ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УНИТАРНОЕ ПРЕДПРИЯТИЕ

ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ РАСХОДОМЕТРИИ (ФГУП «ВНИИР»)

УТВЕРЖДАЮ

Первый заместитель директора по научной работе — заместитель директора по качеству ФГУП «ВНИИР» В.А. Фафурин 13 м заме февраля 2016 г.

ИНСТРУКЦИЯ

Государственная система обеспечения единства измерений Контроллеры измерительные FloBoss S600+

Методика поверки

MΠ 0392-13-2016

1 p 64224-16

2

РАЗРАБОТАНА ФГУП «ВНИИР»

АО «ПГ «Метран»

УТВЕРЖДЕНА ФГУП «ВНИИР»

Настоящая инструкция распространяется на Контроллеры измерительные FloBoss S600+ (далее – контроллеры) производства **A**O «ПГ «Метран» и устанавливает методику их первичной и периодической поверок.

Контроллеры измерительные FloBoss S600+ (далее – контроллеры) предназначены для измерений и преобразований сигналов измерительных преобразователей температуры, расхода, давления, плотности в измеряемые величины, расчета по измеренным значениям расхода массы и объема нефти, нефтепродуктов, жидких углеводородных сред, объемного расхода и объема природного газа.

Интервал между поверками – 4 года.

1 ОПЕРАЦИИ ПОВЕРКИ

1.1 При проведении поверки выполняют следующие операции, указанные в таблице 1.

Таблица 1			
		Проведение операции при:	
Наименование операции	Номер пункта методики поверки	первичной поверке	периодической поверке
1	2	3	4
Внешний осмотр	6.1	Да	Да
Опробование	6.2	Да	Да
Подтверждение соответствия программного обеспечения	6.3	Да	Да
Определение метрологических характеристик контроллера:	6.4		
 определение приведенной к диапазону измерений, погрешности при измерении напряжения определение приведенной к 	6.4.1	Да	Да
диапазону измерений, погрешности при измерении силы постоянного тока	6.4.2	Да	Да
- определение относительной погрешности при измерении частоты	6.4.3	Да	Да
 определение абсолютной погрешности при измерении количества импульсов 		Да	Да
- определение абсолютной погрешности при измерении и преобразовании сопротивления в температуру	6.4.5	Да	Да
 определение приведенной погрешности при воспроизведении силы 		, ,	,
постоянного тока	6.4.6	Да	Да
- определение суточного хода часов	6.4.7	Да	Нет
Оформление результатов поверки	7	Да	Да
Примечание - При проведени	ии периоличес	บานสอบท มีการ	определиот

Примечание - При проведении периодической поверки определяют метрологические характеристики только тех измерительных каналов и алгоритмов, которые задействованы в конкретной конфигурации контроллера.

2 СРЕДСТВА ПОВЕРКИ

- 2.1 При проведении поверки применяют следующие средства поверки:
- мультиметр 3458A, погрешность измерений напряжения постоянного тока $\pm (0.5 \cdot 10^{-6} \text{ИВ} + 0.05 \cdot 10^{-6} \text{ВПИ})$ в диапазоне (0-10) В погрешность измерений силы постоянного тока $\pm (25 \cdot 10^{-6} \text{ИВ} + 4 \cdot 10^{-6} \text{ВПИ})$ в диапазоне (0-100) мA;
- калибратор многофункциональный портативный Метран-510-ПКМ, диапазон воспроизведения силы постоянного тока (0-25) мА, погрешность (0,0075 % ИВ+1 мкА), диапазон воспроизведения напряжения постоянного тока (0-0,1)В, погрешность (0,0075 % +5 мкВ), (0,1-1)В, погрешность (0,0075 % +0,05 мВ), (1-5)В, погрешность (0,0075 % +0,25 мВ);
- генераторы сигналов произвольной формы AFG3021, диапазон частот синусоидального сигнала 20 МГц, пределы допускаемой относительной погрешности установки частоты $\pm 1 \times 10^{-6}$;
- мера электрического сопротивления постоянного тока многозначная Р 3026, диапазон установки сопротивления от 0,01 до 111111,1 Ом, относительная погрешность установки сопротивления R, в процентах $\delta = \pm \left[0,002 + 1,5 \cdot 10^{-6} \left(\frac{111111,1}{R} 1\right)\right];$
- гигрометр психрометрический ВИТ, модели ВИТ-2, диапазон измерения температуры от 15 до 40 °C, цена деления шкалы 0,2 °C, диапазон измерения относительной влажности от 20 до 90%, абсолютная погрешность измерения относительной влажности не более $\pm 7\%$;
- ЭВМ с установленным программным обеспечением CONFIG600 или WEBсервером, предназначенными для настройки и конфигурирования контроллера; подключенным тайм-сервером ФГУП «ВНИИФТРИ» с использованием протокола NTP.
- 2.2 Применяемые при поверке средства измерений должны быть поверены и иметь действующие свидетельства о поверке или поверительные клейма.
- 2.3 Допускается применять другие средства поверки, обеспечивающие определение и контроль метрологических характеристик поверяемого контроллера с требуемой точностью.

3 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

3.1 При проведении поверки необходимо соблюдать требования ГОСТ 12.2.007.0-75 и требования безопасности, установленные в технической документации на применяемые средства поверки.

3.2 К поверке допускаются лица, изучившие настоящую методику, эксплуатационную документацию на контроллеры и средства поверки и прошедшие инструктаж по охране труда.

4 УСЛОВИЯ ПОВЕРКИ

- 4.1. При проведении поверки должны соблюдаться следующие условия:
- температура окружающего воздуха (23±5) °C;
- относительная влажность воздуха до 80 %;
- атмосферное давление от 84 до 106,7 кПа;
- напряжение питания постоянного тока $(24 \pm 1,2)$ В.

Вибрация и внешнее магнитное поле (кроме земного) отсутствуют.

5 ПОДГОТОВКА К ПОВЕРКЕ

Перед проведением поверки контроллера выполняют следующие подготовительные работы:

- 5.1 Проверяют комплектность эксплуатационной документации на контроллер.
- 5.2 Проверяют наличие действующих свидетельств о поверке или наличие знаков поверки на используемые средства поверки.
- 5.3 Проверяют работоспособность контроллера и средств поверки в соответствии с руководством по эксплуатации.
- 5.4 Проводят монтаж средств поверки согласно структурным схемам указанным в руководстве по эксплуатации.
 - 5.5 Включают и прогревают контроллер и средства поверки не менее 30 минут.
- 5.6 Остальную подготовку проводят согласно требованиям документации изготовителя контроллера и руководствам по эксплуатации средств поверки.

6 ПРОВЕДЕНИЕ ПОВЕРКИ

6.1 Внешний осмотр.

При внешнем осмотре должны быть установлены:

- соответствие комплектности контроллера;
- соответствие маркировки требованиям, предусмотренным эксплуатационной документацией;
- отсутствие механических повреждений, коррозии, нарушения покрытий, надписей и отсутствие других дефектов.

6.2 Опробование.

При опробовании проверяют работоспособность контроллера в соответствии с руководством по эксплуатации без определения метрологических характеристик.

Проверку проводят путем подачи на входы контроллера сигналов, имитирующих сигналы от первичных преобразователей. Результаты проверки считаются положительными, если при увеличении/уменьшении значения входного сигнала соответствующим образом изменяются значения измеряемой величины, для импульсных каналов должно наблюдаться равномерное увеличение соответствующих величин.

6.3 Подтверждение соответствия программного обеспечения.

Выполняют проверку идентификационных признаков ПО в соответствии с руководством по эксплуатации в следующей последовательности:

- 1. Включить питание контроллера;
- 2. Дождаться завершения самодиагностики и загрузки контроллера;
- 3. Из основного меню выбрать пункт:
 - **5* SYSTEM SETTINGS**
- 4. Выбирать пункт меню:

7 SOFTWARE VERSION

5. При помощи навигационных клавиш переместиться на страницу:

VERSION CONTROL

FILE CSUM

- 6. Считать цифровой идентификатор ПО (SW);
- 7. При помощи навигационных клавиш переместиться на страницу:

VERSION CONTROL

APPLICATION SW

8. Считать номер версии (идентификационный номер).

Идентификационные признаки должны соответствовать указанным в описании типа.

- 6.4 Определение метрологических характеристик контроллера.
- 6.4.1 Определение приведенной к диапазону измерений, погрешности при измерении напряжения.

На входе измерительного канала напряжения при помощи калибратора Метран-510-ПКМ задают значение входного сигнала напряжения U_{zad} и контролируют его при помощи мультиметра 3458A, соответствующего проверяемой точке диапазона измерений, и считывают значение входного сигнала с дисплея контроллера U_{izm} . Задается не менее пяти значений измеряемого параметра, равномерно распределенных в пределах диапазона измерений, включая крайние точки диапазона.

Рассчитывают погрешность, приведенную к диапазону измерений L, в процентах, по формуле:

$$\gamma_U = \frac{U_{izm} - U_{zad}}{L} 100. \tag{1}$$

Результаты поверки считаются положительными, если рассчитанная погрешность при измерении напряжения не превышает ±0,015 %.

6.4.2 Определение приведенной к диапазону измерений, погрешности при измерении силы постоянного тока

На входе измерительного канала силы постоянного тока при помощи калибратора Метран-510-ПКМ задают значение входного сигнала силы постоянного тока I_{zad} и контролируют его при помощи мультиметра 3458A, соответствующего проверяемой точке диапазона измерений, и считывают значение входного сигнала с дисплея контроллера I_{izm} . Задается не менее пяти значений измеряемого параметра,

равномерно распределенных в пределах диапазона измерений, включая крайние точки диапазона.

Рассчитывают погрешность, приведенную к диапазону измерений L2, в процентах, по формуле:

$$\gamma_{I} = \frac{I_{izm} - I_{zad}}{L2} 100. \tag{2}$$

Результаты поверки считаются положительными, если рассчитанная погрешность при измерении силы постоянного тока не превышает ± 0.02 %.

6.4.3 Определение относительной погрешности при измерении частоты

На вход измерительного канала частоты при помощи генератора AFG3021 задают значения выходного сигнала частоты v_{zxd} , соответствующего поверяемой точки диапазона измерений, и считывают значение выходного сигнала с дисплея контроллера v_{izm} . Задается не менее пяти значений измеряемого параметра, равномерно распределенных в пределах диапазона измерений, включая крайние точки диапазона.

Рассчитывают относительную погрешность измерения частоты в процентах, по формуле:

$$\delta_{v} = \frac{v_{izm} - v_{zad}}{v_{zad}} 100. \tag{3}$$

Результаты поверки считаются положительными, если рассчитанная погрешность при измерении не превышает $\pm 0,002$ %.

6.4.4 Определение абсолютной погрешности при измерении количества импульсов

На вход измерительного канала счета импульсов при помощи генератора AFG3021 задают пачку импульсов N_{zad} не менее 30000 импульсов при частоте соответствующей рабочей частоте контроллера. Счет импульсов контролируют при помощи частотомера Ч3. Проверку проводят для трех частот: 50, 5000 и 10000 Гц. Считывают значение измеренного количества импульсов с дисплея контроллера N_{irm} .

Рассчитывают абсолютную погрешность измерения количества импульсов, по формуле:

$$\Delta_N = N_{izm} - N_{zad}. \tag{4}$$

Результаты поверки считаются положительными, если рассчитанная погрешность при измерении количества импульсов не превышает ± 1 на 10000 импульсов.

6.4.5 Определение абсолютной погрешности при измерении и преобразовании сопротивления в температуру

На входе измерительного канала ввода сигналов термометра сопротивления при помощи меры электрического сопротивления Р 3026 устанавливают сопротивление, имитирующее задаваемую температуру T_{zxd} соответствующую поверяемой точке диапазона измерений и считывают с дисплея вычислителя измеренную температуру T_{tzm} . Измерения проводят менее чем для пяти значений измеряемого параметра, равномерно распределенных в пределах диапазона измерений, включая крайние точки диапазона, рекомендуется выбирать следующие значения: T_{min} , T_{min} + 0,25 $\left(T_{max} - T_{min}\right)$, T_{min} + 0,5 $\left(T_{max} - T_{min}\right)$, T_{max} . Значеиия T_{min} и T_{max} соответствуют

нижнему и верхнему пределу диапазона измерений. Значения сопротивлений, устанавливаемых на магазине сопротивлений, рассчитывают по ГОСТ 6651-2009 для платиновых термопреобразователей сопротивления Pt100 ($\alpha = 0.00385$ °C⁻¹, $R_0 = 100$ Ом).

Рассчитывают абсолютную погрешность по каналу ввода сигналов термометра сопротивления, по формуле

$$\Delta_T = T_{izm} - T_{zad} \,. \tag{5}$$

Результаты поверки считают положительными, если рассчитанная погрешность не превышает

 $\pm 0,06$ °С в диапазоне измеряемых температур от минус 100 до 200 °С;

 $\pm 0,1$ °С в диапазоне температур от 200 до 300 °С.

6.4.6 Определение приведенной погрешности при воспроизведении силы постоянного тока

На соответствующих контактах канала вывода аналоговых сигналов тока контроллером генерируют постоянный ток I_{out} , который контролируется при мультиметра 3458**A** I_{out_e} . Задается не менее пяти значений измеряемого параметра, равномерно распределенных в пределах диапазона измерений, включая крайние точки диапазона.

Рассчитывают погрешность, приведенную к диапазону измерений L_{out} , в процентах, по формуле

$$\gamma_{I_{out}} = \frac{I_{out} - I_{out_e}}{L_{out}} 100.$$
 (6)

Результаты поверки считают положительными, если рассчитанная погрешность не превышает $\pm 0,1$ %.

6.4.7 Определение суточного хода часов.

Устанавливают часы ЭВМ по тайм-серверу группы тайм-серверов ФГУП «ВНИИФТРИ» с использованием протокола NTP. На ЖК-дисплее контроллера устанавливают индикацию времени, на дисплее ЭВМ устанавливают индикацию показаний часов. Фиксируют начальное значение τ_n поправки часов контроллера как разность показаний часов контроллера и часов ЭВМ в секундах. Проверку продолжают в течении времени не менее 48 часов. По окончании проверки фиксируют конечное значение τ_k поправки часов контроллера как разность показаний часов контроллера и часов ЭВМ в секундах.

Рассчитывают значение суточного хода часов по формуле

$$\Delta_{\tau} = \frac{\tau_n - \tau_k}{2} \tag{7}$$

Результаты считают положительными, если суточный ход часов находится в пределах $\pm 0,5$ с/сут.

Примечание - Проверку по п. 6.4.7 допускается проводить одновременно с другими проверками.

7 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 7.1. Результаты поверки заносят в протокол произвольной формы.
- 7.2. Положительные результаты поверки оформляют свидетельством о поверке или ставят знак поверки в паспорт в соответствии с документом «Порядок проведения

поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке», утвержденным приказом Минпромторга России 2 июля 2015 года №1815 (далее – Порядок проведения поверки).

7.3. При отрицательных результатах поверки контроллер не допускают к применению и выполняют процедуры, предусмотренные Порядком проведения поверки.