УТВЕРЖДАЮ

Начальник ФГБУ «ГНМЦ» Минобороны России
В.В. Швыдун
2015 г.
М.п.

ИНСТРУКЦИЯ

Антенны биконические R&S HK116E фирмы «Rohde&Schwarz GmbH & Co. KG », Германия

МЕТОДИКА ПОВЕРКИ

1.p.63686-16

1 ВВЕДЕНИЕ

- 1.1 Настоящая методика поверки распространяется на антенны биконические R&S HK116E (далее - антенны), и устанавливает порядок и объем их первичной и периодической поверки.
 - 1.2 Интервал между поверками 2 года.

2 ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки должны выполняться операции, указанные в таблице 1.
 Таблица 1.

Наименование операции	Номер пункта методики	Проведение операции при	
		первичной поверке	периодичес кой поверке
1 Внешний осмотр	6.1	+	+
2 Опробование	6.2	+	+
3 Определение метрологических характеристик 3.1 Определение диапазона рабочих частот, значения коэффициента калибровки антенн в диапазоне рабочих частот, погрешности определения коэффициента ка-	6.3 6.3.1	+	+
либровки 3.2 Определение коэффициента стоячей волны по напряжению	6.3.2	+	+

3 СРЕДСТВА ПОВЕРКИ

 При проведении поверки должны применяться средства поверки, указанные в таблице 2.

Номер пункта методики	Наименование и тип (условное обозначение) основного или вспомогательно- го средства поверки. Обозначение нормативного документа, регламенти- рующего технические требования, и (или) метрологические и основные тех- нические характеристики средства поверки
6.3.1	Рабочий эталон напряженности электромагнитного поля в диапазоне частот от 300 Гц до 1000 МГц КОСИ НЭМП «Панировка-ЭМ» (диапазон частот установки электрического поля дипольными антеннами от 30 до 1000 МГц, пределы допускаемой относительной погрешности воспроизведения единицы напряженности ± 6 %)
6.3.2	Измеритель КСВН и ослаблений Р2-132 (диапазон частот от 0,01 до 8,3 ГГц, диапазон измерений КСВН от 1,03 до 5,0, пределы допускаемой относительной погрешности измерений КСВН ± 25 %)

Примечания

- 1 Допускается использование других средств измерений, имеющих метрологические и технические характеристики, обеспечивающих определение метрологических и технических характеристик антенн с требуемой погрешностью.
- 2 Применяемые средства поверки должны быть исправны, поверены и иметь непросроченные свидетельства (отметки в формулярах или паспортах) о поверке

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

4.1 При проведении поверки должны быть соблюдены требования безопасности, предусмотренные «Правилами технической эксплуатации электроустановок потребителей», «Правилами техники безопасности при эксплуатации электроустановок потребителей», а также изложенные в технической документации антенн, в технической документации на применяемые при поверке рабочие эталоны и вспомогательное оборудование.

5 УСЛОВИЯ ПОВЕРКИ И ПОДГОТОВКА К НЕЙ

- 5.2 Перед проведением поверки необходимо выполнить следующие подготовительные работы:
 - выдержать антенну в условиях, указанных в п. 5.1, в течение не менее 2 ч;
 - выполнить операции, оговоренные в технической документации на антенну по её подготовке к измерениям;
 - выполнить операции, оговоренные в технической документации на применяемые средства поверки по их подготовке к измерениям;
 - осуществить предварительный прогрев средств измерений для установления их рабочего режима.

6 ПРОВЕДЕНИЕ ПОВЕРКИ

6.1 Внешний осмотр

- 6.1.1 При внешнем осмотре установить соответствие антенны требованиям технической документации. При внешнем осмотре убедиться в:
 - отсутствии механических повреждений;
 - чистоте разъема;
 - исправности соединительных кабелей;
 - целостности лакокрасочных покрытий и четкости маркировки.

Проверить комплектность антенны в соответствии с технической документацией.

6.1.2 Результаты поверки считать положительными, если антенна удовлетворяет вышеперечисленным требованиям, комплектность полная. В противном случае антенна дальнейшей поверке не подвергается, бракуется и направляется в ремонт.

6.2 Опробование

6.2.1 Произвести опробование работы антенны для оценки её исправности.

При опробовании проверить возможность сборки, установки и подключения антенны к анализатору спектра (измерительному приемнику).

6.2.2 Результаты опробования считать положительными, если обеспечивается возможность сборки, установки и подключения антенны к анализатору спектра (измерительному приемнику). В противном случае антенна дальнейшей поверке не подвергается, бракуется и направляется в ремонт.

6.3 Определение метрологических характеристик

- 6.3.1 Определение диапазона рабочих частот, значения коэффициента калибровки антенн в диапазоне рабочих частот, погрешности определения коэффициента калибровки
- 6.3.1.1 Определение диапазона рабочих частот, значения коэффициента калибровки в диапазоне рабочих частот и погрешности определения коэффициента калибровки антенн про-

вести: в диапазоне частот от 30 до 1000 МГц с помощью рабочего эталона единицы напряженности электромагнитного поля в диапазоне частот от 300 Гц до 1000 МГц КОСИ НЭМП «Панировка-ЭМ» (установки электрического поля с дипольными антеннами УЭД).

6.3.1.2 Определение коэффициента калибровки антенны провести с помощью установки электрического поля с дипольными антеннами УЭД на частотах 30, 50, 80, 100, 150, 200, 250, 300 МГц методом замещения.

Провести подготовку к работе всех приборов, входящих в состав ПГИ1 и СИИ1, в соответствии с руководством по эксплуатации (РЭ). Установка готова через 60 минут после включения всех приборов (при измерениях в ручном режиме БИПУ не включать).

Установить излучатель биконический ИБ1 и антенну биконическую АБ1 в положение, соответствующее горизонтальной поляризации. Высоту h центра антенн и расстояние между ними D определить из условий (1):

$$h = n \cdot \frac{\lambda}{4}, \quad D = n \cdot \frac{\lambda}{2},$$
 (1)

где λ – длина волны,

 $n-1, 2, 3, \dots$

При проведении измерений использовать генератор Г4-151* (*- из состава КОСИ НЭМП «Панировка-ЭМ») в совокупности с усилителем мощности от 30 до 300 МГц. Выход генератора подключить к входу блока коммутации БК4. Выход блока коммутации БК4 подключить к излучателю биконическому ИБ1.

Установить на генераторе частоту 30 МГц.

Под действием электрического поля в антенне биконической возбуждается переменное напряжение, которое поступает на вход головки термисторной M5-88*. Мощность P, выделяемую в головке термисторной M5-88*, измерить измерителем мощности M3-22A*.

Меняя напряжение на выходе генератора, установить ориентировочное значение напряженности электрического поля в месте расположения АБ1. Напряженность электрического поля E в B/м в месте расположения АБ1 определить по формуле (2):

$$E = K \cdot \sqrt{\frac{P}{R_u}},\tag{2}$$

где K – градуировочный коэффициент антенны биконической АБ1, Ом/м, приведён в формуляре УЭД;

P – мощность, Вт;

 $R_{\rm W}$ – рабочее сопротивление термисторного моста, Ом (150 Ом).

Отключить выход блока коммутации БК4, заменить антенну АБ1 на антенну биконическую R&S HK116E. Антенну установить на диэлектрическом штативе на согласованной поляризации. Выход антенны подключить к входу вольтметра B3-59* стойки измерительно-информационной СИИ1, используя высокочастотный пробник из состава вольтметра B3-59* и нагрузку 50 Ом.

Измерить уровень сигнала на выходе антенны.

Коэффициент калибровки антенны на фиксированной частоте рассчитать по формуле (3).

$$K = 20 \cdot \lg(E/U), \tag{3}$$

где K – коэффициент калибровки антенны, дБ/м;

E – напряженность электрического поля в месте расположения AБ1, определенная по формуле (2), В/м;

U- измеренный уровень сигнала на выходе антенны, В.

Аналогично определить коэффициент калибровки антенны на частотах 50, 80, 100, 150, 200, 250, 300 МГц.

Погрешность коэффициента калибровки δ_{Σ} , дБ, рассчитать по формуле (4):

$$\delta_{\Sigma} = 20 \cdot \lg(1 + 1, 1 \cdot \sqrt{\delta_1^2 + \delta_2^2 + \delta_3^2 + \delta_4^2}), \tag{4}$$

где δ_1 — относительная погрешность воспроизведения единицы напряженности электрического поля УЭД, δ_1 = 0,06;

 δ_2 – погрешность измерений вольтметра B3-59*, δ_2 = 0,04;

 δ_3 — погрешность установки уровня выходного сигнала установки генератора Γ 4-151* (Γ 4-159*, Γ 4-160*), δ_3 = 0,001 (0,01) соответственно;

 δ_4 — погрешность определения градуировочного коэффициента антенны АБ1, $\delta_4 = 0.05$.

- 6.3.1.2 Результаты поверки считать удовлетворительными, если диапазон рабочих частот антенны составляет от 30 до 300 МГц, значения коэффициента калибровки в диапазоне рабочих частот находятся в пределах от 6 до 22 дБ/м , значения погрешности коэффициента калибровки находятся в пределах ± 2 дБ.
 - 6.3.2 Определение коэффициента стоячей волны по напряжению

Определение КСВН антенны биконической R&S HK116E провести, ориентировав ее в сторону, свободную от отражающих предметов, при помощи измерителя КСВН и ослаблений P2-132 на частотах свыше 100 до 300 МГц с шагом 20 МГц.

6.3.2.1 Измеритель Р2-132 заземлить, включить и прогреть в течение времени, указанного в его РЭ.

Провести калибровку измерителя согласно его РЭ.

Выход антенны биконической R&S HK116E подключить к входу измерителя P2-132. Провести измерения КСВН антенны биконической R&S HK116E в соответствии с РЭ на P2-132.

6.3.2.2 Результаты поверки считать удовлетворительными, если значение коэффициента стоячей волны по напряжению антенны биконической R&S HK116E составляет не более 2,5.

7 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 7.1 Результаты измерений и расчетов ведутся в протоколах.
- 7.2 При положительных результатах поверки на антенну выдается свидетельство установленного образца (или делается отметка о поверке в формуляре в установленном порядке).
- 7.3 При отрицательных результатах поверки антенна бракуется и направляется в ремонт. На забракованную антенну выдается извещение о непригодности с указанием причин забракования.

Начальник отдела

ГЦИ СИ ФБУ «ГНМЦ Минобороны России»

Alleff

К. Черняев

Старший научный сотрудник

ГЦИ СИ ФБУ «ГНМЦ Минобороны России»

И. Мелвелев