300.0	Gain(di 0.0 0.0 0.0	50 mm PACON PA PA CON	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 2 1	Wave S S S	Delayim O O O	100 HPF Disabled Disabled Disabled	LPF Disabled Disabled Disabled	Pulse width 125 125 125	Title PE4 PE4 PE1	2 2 2	150 mm Mode H H	G11G(* 20 20 20	2) 2) 2) (1)	Palet - -	Averag 1 1	200 mm
U Gate 1 2 3 4	Boem Type P.E.1 P.E.2 P.E.4 P.E.3	Globel Seq. 1 2 3 4	Start(ma 37.6 37.6 0.0 13.1	Size(mm 100.0 100.0 300.0 35.0	Gain(df 0.0 0.0 20.0	PACON PA PA CON CON	τ., Τ., 1 2 5 1	 Ru 1 2 1 1	Wave S S S S	Delay(m O O O O	100 HPF Disabled Disabled Disabled Disabled	ILPF Disabled Disabled Disabled Disabled	Pulse width 125 125 125 125 125	TRU9 PE4 PE4 PE1 PE1	2 2 2 2 2	150 mm Mode H H H	GHG 20 20 20 20 20	 <u u=""></u> z> x> <u u=""></u> <u u=""></u> <u u=""></u> <lu><lu><lu><lu><lu><lu><lu><lu><lu><lu><lu< td=""><td>Palet - -</td><td>Averag 1 1 1 1</td><td>200 rum</td></lu<></lu></lu></lu></lu></lu></lu></lu></lu></lu></lu>	Palet - -	Averag 1 1 1 1	200 rum
U Gate 1 2 3 4 5	Boom Boom Type PE1 PE2 PE3 Tofd1	CRobel Seq. 1 2 3 4 5	Start(nm 37.6 37.6 0.0 13.1 1.0	Size(mm 100.0 100.0 35.0 20.0	Gain(di 0.0 0.0 20.0 0.0	PACON PA PA CON CON CON	Tx 1 2 5 1 5	R a 1 2 1 1 1 1	Wave S S S S S S	Delay(m) 0 0 0 0 0 0	HPF Disabled Disabled Disabled Disabled Disabled	ILPF Disabled Disabled Disabled Disabled Disabled	Puise width 125 125 125 125 125 125	TRUe PE4 PE4 PE1 PE1 TOFD1	2 2 2 2 2	150 mm Mode H H H	20 20 20 20 20 20 20	 4 (m/m) 2 > 3 > 6 m 6 m 6 m 6 m 	Palet - - -	Averau 1 1 1 1	290 mm
U Gate 1 2 3 4 5 6	Boan Type PE1 PE2 PE4 PE3 Tofd1 Tofd2	Cicobal Seq. 1 2 3 4 5 6	Start(nn 37.6 37.6 0.0 13.1 1.0 1.0	Size(mm) 100.0 100.0 35.0 20.0 20.0 20.0	Gain(d) 0.0 0.0 0.0 20.0 0.0 0.0	PACON PA PA CON CON CON	Tx 1 2 5 1 5 1	1 1 2 1 1 1 1 1	Wave S S S S S S S S S	 Delay(m) Delay(m) O 	100 HPF Disabled Disabled Disabled Disabled Disabled Disabled	LPF Disabled Disabled Disabled Disabled Disabled Disabled	Puise width 125 125 125 125 125 125 125	TRIE PE4 PE4 PE1 PE1 TOFD1 TOFD2	2 2 2 2 2 -	Node H H H H	20 20 20 20 20 -	€ units 2 2 2 2 2 2 2 3 4	Patet	Aversu 1 1 1 1 1 1	200 mm
U Gate 1 2 3 4 5 6 7	Boan Type P.E.1 P.E.2 P.E.4 P.E.3 Tofd1 Tofd2 PA Chk	Cicobal Seq. 1 2 3 4 5 6 7	Start(nm 37.6 37.6 0.0 13.1 1.0 1.0 21.0	Size(mm 100.0 100.0 35.0 20.0 20.0 85.0	Gain(df 0.0 0.0 20.9 0.0 0.0 0.0 35.0	PACON PA PA CON CON CON PA	Tx 1 2 5 1 5 1 1	Po 1 2 1 1 1 1 1 1 1	Wave S S S S S S S S C	Delayim 0 0 0 0 0 0 0 0 0 0 0	100 HPF Disabled Disabled Disabled Disabled Disabled Disabled Disabled	Top LPF Disabled Disabled Disabled Disabled Disabled Disabled	Pulse width 125 125 125 125 125 125 125 125 125	Title PE4 PE1 PE1 TOFD1 TOFD2 PA-Chk1	2 2 2 2 - - 10	150 mm Mode H H H H	20 20 20 20 20 - - 20 -	 Kujev X X<td>Patet</td><td>Averag 1 1 1 1 1 1</td><td>200 mm</td>	Patet	Averag 1 1 1 1 1 1	200 mm

7.3.4.5. Нажать правой кнопкой мыши на осциллограмму и в появившемся меню выбрать пункт «Custom».

7.3.4.6. Установить значение «Length» равным 315 мм для всей развертки

7.3.4.7. Отобразить ось абсцисс в режиме времени в мкс.

7.3.4.8. Изменяя усиление канала «Gain» (дБ) во вкладке «Gates», добиться того, чтобы анализируемый сигнал имел высоту 80% экрана. Выставить строб на 80% экрана.

7.3.4.9. Установить последовательно задержку A₂ в мкс на генераторе таким образом, чтобы полученный сигнал эхо-импульса последовательно изменял свои значения во всем заданном диапазоне. Одновременно с этим произвести регистрацию положения анализируемого сигнала (A_{изм2}).

7.3.4.10. Определить абсолютную погрешность измерений временных интервалов по формуле:

$$\Delta A_2 = A_{u_{3W2}} - A_2$$

7.3.4.11. Абсолютная погрешность измерений временных интервалов не должна превышать \pm 0,2 мкс.

Если требование п. 7.3.4.11. не выполняются, систему признают непригодной к применению, дальнейшие операции поверки не производят.

7.3.5. Определение угла ввода и точки ввода при работе с ПЭП и преобразователями на фазированной решетке

7.3.5.1. Для определения угла ввода и точки ввода первой фазированной решетки выбрать первый канал на вкладке «Gates». Значения в графах «R_x» и «T_x» означают номер фазированной решетки приемника и генератора соответственно.

	Beam	Global								
Gate	Туре	Seq.	Start(mr	Size(mm	Gain(df	PA/CON	Tx	Rx	Wave	Delay(mi
1	P.E.1	1	37.6	100.0	0.0	PA	1	ុ1	S	0
2	P.E.2	2	37.6	100.0	0.0	PA	2	2	S	0
3	P.E.4	3	1.0	20.0	0.0	CON	1	5	S	0
4	P.E.3	4	1.0	20.0	0.0	CON	1	1	S	0
5	Tofd1	5	1.0	20.0	0.0	CON	1	5	S	0
6	Tofd2	6	1.0	20.0	0.0	CON	1	1	S	0
7	PA Chk	7	10.0	20.0	20.0	PA	1	. 1	С	0
8	PA Chk	8	10.0	20.0	20.0	PA	2	2	С	0

7.3.5.2. Установить преобразователь с фазированной решеткой на образец СО-3 и найти максимальный сигнал.

7.3.5.3.Установить такое значение «GATE START», чтобы показания «T.D.» соответствовали радиусу образца СО-3.

7.3.5.4. Нанести на корпус фазированной решетки риску (маркером или наклейкой), соответствующую нулевой риске образца СО-3. Если на корпусе уже имеется риска и погрешность совпадения с нулевой риской образца составляет ± 1 мм, то в необходимости нанесения новой риски отсутствует.

7.3.5.5. Установить фазированную решетку на образец СО-2 и найти сигнал от отверстия диаметром 6мм, анализируя показания «T.D.».

7.3.5.6. По шкале образца СО-2 определить угол ввода. Значение угла ввода соответствует риске на шкале образца СО-2 при максимальном эхосигнале от отверстия 6 мм.

7.3.5.7. Для определения угла ввода и точки ввода второй фазированной решетки выбрать второй канал на вкладке «Gates».

7.3.5.8. Повторить пункты 7.3.5.2. – 7.3.5.6. для второй фазированной решетки.

7.3.5.9. Для определения угла ввода и точки ввода стандартных ПЭП выбрать канал 4 на вкладке «Gates». В графе «Wave» выбрать «S» для датчиков, использующих поперечную волну или «C» для датчиков, использующих продольную волну.

7.3.5.10. Повторить пункты 7.3.5.2. – 7.3.5.6. для второй фазированной решетки.

Примечание: В случае невозможности выполнения операций, описанных в пункте 7.3.5, следует заменить пьезоэлектрический преобразователь.

7.3.6. Определение абсолютной погрешности измерений глубины залегания отражателей пьезоэлектрическими преобразователями и преобразователями на фазированной решетке

7.3.6.1. Для поверки первой фазированной решетки выбрать первый канал во вкладке «Gates».

15

1	Beam	Global						1		
Gate	Туре	Seq.	Start(mr	Size(mm	Gain(dl	PA/CON	Tx	Rx	Wave	Delay(m
1	PEX	1	37.6	100.0	0.0	PA	1	1	S	0
2	P.E.2	2	37.6	100.0	0.0	PA	2	2	S	0
3	P.E.4	3	1.0	20.0	0.0	CON	. 1	5	S	0
4	P.E.3	4	1.0	20.0	0.0	CON	1	1	S	0
5	Tofd1	5	1.0	20.0	0.0	CON	1	5	S	0
6	Tofd2	6	1.0	20.0	0.0	CON	1	1	S	0
7	PA Chk	7	10.0	20.0	20.0	PA	1	1	с	0
8	PA Chk	8	10.0	20.0	20.0	PA	2	2	с	0

7.3.6.2. Перейти во вкладку «Beam» и задать следующие параметры. В параметре «Angle» указать значение угла, полученное в пункте 7.3.5.6. данной методики поверки, либо из паспорта на выбранный пьезоэлектрический преобразователь или фазированную решетку.

	Transmi	t	Receive	
Angle (*)	45.00	Ì÷	SC 041]ŧ
Skips	o	Ì		H
Direct	yes		yes	
Delta focus (mm)	0.00	Ì÷	a abi	÷
Delta start	0	÷	<u> </u>	
Delta Zx	35.00	- -		
Delta Zy	0.00	÷	19.50	
# elementen	16	÷		F
2000 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100				
Oate start (mm)	37.6	I		
Oate size (mm)	100.0	1÷	1000	
Osin (dB)	0.0	1÷		
Tandem				
Focus				

7.3.6.3. Установить фазированную решетку на образец СО-3 и найти максимальный сигнал.

7.3.6.4. Установить такое значение «GATE START», чтобы показания «T.D.» соот-

17

ветствовали радиусу образца СО-3.

7.3.6.5. Установить фазированную решетку на образец СО-2 и найти сигнал от отверстия диаметром 6мм, анализируя показания «T.D.».

7.3.6.6. Для поверки второй фазированной решетки выбрать второй канал на вкладке «Gates».

7.3.6.7. Повторить пункты 7.3.6.1. - 7.3.6.5. для второй фазированной решетки.

7.3.6.8. Определить абсолютную погрешность измерений глубины залегания отражателей пьезоэлектрическими преобразователями и преобразователями на фазированной решетке по формуле:

$$\Delta A_3 = A_{u_{3M}3} - A_{CO}$$

где A_{CO} – действительное значение образца СО-2, мм;

 $A_{u_{3M3}}$ – значение измеренное системой, мм;

 ΔA_3 – абсолютная погрешность измерений, мм.

7.3.6.9. Абсолютная погрешность измерений глубины залегания отражателей пьезоэлектрическими преобразователями и преобразователями на фазированной решетке: при работе с прямым ПЭП не должна превышать $\pm (0,5 + 0,005 \cdot \text{H})$ мм; при работе с наклонным ПЭП и преобразователем на фазированной решетке не должна превышать $\pm (0,5 + 0,005 \cdot \text{H})$, где H – глубина залегания отражателя, мм.

Если требование п. 7.3.6.9. не выполняются, систему признают непригодной к применению, дальнейшие операции поверки не производят.

7.3.7. Определение абсолютной погрешности измерений расстояний датчиком пути сканера

7.3.7.1. С помощью штангенциркуля измерить диаметр датчика пути.

Определить длину окружности датчика пути по формуле:

$$l = \pi \cdot \mathbf{D},$$

где *l* – длина окружности датчика пути, мм;

D – диаметр датчика пути, измеренный штангециркулем, мм.

7.3.7.2. Установить систему на ровную поверхность. Провести калибровку датчика пути: выбрать пункт меню «Settings» - «Scanner».

Set	lings	Inspect	⊻iew <u>C</u> har
9	Envir	onment	F2
Ð	<u>J</u> ob		F3
	<u>U</u> ltra:	sonics	F4
	<u>S</u> can	ner	F5
	<u>X</u> -Se	ction	F6
	Prob	es	F7
۲J	<u>C</u> alib	ration	
ļ	Remo	ote Control	I Ctrl+R
L_	Diagr	nose	

7.3.7.3. Затем перейти во вкладку «Encoder» и нажать на кнопку «Reset» для сброса на нуль для начала отсчета.

FUSIQUE INSPECTION	Motor control	
<u>M</u> odel	Automatic	<u> </u>
Direction	Normal	•
Resolution (counts/mm)	1.00] ≑
Position (mm)	-2	
Celibration distance (mn) 500	ļ
	Bonnet Calibra	te

7.3.7.4. На колесе датчика пути поставить тонкую метку. Произвести один полный оборот колеса датчика пути, пока метка датчика пути не соприкоснется с поверхностью. Значение «Position» (мм) соответствует пути, измеренному системой А_{изм4}.

7.3.7.5. Определить абсолютную погрешность измерений расстояний датчиком пути сканера по формуле:

$$\Delta A_4 = A_{u_{3M}4} - A_{uu}$$

где ΔA_4 – значение абсолютной погрешности измерений расстояния датчиком пути сканера, мм;

А_ш – расчётное значение длины окружности датчика пути, мм;

 $A_{u_{3M4}}$ – значение расстояния, измеренное системой, мм.

7.3.7.6. Абсолютная погрешность измерений расстояния датчиком пути сканера не должна превышать ± 2 мм.

Если требование п. 7.3.7.6. не выполняются, систему признают непригодной к применению, дальнейшие операции поверки не производят

8. Оформление результатов поверки

8.1. Результаты поверки оформляются протоколом, составленным в виде сводной таблицы результатов поверки по каждому пункту раздела 7 настоящей методики поверки с указанием предельных числовых значений результатов измерений и их оценки по сравнению с предъявленными требованиями.

8.2. При положительных результатах поверки система автоматического ультразвукового контроля Rotoscan признается годной к применению и на неё выдается свидетельство о поверке, установленной формы.

Знак поверки наносится на свидетельство о поверке в виде наклейки и (или) оттиска поверительного клейма.

8.3. При отрицательных результатах поверки система автоматического ультразвукового контроля Rotoscan признается непригодной к применению и на неё выдается извещение о непригодности, установленной формы, с указанием основных причин.

Руководитель лаборатории ООО «Автопрогресс-М»

А.А. Саморуков