УТВЕРЖДАЮ

Первый заместитель генерального директора — заместитель по научной работе ФГУП «ВНИИФТРИ»

А.Н. Щипунов _2015 г.

ИНСТРУКЦИЯ ГИДРОФОНЫ ВС 31х

Методика поверки ЗТМС.406231.001 МП лр. 63761-16

Введение

Настоящая методика поверки распространяется на гидрофоны **B**C 31х (далее – гидрофоны) и устанавливает порядок проведения их первичной и периодической поверок.

Интервал между поверками – два года.

1 Операции поверки

1.1 При проведении первичной и периодической поверок гидрофонов должны быть выполнены операции, указанные в таблице 1.

Таблица 1

Номер пункта		Проведение операции при	
Наименование операции	методики	первичной	периодической
	поверки	поверке	поверке
Внешний осмотр	7.1	Да	Да
Определение уровня чувствительности на	7.2	Да	Да
опорной частоте 60 (250) Гц			
Определение неравномерности частотной			
характеристики чувствительности в рабочем	7.3	Да	Да
диапазоне частот			
Определение максимального значения	7.4	Да	Да
амплитуды измеряемого звукового давления			
Определение неравномерности частотной			
зависимости амплитуды измеряемого	7.5	Да	Да
звукового давления в рабочем диапазоне	7.3		
частот			
Определение уровня собственных шумов	7.6	Да	Да
Определение нестабильности уровня	7.7	Нет	Да
чувствительности			
Определение нестабильности амплитуды	7.8	Нет	Да
измеряемого звукового давления			
Определение допускаемой относительной			
погрешности при доверительной вероятности	7.9	Да	Нет
0,95			
Определение допускаемой относительной			
погрешности измерений амплитуды	7.10	Да	Нет
звукового давления			

2 Средства поверки

- 2.1 При проведении поверки применяют средства измерений и оборудование, приведённые в таблице 2.
 - 2.2 Допускается применение других средств поверки, обеспечивающих определение

2.3 Все средства поверки должны быть исправны и иметь действующие свидетельства о поверке.

Таблица 2

Номер	Наименование и тип (условное обозначение) основного или вспомогательного
пункта	средства поверки; метрологические и основные технические характеристики
методики	средства поверки
поверки	
7.2, 7.3	Рабочий эталон единицы звукового давления в водной среде 2 разряда по
	ГОСТ Р 8.727-2010: диапазон частот от 3 Гц до 100 кГц, доверительная
	относительная погрешность градуировки (поверки) измерительных гидрофонов
	при доверительной вероятности 0,95 не более 2,0 дБ
7.4, 7.5	Анализатор спектра ZET 017: частота анализа до 20 кГц, пределы допускаемой
	относительной погрешности установки частоты \pm 0,1 %; диапазон измерений
	напряжения переменного тока от 1 до 1000 мВ,
	пределы допускаемой абсолютной погрешности измерений
	\pm (0,002 · Uизм + 0,05) мВ; диапазон частот встроенного генератора от 10 Гц до
	$20\ \kappa\Gamma$ ц, пределы допускаемой относительной погрешности $\pm~0.01~\%$, диапазон
	напряжений встроенного генератора ± 10 В
7.4, 7.5	Измерительный гидрофон 8104: диапазон частот от 3 Гц до 100 кГц;
	относительная доверительная погрешность гидрофона при доверительной
	вероятности 0,95 не более 1,0 дБ
7.6	Мультиметр Agilent 34401A, диапазон измерений напряжения переменного тока
	от 0,1 мВ до 100 В, пределы допускаемой относительной погрешности измерений
	± 0,5 %
7.2, 7.3,	Согласующее устройство ZET 430: напряжение питания для подключаемых
7.7	гидрофонов \pm 12 B; сила тока \pm 80 мА

3 Требования к квалификации поверителей

3.1 К проведению поверки допускают лиц, имеющих соответствующую техническую квалификацию и подготовку, аттестованных в качестве поверителей в области гидроакустических измерений.

4 Требования безопасности

4.1 При выполнении операций поверки должны быть соблюдены требования техники безопасности, регламентированные ГОСТ 12.1.030-2010 «Система стандартов безопасности

труда. Электробезопасность. Защитное заземление, зануление», требования действующих норм пожарной безопасности.

4.2 При проведении поверки должны быть выполнены все требования безопасности, указанные в эксплуатационной документации (далее – ЭД) на гидрофоны и средства поверки.

5 Условия поверки

- 5.1 При проведении поверки должны быть соблюдены следующие условия:
- температура окружающего воздуха (20 ± 5) °C;
- относительная влажность окружающего воздуха до 80 %;
- атмосферное давление от 84 до 106 кПа (от 630 до 795 мм рт. ст.).

6 Подготовка к проведению поверки

- 6.1 Перед проведением поверки поверитель должен:
- изучить руководство по эксплуатации поверяемого гидрофона (Гидрофоны ВС 311, ВС 313, ВС 314-М. Руководство по эксплуатации. ЗТМС.406231.002 РЭ);
 - проверить исправность соединительных кабелей;
- подготовить средства поверки и вспомогательное оборудование к работе в соответствии с их ЭД.
- 6.2 Поверяемый гидрофон и используемые средства поверки должны быть заземлены и выдержаны во включённом состоянии не менее 20 мин перед проведением поверки.

7 Проведение поверки

- 7.1 Внешний осмотр
- 7.1.1 При внешнем осмотре необходимо установить:
- отсутствие механических повреждений;
- чистоту гнёзд и штекеров разъёмных соединений;
- удовлетворительное состояние соединительных кабелей.
- 7.1.2 Результаты поверки считать положительными, если гидрофоны удовлетворяют требованиям п. 7.1.1.
 - 7.2 Определение уровня чувствительности на опорной частоте 60 (250) Гц
 - 7.2.1 Определение уровня чувствительности гидрофонов модификаций ВС 311 и ВС 313 на

опорной частоте проводить на рабочем эталоне единицы звукового давления в водной среде 2 разряда (далее – эталон).

- 7.2.2 Перед установкой в звукомерное устройство эталона гидрофон должен находиться в воде в течение не менее 12 ч.
- 7.2.3 Непосредственно перед поверкой гидрофон должен быть обезжирен мыльным раствором.
- 7.2.4 Перед поверкой гидрофон BC 313 должен быть приведён в рабочее состояние, для чего необходимо:
 - подсоединить гидрофон к согласующему устройству ZET 430;
 - включить питание согласующего устройства ZET 430;
- в процессе поверки измерять амплитуду выходного напряжения с согласующего устройства ZET 430.
- 7.2.5 Измерение чувствительности гидрофона на опорной частоте проводить в соответствии с руководством по эксплуатации эталона, при этом число наблюдений n должно быть не менее 4.
- 7.2.6 Вычислить среднее арифметическое значение чувствительности $M_{\rm cp}$ в [мкВ/Па] по формуле (1):

$$M_{\rm cp} = \frac{1}{n} \sum_{i=1}^{n} M_i. \tag{1}$$

7.2.7 Вычислить уровень номинальной чувствительности в [дБ] относительно 1 В/мкПа по формуле (2):

$$M_{\text{HOM}} = 20 \cdot lg(M_{\text{cp}} \cdot 10^{-12}).$$
 (2)

7.2.8 Результаты поверки считать положительными, если уровень чувствительности относительно 1 В/мкПа на опорной частоте составляет:

для гидрофона BC 311: (минус 204 ± 3) дБ;

для гидрофона BC 313 в зависимости от коэффициента усиления предварительного усилителя: (минус 206 ± 3) дБ; (минус 186 ± 3) дБ; (минус 166 ± 3) дБ.

- 7.3 Определение неравномерности частотной характеристики чувствительности в рабочем диапазоне частот
- 7.3.1 Определение неравномерности частотной характеристики чувствительности относительно опорной частоты для гидрофонов модификаций ВС 311 и ВС 313 проводить на эталоне.
 - 7.3.2 Перед поверкой необходимо выполнить операции п.п. 7.2.2-7.2.4.

- 7.3.3 Измерение чувствительности гидрофона проводить на частотах третьоктавного ряда его рабочего диапазона в соответствии с руководством по эксплуатации эталона, при этом число наблюдений на каждой частоте n должно быть не менее 4.
- 7.3.4 На каждой частоте f_k вычислить среднее арифметическое значение чувствительности $M(f_k)_{cp}$ в [мкВ/Па] по формуле (3):

$$M(f_k)_{\rm cp} = \frac{1}{n} \sum_{i=1}^n M(f_k)_i.$$
 (3)

7.3.5 На каждой частоте f_k вычислить уровень чувствительности в [дБ] относительно 1 В/мкПа по формуле (4):

$$M(f_k) = 20 \cdot lg(M(f_k)_{cp} \cdot 10^{-12}).$$
 (4)

7.3.6 Определить отклонение Θ_1 максимального уровня чувствительности от номинального уровня чувствительности по формуле (5):

$$\Theta_1 = M(f)_{max} - M_{\text{HOM}},\tag{5}$$

где $M_{\text{ном}}$ — уровень чувствительности на опорной частоте в [дБ] относительно 1 В/мкПа, определённый в п. 7.2;

- $M(f)_{max}$ максимальный уровень чувствительности в [дБ] относительно 1 В/мкПа, определённый в п.п. 7.3.5.
- 7.3.7 Определить отклонение Θ_2 минимального уровня чувствительности от уровня чувствительности на опорной частоте по формуле (6):

$$\Theta_2 = M(f)_{min} - M_{HOM}, \tag{6}$$

где $M(f)_{min}$ — минимальный уровень чувствительности в [дБ] относительно 1 В/мкПа, определённый в п.п. 7.3.5.

- 7.3.8 Результаты поверки считать положительными, если:
- а) для гидрофона ВС 311:
- в диапазоне частот от 3 Γ ц до 20 к Γ ц: Θ ₁ ≤ 3 д Γ , Θ ₂ ≥ 3 д Γ ;
- в диапазоне частот от 3 Γ ц до 100 к Γ ц: Θ_1 ≤ 3 д Γ , Θ_2 ≥ 10 д Γ ;
- б) для гидрофона ВС 313 в диапазоне частот от 20 Γ ц до 20 к Γ ц: $\Theta_1 \leq 3$ дБ, $\Theta_2 \geq -3$ дБ.
- 7.4 Определение максимального значения амплитуды измеряемого звукового давления
- 7.4.1 Определение максимального значения амплитуды звукового давления проводить для гидрофона модификации ВС 314-М.
- 7.4.2 Максимальное значение амплитуды звукового давления определять на установке в соответствии с рисунком 1.

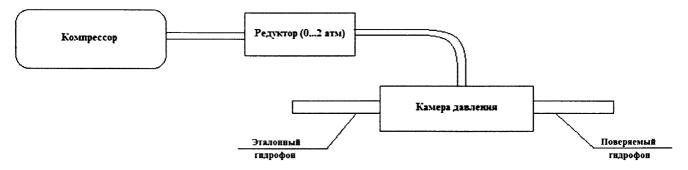


Рисунок 1 — Схема соединений для определения максимального значения амплитуды звукового давления

- 7.4.3 В камере давления создать акустический удар амплитудой 50 кПа, продолжительностью не более 2 с. Амплитуду контролировать по эталонному измерительному гидрофону с помощью анализатора спектра ZET 017.
- 7.4.4 Измерить анализатором спектра ZET 017 фактическое значение амплитуды звукового давления A_{π} в [Па] с поверяемого гидрофона.
- 7.4.5 Результаты поверки считать положительными, если максимальное значение амплитуды измеряемого звукового давления A_{π} не превышает 50 кПа.
- 7.5 Определение неравномерности частотной зависимости амплитуды измеряемого звукового давления в рабочем диапазоне частот
- 7.5.1 Определение неравномерности частотной зависимости амплитуды измеряемого звукового давления в рабочем диапазоне частот гидрофона ВС 314-М проводить на установке в соответствии с рисунком 1 на частотах третьоктавного ряда.
- 7.5.2 В камере давления создать акустический удар амплитудой 50 кПа, продолжительностью не более 2 с. Амплитуду контролировать по эталонному измерительному гидрофону с помощью анализатора спектра ZET 017.
- 7.5.3 На каждой частоте f измерить анализатором спектра ZET 017 фактическое значение амплитуды звукового давления $A_n(f)$ в [Па] с поверяемого гидрофона.
- 7.5.4 Неравномерность θ_{A} частотной зависимости амплитуды измеряемого звукового давления в рабочем диапазоне частот определить по формуле (7):

$$\theta_{A} = \frac{|A_{A}(f)_{min} - A_{A}(f)_{max}|}{A_{A}} \cdot 100 \%, \tag{7}$$

где $A_{\rm A}(f)_{min}$ и $A_{\rm A}(f)_{max}$ — минимальное и максимальное значение амплитуды измеряемого звукового давления, соответственно;

 $A_{\rm д}$ — значение амплитуды измеряемого звукового давления на опорной частоте, определённое по п. 7.4.

- 7.5.5 Результаты поверки считать положительными, если неравномерность частотной зависимости амплитуды измеряемого звукового давления в рабочем диапазоне частот не превышает 10,0 %.
 - 7.6 Определение уровня собственных шумов
- 7.6.1 Определение уровня собственных шумов проводить для гидрофонов модификаций BC 313 и BC 314-M.
- 7.6.2 Для определения уровня собственных шумов подключить поверяемый гидрофон к анализатору спектра типа ZET 017, анализатор спектра к компьютеру.
- 7.6.3 В программном обеспечении ZETLAB запустить программу анализатора спектра «Фильтрация сигналов», установить время усреднения 10 с, выбрать единицу измерения «Па» и настроить фильтры верхних и нижних частот для ВС 313 20 Гц и 20 кГц, для ВС 314-М 20 Гц и 3,2 кГц соответственно.
- 7.6.4 Запустить программу анализатора спектра «Вольтметр переменного тока», выбрать канал «Фильтрация сигналов», установить время усреднения 10 с.
- 7.6.5 Для ВС 313 в программном обеспечении ZETLAB в свойствах соответствующего канала установить значение номинальной чувствительности по напряжению на опорной частоте 60 Гц, определённое по п. 5.7.2.
 - 7.6.6 Измерить текущее среднее квадратическое значение (СКЗ) собственных шумов.
 - 7.6.7 Результаты поверки считать положительными, если уровень СКЗ собственных шумов:
 - а) для гидрофона ВС 313:
 - для номинальной чувствительности 50 мкВ/Па не превышает 0,2 Па;
 - для номинальной чувствительности 500 мкВ/Па не превышает 0,1 Па;
 - для номинальной чувствительности 5000 мкВ/Па не превышает 0,01 Па;
 - б) для гидрофона ВС 314-М не превышает 0,1 Па.
 - 7.7 Определение нестабильности уровня чувствительности
- 7.7.1 Определение нестабильности уровня чувствительности проводить для гидрофонов модификаций ВС 311 и ВС 313.
- 7.7.2 Нестабильность уровня чувствительности гидрофона за время интервала между поверками определять после очередной периодической поверки, при этом на поверку должно быть представлено свидетельство о предыдущей поверке.
- 7.7.3 Нестабильность уровня чувствительности $\Theta_T(f_k)$ в [дБ] следует определять для всех частот рабочего диапазона по формуле (8):

$$\Theta_T(f_k) = |M_0(f_k) - M_T(f_k)|, \tag{8}$$

где $M_0(f_k)$ и $M_T(f_k)$ – уровни чувствительности на частоте f_k , полученные при предыдущей и при текущей поверках, соответственно;

T — интервал между поверками.

- 7.7.4 Результаты поверки считать положительными, если нестабильность уровня чувствительности на каждой частоте рабочего диапазона гидрофона не превышает 1,0 дБ.
 - 7.8 Определение нестабильности амплитуды измеряемого звукового давления
- 7.8.1 Определение нестабильности амплитуды измеряемого звукового давления проводить для гидрофона модификации ВС 314-М.
- 7.8.2 Нестабильность амплитуды звукового давления за интервал между поверками определять после очередной периодической поверки, при этом на поверку должно быть представлено свидетельство о предыдущей поверке.
- 7.8.3 Нестабильность амплитуды звукового давления $\Theta_T(f_k)$ в [дБ] следует определять по формуле (9):

$$\Theta_T(f_k) = 20 \cdot lg \left(1 + \frac{|A_0(f_k) - A_T(f_k)|}{A_0(f_k)} \right), \tag{9}$$

где $A_0(f_k)$ и $A_T(f_k)$ – амплитуды звукового давления на частоте f_k , полученные при предыдущей и при текущей поверках, соответственно;

Т – интервал между поверками.

- 7.8.4 Результаты поверки считать положительными, если нестабильность амплитуды измеряемого звукового давления на каждой частоте рабочего диапазона гидрофона не превышает 1,0 дБ.
- 7.9 Определение допускаемой относительной погрешности при доверительной вероятности 0,95
- 7.9.1 Определение допускаемой относительной погрешности при доверительной вероятности 0,95 проводить для гидрофонов модификаций ВС 311 и ВС 313.
- 7.9.2 Допускаемая относительная погрешность при доверительной вероятности 0,95 устанавливается при его первичной поверке в соответствии с ГОСТ Р 8.727-2010 «Государственная система обеспечения единства измерений. Государственная поверочная схема для средств измерений звукового давления в водной среде в диапазоне от 1·10⁻³ до 1·10⁶ Гц» с учётом погрешности передачи размера единицы звукового давления в водной среде от эталона к поверяемому гидрофону и долговременной нестабильности гидрофона.
- 7.9.3 Результаты испытаний считать положительными, если допускаемая относительная погрешность при доверительной вероятности 0.95 находится в пределах \pm 3.0 дБ.

- 7.10 Определение относительной погрешности измерений амплитуды звукового давления
- 7.10.1 Определение относительной погрешности измерения амплитуды звукового давления проводить для гидрофона модификации ВС 314-М на опорной частоте 60 (250) Гц.
- 7.10.2 Повторить операции по п. 7.4, измеряя анализатором спектра ZET 017 значения амплитуды звукового давления в [Па] $A_{\rm H}$ с эталонного измерительного гидрофона и $A_{\rm J}$ с поверяемого гидрофона.
- 7.10.3 Определить относительную погрешность измерений амплитуды звукового давления δ по формуле (10):

$$\delta = \frac{|A_{\rm A} - A_{\rm H}|}{A_{\rm H}} \cdot 100 \%. \tag{10}$$

7.10.4 Результаты поверки считать положительными, если относительная погрешность измерений амплитуды звукового давления δ не превышает 10,0 %.

8 Оформление результатов поверки

- 8.1 Результаты поверки гидрофона оформляются протоколом поверки.
- 8.2 Положительные результаты поверки оформляются свидетельством о поверке по установленной форме.
- 8.3 При отрицательных результатах поверки гидрофон к применению не допускается, предыдущее «Свидетельство о поверке» аннулируется и на него выписывают «Извещение о непригодности» с указанием причин забракования.

Начальник лаборатории № 32 ФГУП «ВНИИФТРИ»

Дес С.Ф. Некрич