

ФЕДЕРАЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ «ГОСУДАРСТВЕННЫЙ РЕГИОНАЛЬНЫЙ ЦЕНТР СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И ИСПЫТАНИЙ В Г. МОСКВЕ» (ФБУ «РОСТЕСТ — МОСКВА»)

УТВЕРЖДАЮ

Заместитель генерального директора

ФБУ «Ростест-Москва»

Е.В. Морин

«23» декабря 2015 г.

Государственная система обеспечения единства измерений

Датчики уровня топлива «Уровень М1»

Методика поверки РТ-МП-2908-449-2015

1.p.63806-16

Настоящая методика поверки распространяется на датчики уровня топлива «Уровень М1» (далее «датчики»), изготавливаемые ООО «НТЦ «Измеритель», г. Москва, по ТУ 4573-201-52375904-2015, и определяет порядок и методы проведения первичной и периодической поверок.

Интервал между поверками – два года.

1 ОПЕРАЦИИ ПОВЕРКИ

При проведении первичной и периодической поверок должны быть выполнены операции, указанные в таблице 1.

Таблица 1 - Операции поверки

Наименование операции	Номер пункта методики поверки	Обязательность проведения при поверке	
		Первичной	Периодической
1. Внешний осмотр	6.1	Да	Да
2. Опробование	6.2	Да	Да
3. Определение погрешности измерений уровня	6.3	Да	Да
4. Проверка идентификационных данных ПО	6.4	Да	Да

2 СРЕДСТВА ПОВЕРКИ

При проведении поверки применяют средства измерений и вспомогательные устройства, приведенные в таблице 2.

Таблица 2 - Средства поверки

Номер пункта	Наименование	
6	рулетка измерительная металлическая Р2У3П по ГОСТ 7502, диапазон измерений от 0 до 3000 мм, П Γ ±1 мм	
6	частотомер электронно-счетный ЧЗ-88, $\Delta t_x = \pm (\delta_o \cdot t_x + \frac{\tau_{\phi A} + \tau_{\phi C}}{2} + T_o)$	
6	вольтметр универсальный, ПГ при измерении силы постоянного тока ± 0,1 %	
6	персональный компьютер с установленной ОС Windows XP и выше, программой «Конфигуратор датчика уровня топлива УРОВЕНЬ М1»	

Допускается применять аналогичные средства измерений, допущенные к применению, если их характеристики не хуже установленных настоящей методикой.

3 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

- 3.1 Поверка проводится квалифицированным персоналом предприятий и организаций, аккредитованных в установленном порядке.
- 3.2 К проведению поверки допускаются лица, изучившие руководство по эксплуатации датчика уровня топлива, данную методику поверки и эксплуатационную документацию используемых средств поверки и вспомогательного оборудования.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 4.1 К проведению поверки допускаются лица, прошедшие инструктаж по технике безопасности.
 - 4.2 Вся аппаратура, питающаяся от сети переменного тока, должна быть заземлена.

- 4.3 Все разъёмные соединения линий электропитания и линий связи должны быть исправны.
- 4.4 Соблюдать правила безопасности, при эксплуатации средств поверки, приведенными в эксплуатационной документации.
- 4.5 Поверитель должен соблюдать правила пожарной безопасности, действующие на предприятии.

5 УСЛОВИЯ ПОВЕРКИ И ПОДГОТОВКА К НЕЙ

- 5.1 Потребитель, предъявляющий датчик на поверку, представляет (по требованию организации, проводящей поверку) следующие документы:
 - настоящую методику поверки;
 - инструкция по монтажу, пуску, регулированию и обкатке датчика уровня топлива «Уровень М1», переходный кабель для подключения датчиков уровня топлива «Уровень М1», программа «Конфигуратор датчика уровня топлива УРОВЕНЬ М1».
 - 5.2 Условия поверки:
 - температура окружающего воздуха (20 ± 5) °C;
 - относительная влажность от 45 % до 80 %;
 - атмосферное давление от 84 до 107 кПа.
- 5.3 Средства поверки и поверяемый датчик должны быть выдержаны в помещении, где проводят поверку, не менее одного часа.
- 5.4 Подключить датчик к персональному компьютеру по схеме подключения датчика к ПК, приведенной в инструкции по монтажу, в зависимости от модели датчика.
- 5.5 Поверка должна проводиться на той жидкости, уровень которой будет измеряться датчиком в процессе эксплуатации, или на жидкости с близкими к ней диэлектрическими параметрами.

6 ПРОВЕДЕНИЕ ПОВЕРКИ

6.1 Внешний осмотр.

При внешнем осмотре датчика проверяют маркировку, комплектность, состояние коммуникационных и энергетических линий связи, отсутствие механических повреждений.

Не допускают к дальнейшей поверке датчик, если обнаружено неудовлетворительное крепление разъёмов, грубые механические повреждения наружных частей и прочие повреждения.

6.2 Опробование.

Запустить программу «Конфигуратор датчика уровня топлива УРОВЕНЬ М1». Подать напряжение питания на датчик.

- 6.2.1 При наличии частотного и токового выходов проверить их функциональность.
- 6.2.1.1 Проверка функциональности частотного выхода.

Перед началом измерения в окне программы «Конфигуратор датчика уровня топлива УРОВЕНЬ М1» нужно включить режим частотного выхода.

Расчетное значение частоты на выходе датчика указано в таблице 3

Таблица 3 - Расчетное значение частоты на выходе датчика

Значение длины датчика, %	Расчётное значение частоты на выходе, Гц
5	98,05 ÷ 99,05
50	985 ÷ 986
95	1871,95 ÷ 1872,95

6.2.1.2 Проверка функциональности токового выхода.

Перед началом измерения в окне программы «Конфигуратор датчика уровня топлива УРОВЕНЬ М1» нужно включить режим токовой петли.

Расчетное значение токового выхода датчика указано в таблице 4

Таблица 4 - Расчетное значение тока на выходе датчика

Значение длины датчика, %	Расчётное значение тока на выходе, мА
5	4,792 ÷ 4,808
50	11,992 ÷ 12,008
95	19,192 ÷ 19,208

Допускается совмещать опробование с процедурой определение погрешности датчика.

- 6.3 Определение погрешности измерений уровня.
- 6.3.1 Определение погрешности измерений уровня с использованием цифрового выхода:
- Произвести настройку датчика (установить верхний и нижний пределы измерений) в соответствии с руководством по эксплуатации.
- При помощи измерительной рулетки отложить отрезки L_3 на измерительном элементе (далее «ЧЭ») датчика равные 5 %, 25 %, 50 %, 75 % и 95 % от длины L_{ν} , мм (рисунок 1).
 - Подключить датчик к персональному компьютеру согласно руководству по эксплуатации.
- Запустить программу «Конфигуратор датчика уровня топлива УРОВЕНЬ М1», нажать кнопку «Обновить», выбрать нужный СОМ-порт, задать скорость обмена данных (по умолчанию установлено значение скорости обмена 19200 бит/с) и нажать кнопку «Установить соединение». Если датчик успешно найден, отображается примерное содержание (рисунок 2).

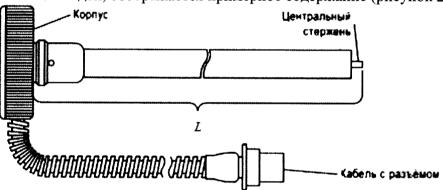


Рисунок 1- Схема датчика «Уровень М1»

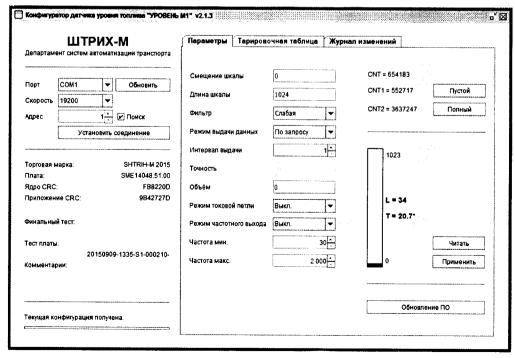


Рисунок 2 – окно программы «Конфигуратор датчика уровня топлива УРОВЕНЬ М1»

Установить верхний и нижний пределы измерений уровня. При установке нижнего предела измерений датчик не должен быть погружен в измеряемую жидкость. Нажать кнопку «Пустой» (рисунок 3, поз.1):

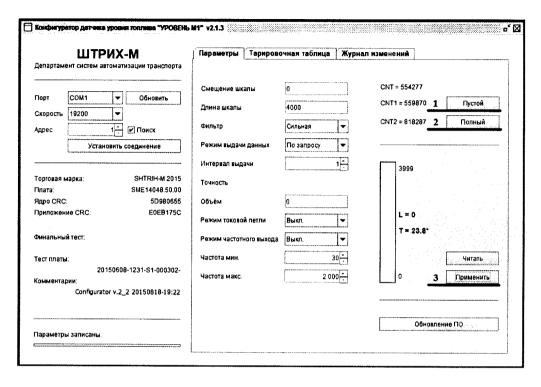


Рисунок 3 – окно программы «Конфигуратор датчика уровня топлива УРОВЕНЬ М1»

При установке верхнего предела измерений погрузить датчик вертикально в измеряемую жидкость таким образом, чтобы датчик был погружен на всю длину ЧЭ. Выждать не менее 30 секунд и нажать кнопку «Полный» (рисунок 3, поз.2). Далее необходимо нажать кнопку «Применить» (рисунок 3, поз.3).

- а) Погрузить датчик в топливо согласно уровням погружения L_3 для пяти контрольных точек, выждать не менее 30 секунд и записать значения уровня жидкости $L_{\text{изм}}$, отображаемые в окне программы «Конфигуратор датчика уровня топлива УРОВЕНЬ М1».
- б) Для перевода кода N в значение уровня $L_{\text{изм}}$, мм использовать формулу:

$$L_{u_{3M}} = \frac{L_{y}}{N_{\text{max}}} \times N_{u_{3M}} \tag{1}$$

где,

 N_{\max} — максимальное значение уровня топлива в условных единицах; N_{\max} — измеренное значение уровня топлива в условных единицах;

в) Рассчитать приведённую погрешность γ , % по формуле:

$$\gamma = \frac{L_{\text{\tiny M3M}} - L_{\text{\tiny 3}}}{L_{\text{\tiny V}}} \times 100, \qquad (2)$$

г) За приведённую погрешность принимают наибольшее полученное значение.

Результат поверки считается положительным, если значения основной приведённой погрешности γ , не превышают $\pm 1,0$ %.

6.4 Проверка идентификационных данных ПО

Идентификационные данные ПО датчика отображается в левой части окна программы «Конфигуратор датчика уровня топлива УРОВЕНЬ М1» в строке «Приложение СRС», версия ПО программы «Конфигуратор датчика уровня топлива УРОВЕНЬ М1» отображается в заголовке программы.

7 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 7.1 Результаты поверки датчика оформляют протоколом произвольной формы.
- 7.2 При положительных результатах поверки оформляют свидетельство о поверке или вносят запись в паспорт при этом запись должна быть удостоверена подписью поверителя и знаком поверки.
- 7.3 При отрицательных результатах поверки датчик к эксплуатации не допускают, свидетельство о поверке аннулируют и выдают извещение о непригодности с указанием причин.

Разработали:

Начальник лаборатории 449 ФБУ «Ростест-Москва»

А.А. Сулин

Инженер по метрологии 1-ой категории лаборатории 449 ФБУ «Ростест-Москва»

И.В. Беликов