УТВЕРЖДАЮ

Генеральный лиректор ООО «КИА»
В.А. Викулин

В.А. Викулин

"Координенто по враля 2016 г.

Государственная система обеспечения единства измерений

Генераторы сигналов произвольной формы AFG3151C, AFG3152C

> Методика поверки AFG3152C-2016

1.p.63658-16

Настоящая методика поверки распространяется на генераторы сигналов произвольной формы AFG3151C, AFG3152C (далее – приборы), изготавливаемые компанией "Tektronix (China) Co., Ltd.", Китай, и устанавливает методы и средства их поверки.

Интервал между поверками – 1 год.

1 ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки должны быть выполнены операции, указанные в таблице 1.

Таблица 1 – Операции поверки

Nº	Наименование операции	Номер пункта	-	Проведение операции при поверке		
		методики	первичной	периодической		
1	Внешний осмотр и подготовка к поверке	6	да	да		
2	Опробование (идентификация, функциональная диагностика, автокалибровка)	7.2	да	да		
3	Определение метрологических характеристик	7.3	да	да		
3.1	Определение погрешности установки частоты	7.3.1	да	да		
3.2	Определение погрешности установки уровня напряжения на частоте 1 kHz	7.3.2	да	да		
3.3	Определение погрешности установки напряжения смещения	7.3.3	да	да		
3.4	Определение неравномерности АЧХ	7.3.4	да	да		
3.5	Определение уровня гармоник	7.3.5	да	да		
3.6	Определение уровня негармонических составляющих	7.3.6	да	да		
3.7	Определение коэффициента гармоник на частоте 20 kHz	7.3.7	да	да		
3.8	Определение длительности фронта и спада импульсов сигнала прямоугольной формы	7.3.8	да	да		

2 СРЕДСТВА ПОВЕРКИ

- 2.1 При проведении поверки должны применяться средства поверки, указанные в таблице 2.
- 2.2 Вместо указанных в таблице 2 средств поверки разрешается применять другие аналогичные средства поверки, обеспечивающие требуемые технические характеристики.
- 2.3 Применяемые эталонные средства поверки должны быть исправны, поверены, и иметь документы о поверке.
- 2.4 Допускается проводить поверку выборочно по операциям и диапазонам измерений, в которых используется представленный на поверку прибор.

Tektronix AFG3152C-2016 Методика поверки. 29.02.2016	стр. 2 из 12
--	--------------

Таблица 2 – Средства поверки

	Таблица 2 – Сре			n u
	Наименование	Номер	Требуемые	Рекомендуемый тип
№	средства	пункта	технические	средства поверки и его
	поверки	методики	характеристики	технические характеристики
1	2	3	4	5
1	Стандарт	7.3.1	Относительная	Стандарт частоты рубидиевый
	частоты		погрешность частоты	Stanford Research Systems FS725
			10 MHz не более $\pm 1.10^{-7}$;	относительный дрейф частоты
			уровень сигнала	10 MHz за один год
			от 0 до + 10 dBm	не более $\pm 1.10^{-10}$;
				уровень сигнала + 7 dBm
2	Анализатор	7.3.1	Внешняя синхронизация	Анализатор параметров
	спектра	7.3.5	сигналом 10 MHz;	радиотехнических трактов и
	спектра	7.3.6	диапазон частот от 1 MHz	сигналов портативный
		7.5.0	до 13 GHz;	Anritsu MS2038C
			разрешение по частоте	внешняя синхронизация
			не хуже 1 Hz	сигналом 10 MHz;
				диапазон частот
				от 9 kHz до 20 GHz;
				разрешение по частоте не хуже
				0.001 Hz
3	Вольтметр	7.3.2	Относительная	Мультиметр Agilent 3458A
	постоянного и	7.3.3	погрешность измерения	относительная погрешность
	переменного	7.3.4	постоянного	измерения постоянного
	•	7.5.4	напряжения 2.5 и 5 V	напряжения 2.5 и 5 V
	напряжения		не более ± 0.1 %;	не более ± 0.002 %;
			· ·	r
			относительная	относительная погрешность
			погрешность измерения	измерения переменного
			переменного	напряжения от 30 mV до 3.5 V
			напряжения от 30 mV до	rms на частоте 1 kHz
			3.5 V rms на частоте 1 kHz	не более ± 0.05 %,
			не более $\pm 0.1 \%$,	относительная погрешность
			относительная	измерения переменного
			погрешность измерения	напряжения 0,35 V rms на
			переменного напряжения	частоте 100 kHz
			0,35 V rms на частоте	(в режиме SYNC)
			100 kHz не более ± 0.2 %	не более ± 0.1 %
4	Осциллограф	7.3.4	Полоса пропускания	Осциллограф цифровой
'		7.3.8	не менее 500 МНz;	Tektronix TDS3054B
		, .5.0	относительная	полоса пропускания 500 МНz;
			погрешность установки	относительная погрешность
			· ·	установки напряжения смещения
			напряжения смещения	500 mV при коэффициенте
			500 mV при коэффициенте	
			отклонения 10 mV/div	отклонения 10 mV/div
			не более \pm 5 mV;	не более ± 3.5 mV;
			относительная	относительная погрешность
			погрешность	коэффициента отклонения
			коэффициента отклонения	10 mV/div не более ± 1.5 %
			10 mV/div не более ± 3 %	
L		1		

1	2	3	4	5
5	Измеритель нелинейных искажений	7.3.7	Абсолютная погрешность измерения коэффициента гармоник Кг [%] на частоте 20 kHz не более ± (0.1·Kr + 0.03 %)	Измеритель нелинейных искажений автоматический С6-11 абсолютная погрешность измерения коэффициента гармоник Кг [%] сигнала частотой 19.9 kHz на шкале 0.3 % не более ± (0.05·Kr + 0.02 %)
6	Нагрузка проходная	7.3.2 7.3.3 7.3.4	BNC, $(50 \pm 0.05) \Omega$	-
7	Аттенюатор	7.3.7	6 dB, 50 Ω	-

3 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

К проведению поверки допускаются лица с высшим или среднетехническим образованием, прошедшие обучение по программе «Поверка/калибровка средств измерений» со специализацией «Радиоэлектронные измерения», и имеющие практический опыт в области радиотехнических измерений.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 4.1 При проведении поверки должны быть соблюдены требования безопасности в соответствии с ГОСТ 12.3.019-80.
- 4.2 Во избежание несчастного случая и для предупреждения повреждения поверяемого прибора необходимо обеспечить выполнение следующих требований:
- подсоединение поверяемого прибора к сети должно производиться с помощью сетевого кабеля из комплекта прибора;
- заземление поверяемого прибора и средств поверки должно производиться посредством заземляющего провода сетевого кабеля;
- запрещается подавать на вход прибора сигнал с уровнем, превышающим максимально допускаемое значение;
- запрещается работать с поверяемым прибором при снятых крышках или панелях;
- запрещается работать с прибором в условиях температуры и влажности, выходящих за пределы рабочего диапазона, а также при наличии в воздухе взрывоопасных веществ;
- запрещается работать с прибором в случае обнаружения его повреждения.

5 УСЛОВИЯ ОКРУЖАЮЩЕЙ СРЕДЫ ПРИ ПОВЕРКЕ

При проведении поверки должны соблюдаться следующие условия окружающей среды:

- температура воздуха (23 \pm 5) °C;
- относительная влажность воздуха от 30 до 80 %;
- атмосферное давление от 84 до 106.7 kPa.

6 ВНЕШНИЙ ОСМОТР И ПОДГОТОВКА К ПОВЕРКЕ

6.1 Внешний осмотр

- 6.1.1 При проведении внешнего осмотра проверяются:
- чистота и исправность разъемов, отсутствие механических повреждений корпуса и ослабления крепления элементов;
 - сохранность органов управления, четкость фиксации их положений;
 - комплектность прибора.
- 6.1.2 При наличии дефектов или повреждений, препятствующих нормальной эксплуатации поверяемого прибора, его направляют в ремонт.

6.2 Подготовка к поверке

- 6.2.1 Перед началом работы поверитель должен изучить руководство по эксплуатации поверяемого прибора, а также руководства по эксплуатации применяемых средств поверки.
 - 6.2.3 Подсоединить прибор и калибратор к сети 220 V; 50 Hz.
 - 6.2.3 Включить питание прибора и калибратора.
- 6.2.4 Перед началом выполнения операций по определению метрологических характеристик (раздел 7.3) калибратор и поверяемый прибор должны быть выдержаны во включенном состоянии в соответствии с указаниями руководств по эксплуатации. Минимальное время прогрева прибора 20 min.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Общие указания по проведению поверки

В процессе выполнения операций результаты измерений заносятся в протокол поверки. Полученные результаты должны укладываться в пределы допускаемых значений, которые указаны в таблицах настоящего раздела документа. При получении отрицательных результатов по какой-либо операции необходимо повторить операцию. При повторном отрицательном результате прибор следует направить в сервисный центр для проведения регулировки и/или ремонта.

7.2 Опробование (идентификация, функциональная диагностика, автокалибровка)

- 7.2.1 Выполнить идентификацию версии программного обеспечения прибора, для чего нажать клавишу Utility. Записать в столбец 2 таблицы 7.2 результат проверки идентификационных данных программного обеспечения.
 - 7.2.2 Выполнить внутреннюю диагностику прибора, для чего:
 - нажать клавишу Utility, выбрать more, Diagnostics/Calibration, Execute Diagnostics
 - выждать до завершения процедуры диагностики

После завершения процедуры диагностики должно быть выдано сообщение "PASSED". В случае неисправностей выдается сообщение об ошибках и коды ошибок.

Записать в столбец 2 таблицы 7.2 результат диагностики.

- 7.2.2 Выполнить автокалибровку прибора, для чего
- нажать клавишу Utility, выбрать more, Diagnostics/Calibration, Execute Calibration
- выждать до завершения процедуры автокалибровки

После завершения процедуры автокалибровки должно быть выдано сообщение "PASSED". В случае неисправностей выдается сообщение об ошибках и коды ошибок. Записать в столбец 2 таблицы 7.2 результат автокалибровки.

Таблица 7.2. Опробование и функциональная диагностика

Содержание проверки	Результат проверки	Критерий проверки
1	2	3
Проверка идентификации		
версии программного		v1.0.7 и выше
обеспечения		
Внутренняя диагностика		PASSED, сообщения об ошибках отсутствуют
Автокалибровка		PASSED, сообщения об ошибках отсутствуют

7.3 Определение метрологических характеристик

7.3.1 Определение погрешности установки частоты

- 7.3.1.1 Нажать на приборе клавиши **Default Setup**, **OK**.
- 7.3.1.2 Соединить кабелем BNC выход "10 MHz" стандарта частоты с входом "Ref In" анализатора спектра.

Используя адаптер BNC(m)-N(m), соединить кабелем BNC разъем прибора CH1 с входом "RF Input" анализатора спектра.

7.3.1.3 Установить на анализаторе спектра:

Ref Level + 10 dBm; CF 1 MHz; Span 1 kHz; RBW 100 Hz, VBW Auto, Marker Counter On

7.3.1.4 Сделать на приборе установки:

Function: Sine; Frequency: 1.000000 MHz; Amplitude: 1.00 Vpp

Channel 1 Output: On

7.3.1.5 Записать измеренное анализатором значение частоты в столбец 3 таблицы 7.3.1.

Таблица 7.3.1. Погрешность установки частоты

Установленное значение частоты, МНz	Нижний предел допускаемых значений, МНz	Измеренное значение частоты, МНz	Верхний предел допускаемых значений, МНz	
1	2	3	4	
1.000 000 MHz	$1.000\ 000 - \Delta F$		$1.000\ 000 + \Delta F$	

 $\Delta F = F \cdot (\delta_0 + N \cdot \delta_A)$, N – к-во лет с даты выпуска; $\delta_0 = 1 \cdot 10^{-6}$, $\delta_A = 1 \cdot 10^{-6}$

7.3.2 Определение погрешности установки уровня напряжения на частоте 1 kHz

- 7.3.2.1 Установить на мультиметре режим ACV.
- 7.3.2.2 Используя адаптер BNC(m)-"banana"(m,m) и проходную нагрузку BNC 50 Ω , соединить кабелем BNC разъем CH1 прибора с гнездами "HI", "LO" мультиметра.
 - 7.3.2.3 Сделать на приборе установки:

Sine; Frequency: 1 kHz;

Sine, Amplitude/Level Menu, more, Units, V rms

Channel 1 Output: On

- 7.3.2.4 Устанавливать клавишей **Amplitude** уровень напряжения на приборе, как указано в столбце 1 таблицы 7.3.2. Записывать отсчеты мультиметра в столбец 3 таблицы.
 - 7.3.2.5 Для двухканальной модели выполнить пункты 7.3.2.2 7.3.2.4 на канале СН2.

Таблица 7.3.2. Погрешность установки уровня напряжения на частоте 1 kHz

Установленное значение уровня, rms	Нижний предел допускаемых значений	Измеренное значение уровня, rms	Верхний предел допускаемых значений
1	2	3	4
30 mV	29.327 mV		30.654 mV
300 mV	296.65 mV		303.35 mV
800 mV	791.65 mV		808.35 mV
1.5 V	1.4846 V		1.5154 V
2 V	1.9796 V		2.0204 V
2.5 V	2.4746 V		2.5254 V
3.5 V	3.4646 V		3.5354 V

7.3.3 Определение погрешности установки напряжения смещения

Схема соединения оборудования – по предыдущей операции.

7.3.3.1 Установить на мультиметре режим DCV.

7.3.3.2 Сделать на приборе установки:

More, More Waveform Menu, DC; Amplitude/High

Channel 1 Output: On

7.3.7.3 Устанавливать на приборе значения напряжения смещения **Offset**, как указано в столбце 1 таблицы 7.3.3.

Записывать отсчеты мультиметра в столбец 3 таблицы.

7.3.3.4 Для двухканальной модели выполнить пункты 7.3.3.2, 7.3.7.3 на канале СН2.

Таблица 7.3.3. Погрешность установки напряжения смещения

Установленное значение напряжения смещения	Нижний предел допускаемых значений	Измеренное значение напряжения смещения	Верхний предел допускаемых значений
1	2	3	4
+ 5 V	+ 4.945 V		+ 5.055 V
0 V	- 5 mV		+ 5 mV
- 5 V	– 5.055 V		– 4.945 V

7.3.4 Определение неравномерности АЧХ

ОБЩИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ ОПЕРАЦИИ:

Операция выполняется в два этапа.

- 1) измеряется неравномерность AЧX на частотах от 1 до 100 kHz с помощью мультиметра по схеме соединения оборудования, как в предыдущей операции.
- 2) с привязкой к измеренному значению напряжения на частоте 100 kHz, определение неравномерности AЧX выполняется осциллографом с использованием функции смещения (Offset).
 - 7.3.4.1 Установить на мультиметре режим **ACV**, синхронный режим **SETACV3**.
 - 7.3.4.2 Сделать на приборе установки:

Sine; Frequency: 1 kHz; Amplitude: 1 Vp-p (\approx + 4 dBm)

Подстроить уровень на приборе таким образом, чтобы отсчет мультиметра был равен 0.3536 Vrms.

Tektronix AFG3152C-2016	Методика поверки. 29.02.2016	стр. 7 из	12

- 7.3.4.3 Не меняя уровень на приборе, установить частоту **Frequency** 100 kHz. Записать отсчет мультиметра в столбец 3 таблицы 7.3.4.1.
- 7.3.4.4 Рассчитать амплитуду измеренного напряжения на частоте 100 kHz по формуле $\text{Um}(100 \text{ kHz}) = 1.4142 \cdot \text{Urms}$

Записать это значение в таблицу 7.3.4.2 для частоты 100 kHz.

Таблица 7.3.4.1. Неравномерность АЧХ на частотах от 1 до 100 kHz

Установленное значение частоты	Нижний предел допускаемых значений, Vrms	Измеренное значение уровня, Vrms	Верхний предел допускаемых значений, Vrms
1	2	3	4
1 kHz	-	0.3536	•
100 kHz	0.3475		0.3598
	Um(100 kl	Hz) = mV	

Примечание: пределы допускаемых значений рассчитаны по допуску на неравномерность $AYX \pm 0,15 \ dB$.

7.3.4.5 Отсоединить прибор от мультиметра.

Используя проходную нагрузку BNC 50 Ω , соединить кабелем BNC разъем CH1 прибора с входом канала CH1 осциллографа.

7.3.4.6 Сделать на осциллографе установки:

CHI Coupling: DC; Input Impedance: $1 \text{ M}\Omega$

Vertical Scale 200 mV/div; Horizontal Scale 20 μs/div

Acquire, Average 128, Measure: High

Убедиться в том, что на дисплее отображается несколько периодов сигнала, и отсчет "High" равен примерно 500 mV.

- 7.3.4.7 Подстроить уровень на приборе таким образом, чтобы отсчет "High" на осциллографе был равен значению Um(100 kHz), записанному в таблице 7.3.4.2 для частоты 100 kHz, с отклонением в пределах \pm 5 mV.
 - 7.3.4.8 Ввести напряжение смещения "Offset" + 500 mV.

Установить на осциллографе коэффициент развертки 10 mV/div.

Подстроить напряжение смещения таким образом, чтобы вершины сигнала располагались в пределах одного деления от центра дисплейной сетки.

- 7.3.4.9 Подстроить точно уровень на приборе таким образом, чтобы отсчет "High" на осциллографе был равен значению Um(100 kHz), записанному в таблице 7.3.4.2 для частоты 100 kHz, с отклонением в пределах $\pm 1 \text{ mV}$.
- 7.3.4.10 Не меняя уровень на приборе, устанавливать значения частоты, указанные в столбце 1 таблицы 7.3.4.2.

Устанавливать на осциллографе коэффициент развертки так, чтобы на дисплее отображалось несколько вершин синусоидального сигнала.

Подстраивать напряжение смещения таким образом, чтобы вершины сигнала располагались в пределах одного деления от центра дисплейной сетки.

Для каждого значения установленной на приборе частоты записывать отсчет "High" на осциллографе в столбец 3 таблицы 7.3.4.2.

7.3.4.11 Для двухканальной модели выполнить пункты 7.3.4.2 – 7.3.4.10 на канале СН2.

Примечание:

Пределы допускаемых значений амплитуды напряжения в таблице 7.3.4.2 рассчитаны по допускам на неравномерность АЧХ [dB], приведенных в спецификации изготовителя (указаны в скобках).

Таблица 7.3.4.2. Неравномерность AЧX на частотах свыше 100 kHz

Установленное значение частоты	Нижний предел допускаемых значений, mV	Измеренное значение амплитуды, V	Верхний предел допускаемых значений, V
1	2	3	4
100 kHz	491.5 (- 0.15 dB)	Um(100 kHz) =	508.7 (+ 0.15 dB)
1 MHz	491.5 (- 0.15 dB)		508.7 (+ 0.15 dB)
5 MHz	483.0 (- 0.30 dB)		517.5 (+ 0.30 dB)
25 MHz	483.0 (- 0.30 dB)		517.5 (+ 0.30 dB)
50 MHz	472.2 (- 0.50 dB)		529.6 (+ 0.50 dB)
100 MHz	472.2 (- 0.50 dB)		529.6 (+ 0.50 dB)
150 MHz	472.2 (- 0.50 dB)		529.6 (+ 0.50 dB)

7.3.5 Определение уровня гармоник

- 7.3.5.1 Нажать на приборе клавиши **Default Setup, OK**.
- 7.3.5.2 Соединить кабелем BNC выход "Ext Ref In" на задней панели прибора с входом "Ref Out" анализатора спектра.

Используя адаптер BNC(m)-N(m), соединить кабелем BNC разъем прибора CH1 с входом "RF Input" анализатора спектра.

7.3.5.3 Сделать на приборе установки:

Sine; Frequency: как указано в первой строке столбца 1 таблицы 7.3.5

Amplitude: 1 Vp-p (\approx + 4 dBm)

- 7.3.5.4 Установить на анализаторе спектра: Ref Level + 10 dBm; VBW Auto
- 7.3.5.5 Устанавливать на приборе значения частоты, указанные в столбце 1, и значения параметров анализатора спектра, указанные в столбцах 2, 3, 4 таблицы 7.3.5.

На анализаторе спектра устанавливать: Marker, Peak Search, Delta On.

Перемещая маркер по частоте, находить пики сигнала на частотах гармоник с 2-й по 5-ю, и записывать относительные уровни гармоник в столбцы 5-8 таблицы 7.3.5.

После отсчета уровня гармоник на данной частоте устанавливать Marker, Delta Off.

Таблица 7.3.5. Уровни гармоник

Частота	Параме	тры анализ	атора	Измереі	Верхний предел			
	Start Freq	Stop Freq	RBW	2-я	3-я	4-я	5-я	допускаемых значений, dBc
1	2	3	4	5	6	7	8	9
100 kHz	50 kHz	600 kHz	2 kHz					- 60
1 MHz	500 kHz	6 MHz	20 kHz					- 50
5 MHz	3 MHz	30 MHz	20 kHz					- 37
25 MHz	20 MHz	150 MHz	20 kHz					- 37
100 MHz	50 MHz	600 MHz	100 kHz					- 37
150 MHz	50 MHz	800 MHz	100 kHz					- 37

7.3.5.6 Для двухканальной модели выполнить пункты 7.3.5.2 – 7.3.5.5 на канале СН2.

7.3.6 Определение уровня негармонических составляющих Схема соединения оборудования — по предыдущей операции.

7.3.6.1 Сделать на приборе установки:

Sine; Frequency: как указано в первой строке столбца 1 таблиц 7.3.6

Amplitude: 1 Vp-p (\approx + 4 dBm)

- 7.3.6.2 Установить на анализаторе спектра: Ref Level + 10 dBm; VBW Auto
- 7.3.6.3 Устанавливать на приборе значения частоты, указанные в столбце 1, и значения параметров анализатора спектра, указанные в столбцах 2, 3, 4 таблицы 7.3.6.

На анализаторе спектра устанавливать: Marker, Peak Search, Delta On.

Перемещая маркер по частоте, находить пики сигнала на частотах наблюдаемых негармонических составляющих сигнала, и записывать их в столбец 5 таблицы 7.3.6.

После отсчета уровня негармонических составляющих сигнала на данной частоте устанавливать Marker, Delta Off.

7.3.5.4 Для двухканальных моделей выполнить пункты 7.3.6.1 – 7.3.6.3 на канале СН2.

Таблица 7.3.6 Уровни негармонических составляющих

Частота	Параметры анализатора			Измеренный уровень негармонических	Верхний предел допускаемых значений, dBc	
	Start Freq	Stop Freq	RBW	составляющих, dBc		
1	2	3	4	5	9	
100 kHz	10 kHz	6 MHz	20 kHz		- 60	
	10 kHz	900 MHz	20 kHz			
1 MHz	10 kHz	6 MHz	20 kHz		- 50	
	10 kHz	900 MHz	20 kHz			
10 MHz	10 kHz	6 MHz	20 kHz		- 50	
	10 kHz	900 MHz	20 kHz			
25 MHz	10 kHz	6 MHz	20 kHz		- 47	
	10 kHz	900 MHz	20 kHz			
50 MHz	10 kHz	6 MHz	20 kHz		- 44	
	10 kHz	900 MHz	20 kHz			
100 MHz	10 kHz	6 MHz	20 kHz		- 38	
	10 kHz	900 MHz	20 kHz			
150 MHz	10 kHz	6 MHz	20 kHz		- 32	
	10 kHz	900 MHz	20 kHz		- 32	

- 7.3.7 Определение коэффициента гармоник на частоте 20 kHz
- 7.3.7.1 Соединить кабелем BNC разъем прибора CH1 с входом измерителя нелинейных искажений через аттенюатор 6 dB, используя соответствующие адаптеры.
 - 7.3.7.2 Сделать на приборе установки:

Sine; Frequency: 19.9 kHz Amplitude: 1 Vp-p (\approx + 4 dBm)

- 7.3.7.3 Установить на измерителе нелинейных искажений предел измерения гармоник 0.3 %.
- 7.3.7.4 Записать отсчитанное по шкале измерителе нелинейных искажений значение коэффициента гармоник в столбец 3 таблицы 7.3.7.
 - 7.3.7.5 Для двухканальной модели выполнить пункты 7.3.7.1 7.3.7.4 на канале СН2.

Таблица 7.3.7. Коэффициент гармоник

Установленные па	раметры на приборе	Измеренное значение	Вер ний предел допускаемы значений
частота	амплитуда	ко ффи иента гармоник	
1	2	3	4
19.9 kHz	1 Vp-p		0.2 %

7.3.8 Определение длительности фронта и спада импульсов сигнала прямоугольной формы

7.3.8.1 Соединить кабелем BNC разъем прибора CH1 с входом CH1 осциллографа.

7.3.8.2 Сделать на приборе установки:

Square; **Frequency**: как указано в столбце 1 таблицы 7.3.8.

Amplitude: как указано в столбце 2 таблицы 7.3.8

- 7.3.8.3 Установить на осциллографе входное сопротивление 50 Ω , и измерение "Rise/Fall Time 10/90%".
- 7.3.8.4 Устанавливать на приборе значения частоты и амплитуды так, как указано в столбцах 1 и 2 таблицы 7.3.8.

Сделать на осциллографе установки коэффициентов отклонения и развертки таким образом, чтобы амплитуда сигнала составляла несколько делений вертикальной шкалы, а наблюдаемый фронт (спад) импульса имел длительность несколько делений горизонтальной шкалы. Для переключения между фронтом и спадом импульса использовать функцию "Trigger; Slope Positive/Negative".

Записывать измеренные значения "Rise Time", Fall Time" в столбцы 3 и 4 таблиц 7.3.8.

7.3.8.5 Для двухканальной модели выполнить пункты 7.3.8.1 – 7.3.8.4 на канале СН2.

Таблица 7.3.8. Длительность фронта и среза прямоугольных импульсов AFG325xC

Установленные п	араметры на приборе	Измеренные	Вер ний предел допускаемы		
частота	амплитуда, р-р	фронт	спад	значений, ns	
1	2	3	4	5	
10 MHz	1 V			3.5	
TOMITZ	5 V				

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

8.1 Протокол поверки

При выполнении операций поверки оформляется протокол в произвольной форме с указанием следующих сведений:

- полное наименование аккредитованной на право поверки организации;
- номер и дата протокола поверки
- наименование и обозначение поверенного средства измерения, установленные опции;
- заводской (серийный) номер;
- обозначение документа, по которому выполнена поверка;
- наименования, обозначения и заводские (серийные) номера использованных при поверке средств измерений, сведения об их последней поверке;
 - температура и влажность в помещении;
 - полученные значения метрологических характеристик;
 - фамилия лица, проводившего поверку.

8.2 Свидетельство о поверке

При положительных результатах поверки выдается свидетельство о поверке и наносится знак поверки в виде наклейки в соответствии с Приказом Минпромторга России № 1815 от 02.07.2015 г.

8.3 Извещение о непригодности

При отрицательных результатах поверки, выявленных при внешнем осмотре, опробовании, или выполнении операций поверки, выдается извещение о непригодности в соответствии с Приказом Минпромторга России № 1815 от 02.07.2015 г.

Главный метролог ООО «КИА»

В.В. Супрунюк

Заместитель генерального директора по метрологии ЗАО «АКТИ-Мастер»

Д.Р. Васильев