УТВЕРЖДАЮ

Начальник ФГБУ
«ГНМЦ» Минобороны России
В.В. Швыдун
(22) 2015 г.

ИНСТРУКЦИЯ

Антенны логопериодические R&S HL040E фирмы «Rohde&Schwarz GmbH & Co. KG », Германия

МЕТОДИКА ПОВЕРКИ

1 p.63687-16

1 ВВЕДЕНИЕ

- 1.1 Настоящая методика поверки распространяется на антенны логопериодические R&S HL040E (далее - антенны), и устанавливает порядок и объем их первичной и периодической поверки.
 - 1.2 Интервал между поверками 2 года.

2 ОПЕРАЦИИ ПОВЕРКИ

2.1 При проведении поверки должны выполняться операции, указанные в таблице 1.

		Проведение операции при		
Наименование операции	Номер пункта методики	первичной поверке	периодичес кой поверке	
1 Внешний осмотр	6.1	+	+	
2 Опробование	6.2	+	+	
3 Определение метрологических характеристик 3.1 Определение диапазона рабочих частот, значения коэффициента калибровки антенн в диапазоне рабочих частот погрешности коэффициента калибровки 3.2 Определение коэффициента стоячей	6.3 6.3.1	+	+	
волны по напряжению	6.3.2	+	+	

3 СРЕДСТВА ПОВЕРКИ

3.1 При проведении поверки должны применяться средства поверки, указанные в таблице 2.
Таблица 2

аолица 2			
Номер пункта методики	Наименование и тип (условное обозначение) основного или вспомогательно- го средства поверки. Обозначение нормативного документа, регламенти- рующего технические требования, и (или) метрологические и основные тех- нические характеристики средства поверки		
6.3.1	Генератор сигналов высокочастотный R&S SMR40 (диапазон частот от 10 до 40000 МГц, уровень выходного сигнала от минус 20 до 13 дБм, пределы допускаемой относительной погрешности установки частоты ±5•10 ⁻⁶ Гц, пределы допускаемой относительной погрешности установки уровня сигнала ±1,0 дБ); рабочий эталон напряженности электромагнитного поля в диапазоне частот от 300 Гц до 1000 МГц КОСИ НЭМП «Панировка-ЭМ» (диапазон частот установки электрического поля с дипольными антеннами от 30 до 1000 МГц пределы допускаемой относительной погрешности воспроизведения единицы напряженности ± 6 %); антенна измерительная П6-23М (диапазон частот от 0,85 до 17,44 ГГц, КСВН не более 1,5, эффективная площадь не менее 150 см²); анализатор спектра Е4440A (диапазон рабочих частот от 3 Гц до 26,5 ГГц пределы допускаемой относительной погрешности измерений частоть ±1,0·10 ⁻⁶ , пределы допускаемой относительной погрешности определения уровня ± 1,0 дБ)		
6.3.2	Измеритель КСВН и ослаблений Р2-132 (диапазон частот от 0,01 до 8,3 ГГц диапазон измерений КСВН от 1,03 до 5,0, пределы допускаемой относитель ной погрешности измерений КСВН ± 25 %)		

Номер
пункта
методики

Наименование и тип (условное обозначение) основного или вспомогательного средства поверки. Обозначение нормативного документа, регламентирующего технические требования, и (или) метрологические и основные технические характеристики средства поверки

Примечания

- 1 Допускается использование других средств измерений, имеющих метрологические и технические характеристики, обеспечивающих определение метрологических и технических характеристик антенн с требуемой погрешностью.
- 2 Применяемые средства поверки должны быть исправны, поверены и иметь непросроченные свидетельства (отметки в формулярах или паспортах) о поверке

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

4.1 При проведении поверки должны быть соблюдены требования безопасности, предусмотренные «Правилами технической эксплуатации электроустановок потребителей», «Правилами техники безопасности при эксплуатации электроустановок потребителей», а также изложенные в технической документации антенн, в технической документации на применяемые при поверке рабочие эталоны и вспомогательное оборудование.

5 УСЛОВИЯ ПОВЕРКИ И ПОДГОТОВКА К НЕЙ

 При проведении поверки должны быть соблюден 	ы следующие условия:
- температура окружающего воздуха, °С	$20 \pm 5;$
- относительная влажность воздуха, %	до 80;
- атмосферное давление, мм рт. ст	
- напряжение питания, В	от 215 до 225;
- частота, Гц	от 49,5 до 50,5.

- 5.2 Перед проведением поверки необходимо выполнить следующие подготовительные работы:
 - выдержать антенну в условиях, указанных в п. 5.1, в течение не менее 2 ч;
 - выполнить операции, оговоренные в технической документации на антенну по её подготовке к измерениям;
 - выполнить операции, оговоренные в технической документации на применяемые средства поверки по их подготовке к измерениям;
 - осуществить предварительный прогрев средств измерений для установления их рабочего режима.

6 ПРОВЕДЕНИЕ ПОВЕРКИ

6.1 Внешний осмотр

- 6.1.1 При внешнем осмотре установить соответствие антенны требованиям технической документации. При внешнем осмотре убедиться в:
 - отсутствии механических повреждений;
 - чистоте разъемов;
 - исправности соединительных проводов и кабелей;
 - целостности лакокрасочных покрытий и четкости маркировки.

Проверить комплектность антенны в соответствии с технической документацией.

6.1.2 Результаты поверки считать положительными, если антенна удовлетворяет вышеперечисленным требованиям, комплектность полная. В противном случае антенна дальнейшей поверке не подвергается, бракуется и направляется в ремонт.

6.2 Опробование

6.2.1 Произвести опробование работы антенны для оценки её исправности.

При опробовании проверить возможность сборки, установки и подключения антенны к анализатору спектра (измерительному приемнику).

6.2.2 Результаты опробования считать положительными, если обеспечивается возможность сборки, установки и подключения антенны к анализатору спектра (измерительному приемнику). В противном случае антенна дальнейшей поверке не подвергается, бракуется и направляется в ремонт.

6.3 Определение метрологических характеристик

6.3.1 Определение диапазона рабочих частот, значения коэффициента калибровки антенн в диапазоне рабочих частот, погрешности определения коэффициента калибровки

6.3.1.1 Определение диапазона рабочих частот, значения коэффициента калибровки в диапазоне рабочих частот и погрешности определения коэффициента калибровки антенн провести: в диапазоне частот от 400 до 1000 МГц с помощью рабочего эталона единицы напряженности электромагнитного поля в диапазоне частот от 300 Гц до 1000 МГц КОСИ НЭМП «Панировка-ЭМ» (установки электрического поля с дипольными антеннами УЭД), в диапазоне частот свыше 1000 до 6000 МГц с помощью антенны измерительной П6-23М, анализатора спектра Е4440A, генератора сигналов высокочастотного R&S SMR40.

6.3.1.2 Определение коэффициента калибровки антенны в диапазоне частот от 400 до 1000 МГц провести с помощью установки электрического поля с дипольными антеннами УЭД на частотах 400, 500, 600, 700, 800, 1000 МГц методом замещения.

Провести подготовку к работе всех приборов, входящих в состав ПГИ1 и СИИ1, в соответствии с руководством по эксплуатации (РЭ). Установка готова через 60 минут после включения всех приборов (при измерениях в ручном режиме БИПУ не включать).

Установить излучатель биконический ИБ1 и антенну биконическую АБ1 в положение, соответствующее горизонтальной поляризации. Высоту h центра антенн и расстояние между ними D определить из условий (1):

$$h = n \cdot \frac{\lambda}{4}, \quad D = n \cdot \frac{\lambda}{2},$$
 (1)

где λ – длина волны,

 $n-1, 2, 3, \dots$

На частотах 300, 400, 500, 600 МГц использовать генератор Г4-159* (*- из состава КОСИ НЭМП «Панировка-ЭМ»). На частотах 700, 800, 1000 МГц использовать генератор Г4-160*. Выходы генераторов подключить к входам блока коммутации БК4. Выход блока коммутации БК4 подключить к излучателю биконическому ИБ1.

Установить на генераторе частоту 30 МГц.

Под действием электрического поля в антенне биконической возбуждается переменное напряжение, которое поступает на вход головки термисторной M5-88*. Мощность P, выделяемую в головке термисторной M5-88*, измерить измерителем мощности M3-22A*.

Меняя напряжение на выходе генератора, установить ориентировочное значение напряженности электрического поля в месте расположения АБ1. Напряженность электрического поля E в B/м в месте расположения АБ1 определить по формуле (2):

$$E = K \cdot \sqrt{\frac{P}{R_u}},\tag{2}$$

где K – градуировочный коэффициент антенны биконической АБ1, Ом/м, приведён в таблице 3;

P – мощность, Вт:

 $R_{\rm M}$ – рабочее сопротивление термисторного моста, Ом (150 Ом).

Таблица 3

F, МГц	400	500	600	700	800	1000
К, Ом/м 1000	0,97	1,32	1,67	3,31	4,87	4,94

Отключить выход блока коммутации БК4, заменить антенну АБ1 на антенну R&S HL040E. Антенну установить на диэлектрическом штативе на согласованной поляризации. Выход антенны подключить к входу вольтметра B3-59* стойки измерительно-информационной СИИ1, используя высокочастотный пробник из состава вольтметра B3-59* и нагрузку 50 Ом.

Измерить уровень сигнала на выходе антенны R&S HL040E.

Коэффициент калибровки антенны R&S HL040E на фиксированной частоте рассчитать по формуле (3).

$$K = 20 \cdot \lg(\frac{E}{U}), \tag{3}$$

где K – коэффициент калибровки антенны, дБ/м;

E – напряженность электрического поля в месте расположения АБ1, определенная по формуле (2), В/м;

U– измеренный уровень сигнала на выходе антенны, В.

Аналогично определить коэффициент калибровки антенны на частотах 500, 600, 700, 800, 1000 М Γ ц.

Погрешность определения коэффициента калибровки δ_{Σ} , дБ, рассчитать по формуле (4):

$$\delta_{\Sigma} = 20 \cdot \lg(1 + 1, 1 \cdot \sqrt{\delta_1^2 + \delta_2^2 + \delta_3^2 + \delta_4^2}), \tag{4}$$

где δ_1 — относительная погрешность воспроизведения единицы напряженности электрического поля УЭД, δ_1 = 0,06;

 δ_2 – погрешность измерений вольтметра B3-59*, δ_2 = 0,04;

 δ_3 – погрешность установки уровня выходного сигнала установки генератора Γ 4-151* (Γ 4-159*, Γ 4-160*), δ_3 = 0,001 (0,01) соответственно;

 δ_4 – погрешность определения градуировочного коэффициента антенны AБ1, $\delta_4 = 0.05$.

6.3.1.3 Определение коэффициента калибровки поверяемой антенны в диапазоне частот свыше 1000 до 6000 МГц провести в безэховой камере с коэффициентом безэховости в диапазоне частот от 1000 до 6000 МГц не более минус 20.

Измерения провести методом образцовой антенны с использованием измерительной антенны П6-23М. Вспомогательное поле в рабочей зоне камеры создать антенной-излучателем.

Измерить с помощью анализатора спектра E4440A уровень сигнала с выхода антенны $\Pi6\text{-}23M$ A_0 (дБм), уровень сигнала с выхода поверяемой антенны A_A (дБм), которая устанавливается вместо антенны $\Pi6\text{-}23M$. Коэффициент усиления поверяемой антенны определить по формуле (5):

$$G_{\rm H} = G_{\rm O} \cdot 10^{\frac{A_{\rm A} - A_{\rm O}}{10}} \tag{5}$$

где G₀ - коэффициент усиления антенны П6-23М.

Коэффициент калибровки К дБ/м поверяемой антенны определить по формуле (6):

$$K = \sqrt{\frac{Z_O}{Z_{BX}} \cdot \frac{4\pi}{G_H \cdot \lambda^2}},$$
 (6)

где Z_O – волновое сопротивление свободного пространства (377 Ом);

Z_{BX} - сопротивление входа (50 Ом);

λ - длина волны, м.

Погрешность определения коэффициента калибровки δ_{Σ} в диапазоне частот от 1000 до 6000 МГц рассчитать по формуле (7):

$$\delta_{\Sigma} = 20 \cdot \lg(1 + 1, 1 \cdot \sqrt{\delta_1^2 + \delta_2^2 + \delta_3^2 + \delta_4^2}), \tag{7}$$

где δ_1 – погрешность коэффициента усиления антенны П6-23M (1,0 дБ);

 δ_2 – нестабильность измерения уровня сигнала анализатора спектра E4440A;

 δ_3 – погрешность из-за рассогласования трактов антенны П6-23М и поверяемой антенны (не превышает 0,1 дБ).

 δ_4 – погрешность из-за неточности юстировки антенны и определения положения фазового центра (не превышает 0,4 дБ).

6.3.1.6 Результаты поверки считать удовлетворительными, если диапазон рабочих частот антенны составляет от 400 до 6000 МГц, значения коэффициента калибровки в диапазоне рабочих частот находятся в пределах от 15 до 45 дБ/м, значения погрешности коэффициента калибровки находятся в пределах ±2 дБ.

6.3.2 Определение коэффициента стоячей волны по напряжению

Определение КСВН антенны провести, ориентировав антенну в сторону от посторонних предметов, при помощи измерителя КСВН и ослаблений Р2-132 на частотах от 400 до 6000 МГц с шагом 200 МГц.

6.3.2.1 Измеритель Р2-132 заземлить, включить и прогреть в течение времени, указанного в РЭ.

Провести калибровку измерителя согласно РЭ.

Выход антенны подключить к входу измерителя Р2-132. Провести измерения КСВН антенны в соответствии с РЭ на Р2-132.

6.3.2.2 Результаты поверки считать удовлетворительными, если значение коэффициента стоячей волны по напряжению антенны составляет не более 2,0.

7 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 7.1 Результаты измерений и расчетов ведутся в протоколах.
- 7.2 При положительных результатах поверки на антенну выдается свидетельство установленного образца (или делается отметка о поверке в формуляре в установленном порядке).
- 7.3 При отрицательных результатах поверки антенна бракуется и направляется в ремонт. На забракованную антенну выдается извещение о непригодности с указанием причин забракования.

Начальник отдела ФГБУ «ГНМЦ» Минобороны России

Старший научный сотрудник ФГБУ «ГНМЦ» Минобороны России К. Черняев

И. Медведев