УТВЕРЖДАЮ

Первый заместитель генерального директора - заместитель по научной работе ФГУП «ВНИИФТРИ»

А.Н. Щипунов

21 " 01

2016 г.

Инструкция

Комплекс автоматизированный измерительно-вычислительный ТМСА 8.0-18.0 Б 054

Методика поверки

165-16-01 МП

n.p. 63703-16

СОДЕРЖАНИЕ

1 ВВОДНАЯ ЧАСТЬ	3
2 ОПЕРАЦИИ ПОВЕРКИ	3
3 СРЕДСТВА ПОВЕРКИ	4
4 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ	4
5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ	
6 УСЛОВИЯ ПОВЕРКИ	
7 ПОДГОТОВКА К ПРОВЕДЕНИЮ ПОВЕРКИ	
8 ПРОВЕДЕНИЕ ПОВЕРКИ	
8.1 Внешний осмотр	5
8.2 Опробование	
8.3 Определение метрологических характеристик	
8.3.1 Определение погрешности измерений амплитудного распределения электромагнитного	
поля и погрешности измерений фазового распределения электромагнитного поля	7
8.3.2 Определение погрешности измерений относительных уровней амплитудных диаграмм	
направленности	12
8.3.3 Определение погрешности измерений коэффициента усиления антенн	13
8.3.4 Определение диапазона рабочих частот	14
8.3.5 Определение размеров рабочей области сканирования	14
8.3.6 Определение сектора углов восстанавливаемых диаграмм направленности	14
9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ	14

1 ВВОДНАЯ ЧАСТЬ

1.1 Настоящая методика поверки (далее – МП) устанавливает методы и средства первичной и периодической поверок комплекса автоматизированного измерительно-вычислительного ТМСА 8.0-18.0 Б 054, заводской № 054 (далее – комплекс).

Первичная поверка комплекса проводится при вводе его в эксплуатацию и после ремонта.

Периодическая поверка комплекса проводится в ходе его эксплуатации и хранения.

- 1.2 Комплекс предназначен для измерений радиотехнических характеристик антенн.
- 1.3 Поверка комплекса проводится не реже одного раза в 24 (двадцать четыре) месяца и после каждого ремонта.

2 ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки комплекса должны быть выполнены операции, указанные в таблице 1.

Таблица 1 – Операции поверки

Hayraya payya a danayyyy	Пункт МП	Проведение операций при		
Наименование операции	HYHKI WILL	первичной поверке	периодической поверке	
1 Внешний осмотр	8.1	+	+	
2 Опробование	8.2	+	+	
3 Определение метрологиче- ских характеристик	8.3	+	+	
3.1 Определение погрешности измерений амплитудного распределения электромагнитного поля и погрешности измерений фазового распределения электромагнитного поля	8.3.1	+	+	
3.2 Определение погрешности измерений относительных уровней амплитудной диаграммы направленности	8.3.2	+	-	
3.3 Определение погрешности измерений коэффициента усиления антенны методом замещения	8.3.3	+	-	
3.4 Определение диапазона рабочих частот	8.3.4	+	-	
3.5 Определение размеров ра- бочей области сканирования	8.3.5	+	-	
3.6 Определение сектора углов измеряемых диаграмм направленности	8.3.6	+	-	

3 СРЕДСТВА ПОВЕРКИ

3.1 При проведении поверки комплекса должны быть применены средства измерений, указанные в таблице 2.

Таблица 2 – Средства измерений для поверки комплекса

Пункт МП	Наименование и тип (условное обозначение) основного или вспомогательного средства поверки; обозначение нормативного документа, регламентирующего технические требования, и (или) метрологические и основные технические характеристики средства поверки
8.3.1 8.3.2 8.3.3 8.3.4 8.3.6	Аттенюатор ступенчатый программируемый Agilent 84908M, диапазон частот от 0 до 50 ГГц, диапазон вводимых ослаблений от 0 до 65 дБ с шагом 5 дБ Набор мер коэффициентов передачи и отражения 85052B, диапазон частот от 45 МГц до 26,5 ГГц Система лазерная координатно-измерительная API OMNITRAC, диапазон измерений расстояний от 0 до 40 м, предел допускаемой погрешности измерений расстояний 25 мкм (для расстояния L<10 м), 2,5L мкм (для L>10 м)
8.3.5	Система лазерная координатно-измерительная API OMNITRAC

- 3.2 Допускается использовать аналогичные средства поверки, которые обеспечат измерения соответствующих параметров с требуемой точностью.
- 3.3 Средства поверки должны быть исправны, поверены и иметь свидетельства о поверке.

4 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

- 4.1 Поверка должна осуществляться лицами, аттестованными в качестве поверителей в области радиотехнических измерений в порядке, установленном в ПР 50.2.012-94 «ГСИ. Порядок аттестации поверителей средств измерений», и имеющим квалификационную группу электробезопасности не ниже третьей.
- 4.2 Перед проведением поверки поверитель должен предварительно ознакомиться с документом «Комплекс автоматизированный измерительно-вычислительный ТМСА 8.0-18.0 Б 054. Руководство по эксплуатации. ТМСА 054. 018. 00Б РЭ».

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 5.1 При проведении поверки должны быть соблюдены все требования безопасности в соответствии с ГОСТ 12.3.019-80 «ССБТ. Испытания и измерения электрические. Общие требования безопасности», а также требования безопасности, приведённые в эксплуатационной документации на составные элементы комплекса и средства поверки.
- 5.2 Размещение и подключение измерительных приборов разрешается производить только при выключенном питании.

6 УСЛОВИЯ ПОВЕРКИ

6.1 При проведении поверки комплекса должны соблюдаться условия, приведенные в таблице 3.

Таблица 3 – Условия проведения поверки комплекса

Влияющая величина	Нормальное значение	Допускаемое отклонение от нормального значения
Температура окружающей среды, °С	20	± 5
Относительная влажность воздуха, %	от 40 до 80	_
Атмосферное давление, кПа	от 84 до 106,7	_
Напряжение питающей сети переменного то- ка, В	220	± 22
Частота питающей сети, Гц	50	± 1

7 ПОДГОТОВКА К ПРОВЕДЕНИЮ ПОВЕРКИ

- 7.1 Проверить наличие эксплуатационной документации и срок действия свидетельств о поверке на средства поверки.
- 7.2 Подготовить средства поверки к проведению измерений в соответствии с руководствами по их эксплуатации.

8 ПРОВЕДЕНИЕ ПОВЕРКИ

8.1 Внешний осмотр

- 8.1.1 При проведении внешнего осмотра комплекса проверить:
- комплектность и маркировку комплекса;
- наружную поверхность элементов комплекса, в том числе управляющих и питающих кабелей;
 - состояние органов управления;
- 8.1.2 Проверку комплектности комплекса проводить сличением действительной комплектности с данными, приведенными в разделе «Комплект поставки» документа «Комплекс автоматизированный измерительно-вычислительный ТМСА 8.0-18.0 Б 054. Паспорт. ТМСА 054. 018. 00Б ПС» (далее ПС).
- 8.1.3 Проверку маркировки производить путем внешнего осмотра и сличением с данными, приведенными в ПС.
 - 8.1.4 Результаты внешнего осмотра считать положительными, если:
 - комплектность и маркировка комплекса соответствует ПС;
- наружная поверхность комплекса не имеет механических повреждений и других дефектов;
- управляющие и питающие кабели не имеют механических и электрических повреждений;
- органы управления закреплены прочно и без перекосов, действуют плавно и обеспечивают надежную фиксацию;
- все надписи на органах управления и индикации четкие и соответствуют их функциональному назначению.

В противном случае результаты внешнего осмотра считать отрицательными и последующие операции поверки не проводить.

8.2 Опробование

- 8.2.1 Идентификация программного обеспечения (далее ПО)
- 8.2.1.1 Включить персональные компьютеры (далее ПК), для чего:
- на блоке источника бесперебойного питания нажать кнопку ВКЛ:
- нажать на системном блоке ПК кнопку включения;
- включить монитор.

После загрузки операционной системы WINDOWS 7 на экране монитора ПК наблюдать иконку программы *Vector*.

Установить далее на ПК программу, позволяющую определять версию и контрольную сумму файла по алгоритму MD5, например, программу «**HashTab**».

- 8.2.1.2 Выбрать в папке **TRIM** файл *NFMeas.exe*, нажать на правую кнопку мыши на файле и выбрать пункт «Свойства». Открыть вкладку «Хеш-суммы файлов». Наблюдать контрольную сумму файла *NFMeas.exe* по алгоритму MD5. Открыть вкладку «О программе». Наблюдать значение версии файла *NFMeas.exe*. Результаты наблюдения зафиксировать в рабочем журнале.
 - 8.2.1.3 Повторить операции п. 8.2.1.2 для программ NFCalc.exe и AmrView.exe.
- 8.2.1.4 Сравнить полученные контрольные суммы и версии с их значениями, записанными в ПС. Результат сравнения зафиксировать в рабочем журнале.
- 8.2.1.5 Результаты идентификации ПО считать положительными, если полученные идентификационные данные ПО соответствуют значениям, приведенным в таблице 3.

Таблица 3 - Идентификационные данные ПО

Идентификационные данные (признаки)	Значение		
Идентификационное наименование ПО	NFMeas.exe	NFCalc.exe	AmrView.exe
Номер версии (иденти- фикационный номер) ПО	5.1.0.0	3.20.1	3.16.60612
Цифровой идентификатор ПО (контрольная сумма исполняемого кода)	9DEC2037710B6AB 99B82F25F1200E053	90F2307A43D112207 504337B9CCA9F24	FAF113F3C83206E B863D69624F5D3F C0

В противном случае результаты проверки соответствия ПО считать отрицательными и последующие операции поверки не проводить.

- 8.2.2 Проверка работоспособности
- 8.2.2.1 Подготовить комплекс к работе в соответствии с РЭ.
- 8.2.2.2 Проверить работоспособность аппаратуры комплекса путем проверки отсутствия сообщений об ошибках и неисправностях при загрузке программного продукта для измерений в ближней зоне «NFMeas».
 - 8.2.2.3 Проверить работоспособность всех приводов четырехкоординатного Т-сканера:
 - при перемещении по оси 0х;
 - при перемещении по оси 0у;
 - при перемещении по оси 0z;
 - при вращении каретки зонда в плоскости поляризации.
- 8.2.2.4 Соединить при помощи перемычки соединитель кабеля «вход антенны-зонда» и соединитель кабеля «выход испытываемой антенны». В соответствии с эксплуатационной документацией подготовить к работе векторный анализатор цепей из состава комплекса, перевести его в режим измерений модуля комплексного коэффициента передачи. Установить следующие настройки ВАЦ:
 - полоса анализа от 8 до 18 ГГц;
 - ширина полосы пропускания 1 МГц;
 - уровень мощности выходного колебания 0 дБ (мВт).

На экране векторного анализатора цепей наблюдать результат измерений частотной зависимости модуля коэффициента передачи. При этом должны отсутствовать резкие изменения

полученной характеристики, свидетельствующие о неудовлетворительном состоянии радиочастотного тракта комплекса.

8.2.2.5 Результаты поверки считать положительными, если четырехкоординатный Т-сканер обеспечивает перемещение антенны-зонда по осям 0х, 0у, 0х и в плоскости поляризации, на экране векторного анализатора цепей наблюдается результат измерений частотной зависимости модуля коэффициента передачи без резких изменений, а также отсутствует программная или аппаратная сигнализация о неисправностях комплекса.

8.3 Определение метрологических характеристик

- 8.3.1 Определение погрешности измерений амплитудного распределения электромагнитного поля и погрешности измерений фазового распределения электромагнитного поля
- 8.3.1.1 Относительную погрешность измерений амплитудного распределения электромагнитного поля Δ_4 , дБ, определить по формуле:

$$\Delta_{A} = 20 \lg \left(1 + 1.1 \sqrt{\theta_{A1}^{2} + \theta_{A2}^{2}} \right), \tag{1}$$

где θ_{A1} - погрешность измерений модуля комплексного коэффициента передачи векторным анализатором цепей из состава комплекса;

 $\theta_{{\scriptscriptstyle A2}}$ - погрешность измерений, обусловленная неидеальной поляризационной развязкой антенн-зондов из состава комплекса.

Погрешность измерений фазового распределения электромагнитного поля Δ_{ϕ} , °, определить по формуле:

$$\Delta_{\phi} = \frac{180}{\pi} 1.1 \sqrt{\theta_{\phi_1}^2 + \theta_{\phi_2}^2 + \theta_{\phi_3}^2} , \qquad (2)$$

где $\theta_{\phi 1}$ - погрешность измерений фазы комплексного коэффициента передачи векторным анализатором цепей из состава комплекса, рад;

 $\theta_{\phi 2}$ - погрешность измерений фазы, обусловленная неточностью позиционирования антенны-зонда в плоскости сканирования, рад;

 $heta_{\phi_3}$ - погрешность измерений фазы, обусловленная случайными перегибами радиочастотного тракта комплекса, рад.

Погрешности измерений амплитудного распределения электромагнитного поля и погрешности измерений фазового распределения электромагнитного поля определить при относительных уровнях амплитудного распределения от минус 10 до минус 50 дБ с интервалом 10 дБ при соотношениях сигнал/шум на входе приемного канала ВАЦ не менее 30 дБ и не менее 10 дБ.

Погрешности измерений амплитудного распределения электромагнитного поля и погрешности измерений фазового распределения электромагнитного поля определить на частотах 8; 12; 18 ГГц.

Частные составляющие погрешности измерений (слагаемые в выражениях (1) и (2)) определить по следующим методикам.

8.3.1.2 Погрешность измерений модуля комплексного коэффициента передачи векторным анализатором цепей из состава комплекса определить при помощи аттенюатора Agilent 84908M.

В измерительный тракт комплекса внести аттенюатор таким образом, чтобы он соединял разъемы радиочастотных кабелей для подключения испытываемой антенны и антенны-зонда. Ослабление аттенюатора установить равным 0 дБ.

Провести полную двухпортовую калибровку векторного анализатора цепей из состава комплекса в комплекте с штатными радиочастотными кабелями и аттенюатором в диапазоне частот от 8 до 18 ГГц в соответствии с технической документацией на него.

Установить следующие настройки векторного анализатора цепей:

- полоса анализа от 8 до 18 ГГц;
- ширина полосы пропускания 500 Гц;

- режим измерений модуля комплексного коэффициента передачи S21;
- количество точек 3601.

Без подачи мощности с порта генератора векторного анализатора цепей провести измерения модуля комплексного коэффициента передачи $S12(f_i)$, дБ. Зафиксировать верхнюю границу АЧХ шума N, дБ, а также нижний предел измерений модуля коэффициента передачи на уровне (N+10) и (N+30), дБ, что соответствует соотношениям сигнал/шум на входе приемного канала ВАЦ 10 и 30 дБ, соответственно.

Увеличивая мощность сигнала с порта генератора векторного анализатора цепей, зафиксировать опорный уровень, при котором обеспечивается условие $\left|S12(f_i)\right| \ge (N+60)$ и $\left|S12(f_i)\right| \ge (N+90)$, дБ.

Изменяя ослабление аттенюатора от 10 до 50 дБ с шагом 10 дБ, провести измерения модуля комплексного коэффициента передачи.

Погрешность измерений модуля комплексного коэффициента передачи на каждой частоте f_i , указанной в п. 8.3.1.1, рассчитать как разницу (в логарифмических единицах) между измеренным значением модуля коэффициента передачи $\left|S12(f_i)\right|$, дБ, и действительным значением ослабления аттенюатора $L(f_i)$, дБ, записанным в его технической документации (свидетельстве о поверке):

$$\theta_{A1}(f_i) = \left| S12(f_i) \right| - L(f_i), \tag{3}$$

За погрешность θ_{A1} для каждого номинала ослабления, соответствующего относительному уровню амплитудного распределения электромагнитного поля M, принять максимальное значение погрешности измерений $\theta_{A1}(f_i)$ соответствующего номинала ослабления аттенюатора в установленной полосе частот в линейном масштабе:

$$\theta_{A1}^{(M)} = \max \left\{ 10^{\frac{\theta_{A1}^{(M)}(f_i)}{20}} \right\}. \tag{4}$$

Результаты поверки записать в таблицу.

Таблица 4 – Результаты оценки погрешности измерений модуля комплексного коэффициента передачи векторным анализатором цепей из состава комплекса

		Погрешност	ъ измерений
Ослабление	Относительный уровень	с/ш=10 дБ	с/ш=30 дБ
аттенюатора L, дБ	амплитудного распределения М, дБ		
10	минус 10		
20	минус 20		
30	минус 30		
40	минус 40		
50	минус 50		

8.3.1.3 Погрешность измерений, обусловленную неидеальной поляризационной развязкой антенн-зондов из состава комплекса, определить по формуле:

$$\theta_{A2} = (1 + 10^{0.1 \, K\Pi P})^2 - 1, \tag{5}$$

где кпр - минимальный уровень кроссполяризационной развязки антенн-зондов из состава комплекса, принимаемый равным минус 20 дБ.

8.3.1.4 Погрешность измерений фазы комплексного коэффициента передачи векторным анализатором цепей из состава комплекса определить с помощью набора мер коэффициентов передачи и отражения 85052В и аттенюатора Agilent 84908М.

В измерительный тракт комплекса внести аттенюатор и меру фазового сдвига из состава набора 85052В таким образом, чтобы они соединял разъемы радиочастотных кабелей для подключения испытываемой антенны и антенны-зонда. Ослабление аттенюатора установить равным 0 дБ.

Провести полную двухпортовую калибровку векторного анализатора цепей из состава комплекса в комплекте с штатными радиочастотными кабелями, аттенюатором и мерой в диапазоне частот от 8 до 18 ГГц в соответствии с технической документацией на него.

Изменяя ослабление аттенюатора от 0 до 50 дБ с шагом 10 дБ, провести измерения фазы комплексного коэффициента передачи при следующих настройках векторного анализатора цепей:

- полоса анализа от 8 до 18 ГГц;
- ширина полосы пропускания 500 Гц;
- уровень мощности выходного колебания 10 дБ (мВт);
- режим измерений фазы комплексного коэффициента передачи S21.

Погрешность измерений фазы комплексного коэффициента передачи на каждой частоте f_i , указанной в п. 8.3.1.1, рассчитать как разницу между измеренным значением фазы коэффициента передачи $\arg(S12(f_i))$, рад, и действительным значением установленного фазового сдвига меры $\Phi^{(N)}(f_i)$, рад, записанным в его технической документации:

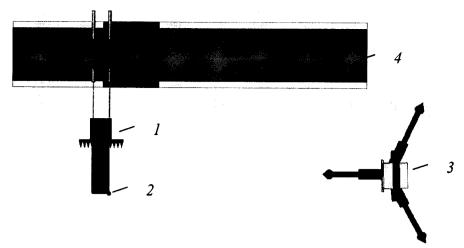
$$\theta_{\phi_1}^{(N)}(f_i) = \arg(S12(f_i)) - \Phi^{(N)}(f_i), \tag{6}$$

За погрешность θ_{ϕ_1} для каждого номинала относительного уровня фазового распределения электромагнитного поля принять максимальное значение погрешности измерений $\theta_{\phi_1}^{(N)}(f_i)$ соответствующего номинала ослабления аттенюатора в установленной полосе частот:

$$\theta_{\phi_1}^{(N)} = \max \left\{ \theta_{\phi_1}^{(N)}(f_i) \right\}. \tag{7}$$

Результаты поверки записать в таблицу.

Таблица 5 – Результаты оценки погрешности измерений фазы комплексного коэффициента передачи векторным анализатором цепей из состава комплекса


		Погрешност	ь измерений
Ослабление	Относительный уровень	с/ш=10 дБ	с/ш=30 дБ
аттенюатора L, дБ	амплитудного распределения М, дБ		
10	минус 10		
20	минус 20		
30	минус 30		
40	минус 40		
50	минус 50		

8.3.1.5 Погрешность измерений фазы, обусловленную неточностью позиционирования антенны-зонда в плоскости сканирования, определить с помощью системы лазерной координатно-измерительной API OMNITRAC.

Подготовить комплекс к измерению характеристик антенн в ближней зоне в соответствии с РЭ.

Подготовить систему лазерную координатно-измерительную API OMNITRAC к измерению в соответствии с эксплуатационной документацией на нее.

Оптический отражатель из состава системы лазерной координатно-измерительной API OMNITRAC закрепить на антенну-зонд, установленную на сканере из состава комплекса, в соответствии со схемой, приведенной на рисунке 1.

1 – антенна-зонд; 2 – оптический отражатель; 3 – система АРІ ОМNІТRAC; 4 – сканер

Рисунок 1 – Схема измерений характеристик позиционирования сканера

С помощью программы ручного управления сканером (рисунок 2) в соответствующей вкладке программного продукта для измерений в ближней зоне «NFMeas» переместить антенну-зонд в крайнее центральное левое положение. Зафиксировать показания API OMNITRAC.

~Доступ	ные оси			Ручное управл	ение. Ось)	ζ		
		0.00 м	M	Скорос	ть: 100.	000 mm	/c	i i
	Y	0.00 м	м	Новая поэиц	us:		Уст	ановињ
	ro i l 1	0.00 rp	e comban				1 1 1 1 1 1 1 4 5 5 5 5 5 5 5 5 5 5 5 5	
	roll12	0.00 rp)ag	Смещен	ие: ().00 mm	Уст	ановить
				يع ريد			9	
			, jár	Найти ноль			Обнули	пь поз
	The second second	. 201 244		lighter and the second	, Cii	ille:		

Рисунок 2 – Меню программы для ручного управления движением сканера

Перемещая антенну-зонд с установленным оптическим отражателем вдоль оси 0x в пределах рабочей зоны сканера с шагом $\lambda_{min}/2$, где λ_{min} - минимальная длина волны, соответствующая верхней границе диапазона рабочих частот комплекса, до срабатывания механического ограничителя, фиксировать показания системы лазерной координатно-измерительной API OMNITRAC.

С помощью программы ручного управления сканером (рисунок 2) в соответствующей вкладке программного продукта для измерений в ближней зоне NFMeas» переместить антеннузонд в крайнее центральное нижнее положение. Зафиксировать показания API OMNITRAC.

Перемещая антенну-зонд с установленным оптическим отражателем вдоль оси 0у в пределах рабочей зоны сканера с шагом $\lambda_{min}/2$, до срабатывания механического ограничителя, фиксировать показания системы лазерной координатно-измерительной API OMNITRAC.

Рассчитать погрешность позиционирования антенны-зонда как разницу между координатами вертикальной плоскости измерений системы лазерной координатно-измерительной API OMNITRAC и измеренными координатами положения антенны-зонда Δz , м.

Погрешность измерений фазы $\Delta \varphi(f_i)$, рад, обусловленную неточностью позиционирования антенны-зонда в плоскости сканирования, для каждого номинала частоты, указанного в п. 8.3.1.1, оценить по формуле (8):

$$\Delta\varphi(f_i) = k \cdot \Delta z \,, \tag{8}$$

где $k = 2\pi/\lambda$ - волновое число, 1/M;

 λ – длина волны, соответствующая частотам, указанным в п. 8.3.1.1, м.

За погрешность измерений фазы $\theta_{\hat{O}2}$ для каждого номинала частоты, указанного в п. 8.3.1.1, принять среднее квадратическое значение погрешности, определенное по формуле (8):

$$\theta_{\phi 2} = \sqrt{\frac{\sum_{i=0}^{M-1} (\Delta \varphi(f_i))^2}{M}}, \qquad (9)$$

где М – число точек, в которых проводились измерения пространственного положения антенны-зонда.

Размеры рабочей области сканирования по осям 0х и 0у рассчитать как разницу между показаниями системы лазерной координатно-измерительной API OMNITRAC в момент срабатывания механического ограничителя сканера и ее показаниями при установке антенны-зонда в крайние положения.

8.3.1.6 Погрешность измерений фазы, обусловленную случайными перегибами радиочастотного тракта комплекса определить с помощью набора меры отражения из состава мер коэффициентов передачи и отражения 85052B.

В измерительный тракт комплекса внести меру отражения таким образом, чтобы он замыкал соединитель радиочастотного кабеля для подключения антенны-зонда.

Провести однопортовую калибровку векторного анализатора цепей из состава комплекса в диапазоне частот от 8 до 18 ГГц в соответствии с технической документацией на него.

Провести измерения фазы комплексного коэффициента отражения при следующих настройках векторного анализатора цепей:

- полоса анализа от 8 до 18 ГГц;
- ширина полосы пропускания 500 Гц;
- уровень мощности выходного колебания 10 дБ (мВт);
- режим измерений фазы комплексного коэффициента отражения S11.

С помощью программы ручного управления сканером (рисунок 2) в соответствующей вкладке программного продукта для измерений в ближней зоне «NFMeas» переместить антенну-зонд в крайнее нижнее положение.

Перемещая антенну-зонд с установленным оптическим отражателем вдоль оси x0y в пределах рабочей зоны сканера с шагом 20 см, фиксировать показания векторного анализатора цепей.

За оценку погрешности измерений фазы, обусловленную случайными перегибами радиочастотного тракта комплекса, принять разницу между максимальным и минимальным значением измеренной фазы комплексного коэффициента отражения на частоте 18 ГГц.

8.3.1.7 Результаты поверки считать положительными, если значения погрешности измерений амплитудного распределения электромагнитного поля при соотношении сигнал/шум на входе приемного канала векторного анализатора цепей не менее 30 дБ (10 дБ) и кроссполяризационной развязке антенны-зонда не менее 20 дБ находятся в следующих пределах для относительных уровней амплитудного распределения:

$$-$$
 минус 10 дБ \pm 0,3 (\pm 0,3); $-$ минус 20 дБ \pm 0,3 (\pm 0,3); $-$ минус 30 дБ \pm 0,3(\pm 0,4); $-$ минус 40 дБ \pm 0,4 (\pm 0,8); $-$ минус 50 дБ \pm 1,0 (\pm 2,2),

а значения погрешности измерений фазового распределения электромагнитного поля при соотношении сигнал/шум на входе приемного канала векторного анализатора цепей не менее 30 дБ (10 дБ) находятся в следующих пределах при относительном уровне амплитудного распределения:

$$-$$
 минус 10 дБ $\pm 3^{\circ} (\pm 3^{\circ});$

- минус 20 дБ \pm 3°(\pm 3°); - минус 30 дБ \pm 3°(\pm 4°); - минус 40 дБ \pm 3°(\pm 6°); \pm 6°(\pm 17°).

8.3.2 Определение погрешности измерений относительных уровней амплитудных диаграмм направленности

8.3.2.1 Определение погрешности измерений относительных уровней амплитудных диаграмм направленности (АДН) осуществить методом математического моделирования с учетом результатов, полученных в п. 8.3.1 настоящего документа, путем сравнения невозмущенных амплитудных диаграмм направленности, определенных для антенн с равномерным синфазным распределением токов на апертуре, и тех же диаграмм направленности, но с учетом погрешности измерений амплитудного и фазового распределений (АФР).

8.3.2.2 Невозмущенную диаграмму направленности оценить следующим образом.

Размеры плоскости сканирования выбрать из критерия максимального сектора углов восстанавливаемой ДН, равного 60^{0} , по формулам (10):

$$L_X = a + 2R \cdot tg\theta,$$

$$L_Y = b + 2R \cdot tg\varphi,$$
(10)

где L_{X} , L_{Y} – размеры плоскости сканирования в соответствующих плоскостях, м;

 $a,\ b$ — размеры раскрыва в соответствующих плоскостях, м, $a=b\geq 2\lambda_{max}$, где λ_{max} - длина волны, соответствующая частотам 8; 12 и 18 ГГц;

R – измерительное расстояние, $R = (3 - 8) \lambda_{max}$, м;

 Θ , φ – сектор углов восстановленной ДН в соответствующих плоскостях, $\Theta = \varphi = 60^{\circ}$.

Интервал дискретизации выбрать равным $0.5\lambda_{max}$.

Для частоты 1 ГГц пересчитать АФР в раскрыве антенны в АФР на плоскости сканирования по формуле (11):

$$J(x_2, y_2) = \left[\sum_{n=0}^{N-1} \sum_{m=0}^{M-1} \left[\frac{A_0(x, y) exp[j(\varphi_0(x, y))]}{\sqrt{(x - x_2)^2 + (y - y_2)^2 + R^2}} \cdot exp[-j\frac{2\pi}{\lambda} \sqrt{(x - x_2)^2 + (y - y_2)^2 + R^2} \right] \right], (11)$$

где $J(x_2, y_2)$ - АФР на плоскости сканирования;

 (x_2, y_2) – координаты на плоскости сканирования, м;

 A_0 – амплитуда сигнала ($A_0 = 1 B$):

 φ_0 – фаза сигнала ($\varphi_0 = \theta \ pad$);

 $N(M) = \left[\frac{L_X(L_Y)}{\Delta x(\Delta y)}\right]$ - число шагов сканирования в каждой из плоскостей, где Δx , Δy - шаг ска-

нирования в плоскости Х и Y, соответственно.

Рассчитать нормированную амплитудную диаграмму направленности по формуле (12):

$$F_{\lambda}(u,v) = \sqrt{1 - u^2 - v^2} \frac{\left| \Im(J(x_2, y_2)) \right|}{MAX(\left| \Im(J(x_2, y_2)) \right|)},$$
(12)

где |...| - модуль комплексной величины;

 $\mathfrak{I}(...)$ - оператор двумерного дискретного преобразования Фурье;

МАХ – максимальное значение амплитудной диаграммы направленности;

 $u = \sin \theta \cdot \cos \varphi$, $v = \sin \theta \cdot \sin \varphi$ - пространственные координаты.

8.3.2.3 Амплитудную диаграмму антенны с учетом погрешности измерений АФР оценить следующим образом.

Значения погрешности измерений амплитудного и фазового распределений для каждого относительного уровня амплитудного распределения М задавать программно с учетом оценки погрешности измерений АФР, полученных в п. 8.3.1, для условия соотношения сигнал/шум 30 дБ:

$$\delta A = Norm(0, \sigma^{2}_{A}),$$

$$\Delta \varphi = Norm(0, \sigma^{2}_{\varphi}),$$
(13)

где Norm - генератор случайных величин, распределенных по нормальному закону;

 $\sigma_{\scriptscriptstyle A}$ - среднее квадратическое отклонение результатов измерений амплитудного распределения $\sigma_{\scriptscriptstyle A} = 10^{\frac{\Delta_{\scriptscriptstyle A}}{20}} / 2,26$;

 σ_{φ} - среднее квадратическое отклонение результатов измерений фазового распределения $\sigma_{{\scriptscriptstyle A}} = \Delta_{\Phi}/2,\!26$.

Рассчитать амплитудное и фазовое распределения ЭМП на плоскости сканирования с учетом погрешности их измерений по формуле (14):

$$J^{*}(x_{2}, y_{2}) = |J(x_{2}, y_{2})|(1 + \delta A) \exp(j(\arg(J(x_{2}, y_{2})) + \Delta \varphi)). \tag{14}$$

Аналогичным образом провести расчет «возмущенных» ДН 9 раз на частотах 1; 12; 18 ГГц. При каждой последующей реализации воспроизводить новые случайные величины по законам (13).

8.3.2.4 Погрешность измерений относительных уровней боковых лепестков АДН оценить следующим образом.

Среднее квадратическое отклонение результатов измерений уровней АДН в двух главных сечениях при ϕ =0 и ϕ = π /2 рассчитать по формуле (15):

$$\delta F_{A} = \sum_{i=1}^{k} \sqrt{\frac{\left(F_{A}^{*})_{i} - F_{A}}{\left(F_{A}^{*}\right)_{i}}\right)^{2}}{k-1}},$$
(15)

где k — число реализаций моделирования, k = 9.

Рассчитать погрешность измерений уровней АДН на указанных частотах по формуле (16):

$$\Delta F_A = \pm 20 \lg (1 + 2,26 \delta F_A). \tag{16}$$

8.3.2.5 Результаты поверки считать положительными, если значения погрешности измерений относительных уровней амплитудных диаграмм направленности до уровней (при соотношении сигнал/шум на входе приемного канала векторного анализатора цепей не менее 30 дБ, кроссполяризационной развязке антенны-зонда не менее 20 дБ, динамическом диапазоне измеренного амплитудного распределения антенны не менее 50 дБ), дБ, находятся в пределах:

	7, 7, 7, 1
– минус 10 дБ	± 0,4 дБ;
– минус 20 дБ	± 0,5 дБ;
– минус 30 дБ	± 0,8 дБ;
– минус 40 дБ	± 1,2 дБ;
– минус 50 дБ	± 1,7 дБ.

8.3.3 Определение погрешности измерений коэффициента усиления антенн

8.3.3.1 Погрешность измерений коэффициента усиления определить расчетным путем при использовании результатов измерений, полученных в п. 8.3.2 настоящего документа.

Погрешность измерений коэффициента усиления δ, дБ, рассчитать по формуле (17):

$$\delta = \pm 10 \lg \left(1 + 1, 1 \cdot \sqrt{\delta_1^2 + \delta_2^2 + \delta_3^2} \right), \tag{17}$$

где δ_I – погрешность измерений АДН до уровней минус 10 дБ:

 δ_2 – погрешность коэффициента усиления эталонной антенны;

 δ_3 – погрешность за счет рассогласования.

Погрешность за счет рассогласования вычислить по формулам (18):

$$\delta_{3}' = \frac{\left(1 - \left|\Gamma_{3}\right|^{2}\right)\left(1 + \left|\Gamma_{H}\right| \cdot \left|\Gamma_{K}\right|\right)^{2}}{\left(1 - \left|\Gamma_{3}\right|^{2}\right)\left(1 - \left|\Gamma_{H}\right| \cdot \left|\Gamma_{3}\right|\right)^{2}} - 1,$$

$$\delta_{3} = \frac{\left(1 - \left|\Gamma_{3}\right|^{2}\right)\left(1 - \left|\Gamma_{H}\right| \cdot \left|\Gamma_{K}\right|\right)^{2}}{\left(1 - \left|\Gamma_{3}\right|^{2}\right)\left(1 + \left|\Gamma_{H}\right| \cdot \left|\Gamma_{3}\right|\right)^{2}} - 1,$$
(18)

где Γ_{3} , $\Gamma_{\text{и}}$, Γ_{K} — коэффициенты отражения входов эталонной, испытываемой антенн, векторного анализатора цепей из состава комплекса.

Модуль коэффициента отражения связан с коэффициентом стоячей волны по напряжению (КСВН) соотношением:

$$\left|\Gamma\right| = \frac{K - 1}{K + 1} \,. \tag{19}$$

- 8.3.3.2 При расчетах погрешности за счет рассогласования значение коэффициента стоячей волны по напряжению эталонной антенны, используемой при проведении измерений, не должно превышать 1,2, испытываемой антенны 2,0, КСВН векторного анализатора цепей 1,2.
- 8.3.3.3 Результаты поверки считать положительными, если значения погрешности измерений коэффициента усиления антенны методом замещения при коэффициенте стоячей волны по напряжению испытываемой антенны не более 2 и погрешности измерений коэффициента усиления эталонной антенны, находятся в следующих пределах, дБ:

– 0,5 дБ	$\pm 0,7;$
- 0,8 дБ	\pm 1,0;
− 1,5 дБ	± 1,7;
− 2,0 дБ	$\pm 2,2.$

8.3.4 Определение диапазона рабочих частот

- 8.3.4.1 Проверку диапазона рабочих частот проводить по результатам проверки погрешности измерений амплитудного и фазового распределений.
- 8.3.4.2 Результаты поверки считать положительными, если в диапазоне частот от 8 до 18 ГГц значения погрешности измерений коэффициента усиления не превышают установленных значений (см. п. 8.3.1). В этом случае диапазон частот комплекса составляет от 8 до 18 ГГц.

8.3.5 Определение размеров рабочей области сканирования

- 8.3.5.1 Определение размеров рабочей области сканирования осуществить по результатам измерений, выполненных в соответствии с п. 8.3.1.5 настоящего документа.
- 8.3.5.2 Результаты поверки считать положительными, если размеры рабочей области сканирования комплекса (длина \times высота) не менее 4.0×2.0 м.

8.3.6 Определение сектора углов восстанавливаемых диаграмм направленности

- 8.3.6.1 Определение сектора углов восстанавливаемых диаграмм направленности осуществить по результатам определения погрешности измерений по п. 8.3.2.
- 8.3.6.2 Результаты поверки считать положительными и сектор углов восстанавливаемой амплитудной диаграммы направленности в азимутальной и угломестной плоскостях составляет от минус 60° до 60°, если при заданных в п. 8.3.2 условиях моделирования (секторы углов Θ и ϕ) рассчитанная погрешность измерений уровней АДН не превышает установленных в п. 8.3.2 значений.

9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 9.1 Комплекс признается годным, если в ходе поверки все результаты поверки положительные.
- 9.2 Результаты поверки удостоверяются свидетельством о поверке в соответствии с При-казом Министерства промышленности и торговли РФ от 02 июля 2015 г. № 1815.

9.3 Если по результатам поверки комплекс признан непригодным к применению, свидетельство о поверке аннулируется и выписывается извещение о непригодности к применению в соответствии с Приказом Министерства промышленности, и торговли РФ от 02 июля 2015 г. № 1815. О.В. Каминский

Начальник НИО-1 ФГУП «ВНИИФТРИ»