УТВЕРЖДАЮ

Директор

М.В.Гоголинский

К.В.Гоголинский

2016 г

Преобразователи измерительные «ИП Марсен-ПКЭ»

Методика поверки

MII 2203-0295-2015

NP64429-16

Руководитель лаборатории электроэнергетики ФГУП "ВНИИМ им. Д.И.Менделеева" Е.З.Шапиро "___" 2016 г.

СОДЕРЖАНИЕ

1 ВВЕДЕНИЕ	3
2 ОПЕРАЦИИ ПОВЕРКИ	
3 СРЕДСТВА ПОВЕРКИ	
4 УСЛОВИЯ ПОВЕРКИ	
5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ	
6 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ	4
7 ПРОВЕДЕНИЕ ПОВЕРКИ	4
7.1 Внешний осмотр	
7.2 Подготовка к поверке	
7.3 Опробование	5
7.4 Определение метрологических характеристик	
7.5 Проверка программного обеспечения	
8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ	16
Приложение А .Схемы подключения Прибора для определения погрешностей	
Приложение Б. Метрологические и технические характеристики	21
Приложение В. Протокол поверки	35

1 Введение

Настоящая методика распространяется на преобразователи измерительные «ИП Марсен-ПКЭ» (далее ИП) и устанавливает объем, условия поверки, методы и средства экспериментального исследования метрологических характеристик и порядок оформления результатов поверки.

Допускается проведение поверки ИП меньшего числа величин или на меньшем числе поддиапазонов измерений, на основании письменного заявления владельца ИП. Соответствующая запись должна быть сделана в свидетельстве о поверке.

Интервал между поверками – 8 лет.

2 Операции поверки

При проведении поверки должны быть выполнены следующие операции в соответствии с таблицей 2.1.

Таблица 2.1

Наименование операций	Номер пункта		операции при
	методики	первичной и после ремонта	периодической
Внешний осмотр	7.1	Да	Да
Подготовка к поверке	7.2	Да	Да
Опробование	7.3	Да	Да
Определение метрологических характеристик	7.4	Да	Да
Проверка программного обеспечения	7.5	Да	Да

3 Средства поверки

При проведении поверки рекомендуется применять средства и вспомогательное оборудование, указанные в таблице 3.1

Таблица 3.1

Наименование оборудования	Основные характеристики	Пункты методики поверки
Установка поверочная универсальная УППУ-МЭ 3.1КМ	ФИФОЕИ № 57346-14.	7.4
Меры электрического сопротивления универсальные однозначные МС 3080М	с номинальными значениями 0,1 Ом и/или 10 Ом ФИФОЕИ № 61295-15.	7.4
(IIK)	Операционная система и программа – браузер, адаптер Ethernet IEEE 802.3	7.4
частотомер электронно- счетный вычислительный Ч3-64	частотомер электронно-счетный относительная погрешность $\pm 0,5\cdot 10^{-6}$	7.4
или Осциллограф TDS 2012 B	осциллограф двухканальный. Полоса частот — от 0 до 100 МГц, горизонтальная развертка — 5 нс/дел 50 с/дел.; погрешность ±(0,62 нс 0,2 с)	
Модуль коррекции времени МКВ-02Ц	ФИФОЕИ № 44097-10	7.4
Сервер точного времени	Протокол PTP (ANSI/IEEE 1588-2002*Approved 2008-09-10)	7.4

Все применяемые средства измерений должны иметь действующие свидетельства о поверке.

Работа со средствами измерений должна производиться в соответствии с их эксплуатационной документацией.

Допускается применение других средств поверки и вспомогательного оборудования, обеспечивающих измерение соответствующих параметров с требуемой точностью.

4 Условия поверки

4.1 При проведении поверки должны быть соблюдены следующие условия:

- температура окружающего воздуха, °C

- относительная влажность воздуха, %

30 - 80; 84–106,7(630-800);

23 ± 5 °C:

- атмосферное давление, кПа (мм рт. ст.)
 4.2 При проведении поверки должны отсутствовать:
- внешние электрические и магнитные поля, влияющие на работоспособность ИП;
- вибрация, тряска, удары, воздействующие на работоспособность ИП.
- 4.3 Установка и подготовка ИП к поверке, включение соединительных устройств, заземление, выполнение операций при проведении контрольных измерений осуществляется в соответствии с эксплуатационной документацией.
- 4.4 Перед проведением поверки поверяемые ИП следует прогреть в течение не менее 20 мин, подключением напряжения питания.

5 Требования безопасности

Требования безопасности должны соответствовать рекомендациям, изложенным в эксплуатационной документации на поверяемые средства измерений.

Должны соблюдаться действующие "Правила технической эксплуатации электроустановок потребителей", "Правила техники безопасности при эксплуатации электроустановок потребителей", а также требования ГОСТ 12.3.019-80.

При проведении работ по поверке ИП должны соблюдаться действующие Правила Устройства Электроустановок (ПУЭ). Перед поверкой средства измерений, которые подлежат заземлению, должны быть надежно заземлены. Присоединение зажимов защитного заземления к контуру заземления должно производиться ранее других соединений, а отсоединение – после всех отсоединений.

6 Требования к квалификации поверителей

К проведению измерений по поверке допускаются лица:

- имеющие опыт работы со средствами измерений электрических величин и приборами качества электроэнергии;
- изучившие руководство по эксплуатации поверяемого устройства и методику поверки конкретного типа устройства;
 - аттестованные в качестве поверителей средств измерений электрических величин;
- обученные в соответствии с ССБТ по ГОСТ 12.0.004-79 и имеющие квалификационную группу не ниже III, согласно действующим «Правилам технической эксплуатации электроустановок потребителей».

7 Проведение поверки

7.1 Внешний осмотр

При проведении внешнего осмотра ИП проверяют:

- соответствие комплектности перечню, указанному в паспорте ИП;
- соответствие серийного номера указанному в паспорте;
- маркировку и наличие необходимых надписей на наружных панелях;

- разборные контактные соединения должны иметь маркировку, а резьба винтов и гаек должна быть исправна;
 - на корпусе ИП не должно быть трещин, царапин, забоин, сколов.

Результат внешнего осмотра считают положительным, если комплектность и серийный номер соответствуют указанным в паспорте, маркировка и надписи на наружных панелях соответствуют эксплуатационной документации, а также отсутствуют механические повреждения, способные повлиять на работоспособность ИП.

7.2 Подготовка к поверке

При подготовке к поверке необходимо выполнить следующие операции:

- выдержать ИП в условиях окружающей среды, указанных в п.3, не менее 1ч, если он находился в климатических условиях, отличающихся от указанных в п.3;
 - соединить зажимы заземления используемых средств поверки с контуром заземления;
 - собрать схему проверки в соответствии с рисунком А1 приложения А;
- включить питание и прогрейте ИП при отсутствии входных сигналов в течение 20 мин;
 - включить ПК.

На ПК откройте web-браузер и в адресной строке введите IP-адрес ИП.

Включить и прогреть эталонные СИ в соответствии с их эксплуатационной документацией.

Примечание - допускается во время прогрева аппаратуры проводить опробование.

7.3 Опробование

Проверка функционирования ИП проводится следующим образом:

- а) произведите подготовку ИП к работе согласно руководству по эксплуатации;
- б) включите ИП, при включении питания должна включиться индикатор «Питание», а через несколько секунд должны завершиться процедуры самотестирования и инициализации;
 - в) подключите ПК к входу Ethernet ИП;
- включите ПК и откройте web-браузер, в адресной строке введите IP-адрес Вашего ИП (по формуляру);
- связь ИП с ПК должна устанавливаться автоматически, что индицируется миганием зеленого-желтого индикатора «Ethernet» на лицевой панели ИП;
- проверьте возможность переключения страниц «ТЕКУЩИЕ» «ПРОФИЛИ», корректность индикации даты и наличие хода часов (счет секунд);
- г) проверьте сохранность введенных в память ИП профилей (см. Руководство оператора) при исчезновении напряжения питания, выключением и повторным включением ИП через 5 мин.

Результаты проверки считаются положительным, если ИП функционирует согласно руководству по эксплуатации.

7.4 Определение метрологических характеристик

В ходе поверки по настоящей методике определяются основные метрологические характеристики, а именно погрешность измерения следующих величин:

- частоты сети и отклонения частоты сети;
- установившегося отклонения напряжения;
- отрицательного отклонения напряжения и положительного отклонения напряжения;
- суммарных коэффициентов гармонических составляющих напряжения и тока (коэффициентов искажения синусоидальности напряжений и токов);
 - коэффициентов гармонических составляющих напряжения и тока порядка h;
 - среднеквадратического значения напряжения гармонической подгруппы порядка h;
- среднеквадратического значения напряжения интергармонической подгруппы порядка h;
 - коэффициента несимметрии напряжения по обратной последовательности;
 - коэффициента несимметрии напряжения по нулевой последовательности;
 - напряжения и тока прямой последовательности;
 - напряжения и тока обратной последовательности;

- напряжения и тока нулевой последовательности.

С целью снижения трудоемкости рекомендуется групповой метод проверки погрешностей измерений, когда в каждом режиме считываются все параметры в файл данных и в рабочем диапазоне измерений параметра рассчитывается погрешность.

При работе с УППУ-МЭ 3.1КМ руководствоваться документом МС2.702.500 РЭ.

Режим измерений (значения токов, напряжений и других параметров электрической сети) задается УППУ-МЭ 3.1КМ. По истечении времени установления режима (30 с) регистрируют значения измеренных ИП параметров по показаниям на странице «Текущие значения» и рассчитывают погрешности измерений. Предельные значения погрешности измерения параметров заносятся в протокол».

7.4.1 Расчет погрешности измерения параметров

Расчет погрешности измерения параметров ИП проводят по следующим формулам:

7.4.1.1 Основную приведенную погрешность измерения параметров определяют по формуле (1).

$$\gamma = \frac{X_{H} - X_{9}}{X_{K}} \cdot 100 \tag{1}$$

где:

 $X_{\mathfrak{I}}$ - действительное значение измеряемого параметра по эталонному СИ;

 $X_{\it W}$ - значение измеряемого параметра, отображаемое в окне браузера, который опрашивает встроенный WEB-сервер ИП;

 X_{K} - нормирующее значение измеряемого параметра. За нормирующее значение параметра принимают его номинальное значение.

7.4.1.2 Основную относительную погрешность измерения параметров определяют по формуле (2).

$$\delta = \frac{X_{\mathcal{H}} - X_{\mathcal{H}}}{X_{\mathcal{H}}} \cdot 100 \tag{2}$$

Основную абсолютную погрешность измерения параметров определяют по формуле (3).

$$\Delta = X_{\mu} - X_{\Im} \tag{3}$$

Допускается считывание измеренных значений и расчет погрешностей производить с помощью ПК с установленным прикладным программным обеспечением, подключенном к ИП и к установке УППУ-МЭ 3.1КМ по последовательным интерфейсам.

7.4.2 Определение метрологических характеристик ИП

7.4.2.1 Определение погрешности измерения параметров электрической сети

Произведите определение погрешности измерения, частоты сети и отклонения частоты сети, установившегося отклонения напряжения, отрицательного отклонения напряжения и положительного отклонения напряжения, суммарных коэффициентов гармонических составляющих напряжения и тока (коэффициентов искажения синусоидальности напряжений и токов), коэффициентов гармонических составляющих напряжения и тока порядка h, среднеквадратического значения напряжения гармонической подгруппы порядка h, среднеквадратического значения напряжения интергармонической подгруппы порядка h, для всех значений номинального напряжения U_{ин} и номинального тока l_н или напряжения кодирующего сигнал тока U_{ін} при испытательных сигналах с параметрами, приведенными в таблицах 7.1 и 7.2.

Определение погрешности при измерении параметров тока проводить только для модификаций с измерительными каналами тока.

Определение погрешности должно проводится с помощью установки УППУ-МЭ 3.1К (далее по тексту — Установка) и прибора электроизмерительного эталонного многофункционального Энергомонитор-3.1КМ.

Значения коэффициентов спектральных составляющих $(K_{U(n)}, K_{I(n)})$ и углов фазового сдвига между первой гармоникой и другими спектральными составляющими (ϕ_n, \circ) для сигналов типов 1, 1a, 2, 2a, 3, 3a, 4 и 4 а представлены в таблице 7.5.

Значения коэффициентов гармонических (п — целое число) и интергармонических (п — дробное число от 0,5 до 50,5 с дискретностью 1,0) составляющих ($K_{U(n)}$, $K_{I(n)}$) и углов фазового сдвига между первой гармоникой и другими спектральными составляющими (ϕ_n , °) для сигналов типов 5 и 6 представлены в таблице 7.3.

Таблица 7.1

Параметры испытательных сиг	налов		Номер испытательного сигнала							
		1	2	3	4	5	6			
Среднеквадратическое значение	фаза А	0,9U _{UH}	0,96U _{UH}	0,95U _{UH}	U _{UH}	0,05U _{UH}	1,2U _{UH}			
первой гармоники фазных	фаза В	0,9U _{UH}	0,95U _{UH}	0,86U _{UH}	1,2 U _{UH}	$0.05U_{U_{\rm H}}$	0,4U _{UH}			
напряжений, % от Uн	фаза С	0,9U _{UH}	U _{UH}	1,05U _{UH}	0,95U _{UH}	0,05U _{UH}	0,4U _{UH}			
Углы между первыми	между	-120,00	-118,00	-130,00	-150,00	-120,00	-120,00			
гармониками фазных	U _в и		,	,	, , , , ,	,	,00			
напряжений, градус	U _A									
- · · ·	между	120,00	121,00	115,00	110,00	120,00	120,00			
	U _C и						,			
***	U _A									
Частота, Гц		55,000	48,994	49,793	50,188	55,000	52,500			
Отклонение частоты, Гц		5,000	-1,006	-0,207	0,188	5,000	2,500			
Коэффициенты спектральных	фаза А	Тип 2	Тип 2а	Тип 4а	Тип 4	Тип 2	Тип 6*			
(гармонических или	фаза В	Тип 4	Тип За	Тип 2а	Тип 4а	Тип 4	Тип 6*			
интергармонических)	фаза С	Тип 4а	Тип 2	Тип За	Тип 2а	Тип 4а	Тип 6*			
составляющих напряжения, % от										
U_1										
Среднеквадратическое значение	фаза А	50	25	10	40	10	25			
первой гармоники сигнала токов,	фаза В	60	30	25	15	12	10			
$\%$ от I_H или от U_{i_H}	фаза С	60	15	40	20	12	25			
Углы между первыми	фаза А	30,00	90,00	-30,00	30,00	30,00	0,00			
гармониками напряжения и тока	фаза В	90,00	60,00	-90,00	90,00	90,00	0,00			
одной фазы, градус	фаза С	60,00	30,00	-60,00	60,00	60,00	60,00			
Коэффициенты спектральных	фаза А	Тип 2	Тип 1а	Тип 4	Тип 4а	Тип 2	Тип 6			
(гармонических или	фаза В	Тип 2	Тип 1а	Тип 4а	Тип 4	Тип 2	Тип 6			
интергармонических)	фаза С	Тип 4а	Тип 2	Тип 1а	Тип 2а	Тип 4а	Тип 6			
составляющих сигнала тока, %										
от I_1 или от U_{in}										
Потрименти						1				

Примечания:

 $U_{\text{ин}}$, I_{H} , $U_{\text{iн}}$ — номинальные напряжение, тока или сигнала тока кодированного напряжением для данного исполнения ИП

Таблина 7.2

_{1a}	блица	_	-													
	ТИП	1	ТИП	1 a	ТИП	2	тип	2a	ТИП	13	ТИП	3a	ТИГ	ı 4	ПИТ	4a
l _n	$K_{U(n)}$		$K_{U(n)}$		$K_{U(n)}$		K _{U(n)}		$K_{U(n)}$		K _{U(n)}	_	$K_{U(n)}$		$K_{U(n)}$	
~	$(K_{I(n)}),$	φ _n , °	$(K_{I(n)}),$	ϕ_n , °	$(K_{I(n)}),$	φ _n , °	$(K_{I(n)}),$	φ _n , °	(K _{I(n)}),	φ _n , °	$(K_{I(n)}),$	φ _n , °	$(K_{I(n)}),$	φ _n , °	$(K_{I(n)}),$	φ _n , °
	%		%		%		%		%		%	, .	`%		%	
2	0	0	0	0	1	-120	4	0	0	0	0	0	3	0	2	0
3	0	0	0	0	1	0	4	0	0	0	0	0	7,5	30	5	0
4	0	0	0	0	1	120	4	0	0	0	0	0	1,5	0	1	0
5	0	0	0	0	1	-120	4	0	0	0	0	0	9	60	6	0
6	0	0	0	0	1	0	4	0	0	0	0	0	0,75	0		
7	0	0	0	0	1	120	4	0	0	0	0	0			0,5	0
8	0	0	0	0	1								7,5	90	5	0
9	0	0	0	0	1	-120	4	0	0	0	0	0	0,75	0	0,5	0
10	0		30			0	4	0	0	0	0	0	2,25	120	1,5	0
$\overline{}$		0		0	1	120	4	0	10	0	0	0	0,75	0	0,5	0
11	0	0	0	0	1	-120	4	0	0	0	0	0	5,25	150	3,5	0
12	0	0	0	0	1	0	4	0	0	0	0	0	0,3	0	0,2	0
13	0	0	0	0	1	120	4	0	0	0	0	0	4,5	180	3	0
14	0	0	0	0	1	-120	4	0	0	0	0	0	0,3	0	0,2	0
15	0	0	0	0	1	0	4	0	0	0	0	0	0,45	-150	0,3	0
16	0	0	0	0	1	120	4	0	0	0	0	0	0,3	0	0,2	0
17	0	0	0	0	1	-120	4	0	0	0	0	0	3	-120	2	0
18	0	0	0	0	1	0	4	0	0	0	0	0	0,3	0	0,2	0
19	0	0	0	0	1	120	4	0	0	0	0	0	2,25	-90	1,5	0
20	0	0	20	0	1	-120	4	0	20	0	20	0	0,3	0	0,2	0
21	0	0	0	0	1	0	4	0	0	0	0	0		-60		
22	0	0	0	0	1	120	4	0	0	0	0		0,3		0,2	0
23	0	0	0	0	1				-			0	0,3	0	0,2	0
24	0	0	0	0		-120	4	0	0	0	0	0	2,25	-30	1,5	0
		-			1	0	4	0	0	0	0	0	0,3	0	0,2	0
25	0	0	0	0	1	120	4	0	0	0	0	0	2,25	0	_1,5	0_
26	0	0	0	0	1	-120	4	0	0	0	0	0	0,3	0	0,2	0
27	0	0	0	0	1	0	4	0	0	0	0	0	0,3	_30	0,2	0
28	0	0	0	0	1	120	4	0	0	0	0	0	0,3	0	0,2	0
29	0	0	0	0	1	-120	4	0	0	0	0	0	1,92	60	1,32	0
30	0	0	10	0	1	0	4	0	5	0	10	0	0,3	0	0,2	0
31	0	0	0	0	1	120	4	0	0	0	0	0	1,86	90	1,25	0
32	0	0	0	0	1	-120	4	0	0	0	0	0	0,3	0	0,2	0
33	0	0	0	0	1	0	4	0	0	0	0	0	0,3	120	0,2	0
34	0	0	0	0	1	120	4	0	0	0	0	0	0,3	0	0,2	0
35	0	0	0	0	1	-120	4	0	0	0	0	0	1,70	150	1,13	0.
36	0	0	0	0	1	0	4	0	0	0	0	0	0,3	0	0,2	$\frac{0}{0}$
37	0	0	0	0	$\frac{1}{1}$	120	4	0	0	0	0	0				
38	0	0	0	0	1	-120	4	0	0	0	0	0	1,62	180	1,08	0
39	0	0	0	0	1	0							0,3	0	0,2	0
40	0	0	5	0			4	0	0	0	0	0	0,3	-150	0,2	0
41	0				1	120	4	0	5	0	5	0	0,3	0	0,2	0
_		0	0	0	11	-120	4	0	0	0	0	0	1,5	-120	1,0	0
42	0	0	0	0	1	0	4	0	0	0	0	0	0,3	0	0,2	0
43	0	0	0	0	11	120	4	0	0	0	0	0	1,5	-90	1,0	0
44	0	0	0	0	1	-120	4	0	0	0	0	0	0,3	0	0,2	0
45	0	0	0	0	1	0	4	0	0	0	0	0	0,3	-60	0,2	0
46	0	0	0	0	1	120	4	0	0	0	0	0	0,3	0	0,2	0
47	0	0	0	0	1	-120	4	0	0	0	0	0	1,5	-30	1,0	0
48	0	0	0	0	1	0	4	0	0	0	0	0	0,3	0	0,2	0
49	0	0	0	0	1	120	4	0	0	0	0	0	1,5	0	1,0	0
50	0	0	2	0		-120	4	0	2	0	2	0	0,3	0	0,2	0
При	мечани			1									0,5	V J	0,2	<u> </u>
1 -1			-m -19													

Примечание - $n=f_n/f_1$, где: f_n- частота спектральной составляющей, Γ ц, f_1- частота основной (первой) гармоники, Γ ц

Таблица 7.3

п	тип 5	5	тип	6	n	тип	5	тип б	
	K _{U(n)}	Øn. °	K _{U(n)}	φ _n , °	<u> </u>	$K_{U(n)}$	φ _n , °	K _{U(n)}	φ _n , °
	$(K_{I(n)}), \%$		$K_{U(n)}$ $(K_{I(n)}), \%$	T 11,		$(K_{I(n)}), \%$	Ψι,	$(K_{I(n)}), \%$	Ψn,
0,5	1	-120	0	0	25,5	1	120	0	0
	1	0	100	0	26	1	-120	0	0
1,5	1	0	0	0	26,5	1	-120	0	0
2	1	-120	0	0	27	1	0	0	0
2,5	1	-120	5	0	27,5	1	0	0	0
3	1	0	5	0	28	1	120	0	0
3,5	1	0	0	0	28,5	1	120	0	0
4	1	120	0	0	29	1	-120	0	0
4,5	1	120	0	0	29,5	1	-120	0	0
5	1	-120	0	0	30	1	0	0	0
5,5	1	-120	0	0	30,5	1	0	0	0
6	1	0	0	0	31	1	120	0	0
6,5	1	0	0	0	31,5	1	120	0	0
7	1	120	0	0	32	1	-120	0	0
7,5	1	120	0	0	32,5	1	-120	0	0
8	1	-120	0	0	33	1	0	0	$\frac{0}{0}$
8,5	11	-120	0	0	33,5	1	0	0	0
9	11	0	0	0	34	1	120	0	0
9,5	1	00	0	0	34,5	1	120	0	0
10	1	120	0	0	35	1	-120	0	0
10,5	1	120	0	0	35,5	1	-120	0	0
11	1	-120	0	0	36	1	0	0	0
11,5	1	-120	0	0	36,5	1	0	0	0
12	1	0	0	0	37	1	120	0	0
12,5	1	0	0	0	37,5	1	120	0	0
13	1	120	0	0	38	1	-120	0	0
13,5	1	120	0	0	38,5	1	-120	0	0
14	1	-120	0	0	39	1	0	5	0
14,5	1	-120	0	0	39,5	1	0	0	0
15	1	_ 0	5	0	40	1	120	0	0
15,5	1	0	0	0	40,5	1	120	5	0
16	1	120	0	0	41	1	-120	0	0
16,5	1	120	0	0	41,5	1	-120	0	0
17	1	-120	0	0	42	1	0	0	0
17,5	1	-120	0	_ 0	42,5	1	0	0	0
18	1	0	0	0	43	1	120	0	0
18,5	1	0	5	0	43,5	1	120	0	0
19	1	120	0	0	44	1	-120	0	0
19,5	1	120	0	0	44,5	1	-120	0	0
20	1	-120	0	0	45	1	0	0	0
20,5	1	-120	0	0	45,5	1	0	0	0
21 5	1	0	0	0	46	1	120	0	0
21,5	1	0	0	0	46,5	1	120	0	0
22	1	120	0	0	47	1	-120	0	0
22,5	1	120	0	0	47,5	1	-120	0	0
23	1	-120	0	0	48	11	0	0	0
23,5	1	-120	0	0	48,5	1	0	0	0
	1	0	0	0	49	1	120	0	0
24,5 25	1	0	0	0	49,5	1	120	0	0
	1	120	0	0	50	1	-120	0	0
Прип	ание: $n = f_n/f$			0	50,5	1	-120	4	0
TTHUMCA	annt. $II = I_n/I$	L1.							

где: f_n – частота спектральной составляющей, Γ ц, f_1 – частота основной (первой) гармонической составляющей, Γ ц

При проведении проверки выполняются следующие операции:

- а) подключите ИП к выходам Установки согласно рисунку А1 или А2 приложения А в зависимости от типа измерительного канала тока.
 - б) задайте на выходе Установки испытательный сигнал в соответствии с таблицей 7.1.
- в) через 60 с после начала формирования испытательного сигнала считайте значения измеряемых характеристик, последовательно переводя web-браузер, опрашивающий встроенный Web-сервер ИП и эталонный энергомонитор-3.1К (энергомонитор-3.1КМ) в режим индикации текущих значений измеряемых параметров запишите показания ИП и Энергомонитора-3.1К в протокол поверки;
- г) последовательно выполните операции, указанные в п.п. а)...в) настоящего подраздела, для всех комплексных испытательных сигналов, заданных в таблице 7.1;

Результаты испытаний считаются удовлетворительными, если значение погрешности не превышает значений приведенных для данной модификации ИП в приложении Б настоящей методики.

7.4.2.2~ При периодической поверке произведите определение погрешности измерения углов между основными гармоническими составляющими фазных напряжений, углов между основными гармоническими составляющими фазных напряжений и токов, для всех значений номинального напряжения U_{uh} , номинального тока 1_{h} или напряжения кодирующего сигнал тока U_{ih} . при испытательных сигналах с параметрами, приведенными в таблицах 7.5.

Дополнительно, при первичной поверке произведите определение погрешности измерения напряжения и тока прямой последовательности, напряжения и тока обратной последовательности, напряжения и тока нулевой последовательности, для всех значений номинального напряжения U_{uh} , номинального тока I_{h} или напряжения кодирующего сигнал тока U_{ih} при испытательных сигналах с параметрами, приведенными в таблицах 7.5.

Определение погрешности измерения тока прямой последовательности, тока обратной последовательности, тока нулевой последовательности, углов между основными гармоническими составляющими фазных напряжений и токов производить только для модификаций с измерительными каналами тока.

Определение погрешности проводить с помощью Установки при испытательных сигналах с параметрами, приведенными в таблице 7.5. При подключении ИП с измерительными каналами тока, сигнал в которых кодирован напряжением, используются меры электрического сопротивления универсальные или переменного тока, подключенные к источнику тока Установки.

Значения токов и сопротивлений применяемых мер выбирается с учетом номинальной мощности рассеивания. Для мер сопротивления типа MC 3080M эти значения приведены в Таблице 7.4

Таблица 7.4

	Действующее значение входного напряжений на входе канала тока ИП	Номинальное значения меры сопротивления	Действующее значения силы тока на выходе установки УППУ-МЭ-3.1К
1	100 мВ и менее	0,1 Ом	0,005 А до 1 А
2	от 100 мВ до 1 В	10 Ом	0,01 А до 0,1 А

При проведении проверки выполнить следующие операции:

- а) подключите ИП в соответствии со схемой, приведенной на рисунке A.1 или на рисунке A.2 (измерительными каналами тока, сигнал в которых кодирован напряжением) приложения A;
- б) задайте на входе ИП испытательный сигнал с параметрами, приведенными в таблице 7.5;
- в) через 60 с после начала формирования испытательного сигнала запишите показания ИП и Энергомонитора-3.1К в протокол поверки;

Таблица 7.5

Параметры		Номер испытательного сигнала								
испытательных сигналов		10	11	12	13	14	15	16		
Среднеквадратическое значение	U_{1A}	100	110	110	100	100	100	90		
основной гармонической	U_{1B}	100	100	100	100	100	110	110		
составляющей фазного напряжения, $\%$ от $\mathbf{U}_{\mathtt{un}}$	U _{1C}	100	100	100	100	100	100	100		
Угол между основными гармоническими составляющими	Фива	-120	-120	-120	-110	-110	-110	-120		
фазных напряжений, градус	Фиса	120	120	120	140	140	140	120		
Частота напряжения, Гц	f, Гц	50	50	47.5	53	50	51	49		
Коэффициенты гармонических	K _{H(h)UA}	Тип 1	Тип 1	Тип 1	Тип 1	Тип 1	Тип 1	Тип 1		
составляющих напряжения, $\%$ от U_1	K _{H(h)UB,}	Тип 1	Тип 1	Тип 1	Тип 1	Тип 1	Тип 1	Тип 1		
	K _{H(h)UC}	Тип 1	Тип 1	Тип 1	Тип 1	Тип 1	Tun 1	Тип 1		
Среднеквадратическое значение	I_{1A}	10	11	9	10	10	10	11		
основной гармонической	I _{1B} ,	10	10	10	10	10	11	9		
составляющей фазных токов, $\%$ от $I_{ m H}$	I _{1C,}	10	10	10	10	10	10	10		
Угол между основными	ΨυιA	0	0	0	0	10	20	30		
гармоническими составляющими	Фив	0	0	0	0	10	20	20		
фазных напряжений и токов, градус	Фиіс	0	0	0	0	10	20	30		
Коэффициенты гармонических	K _{H(h)IA}	Тип 1	Тип 1	Тип 1	Тип 1	Тип 1	Тип 1	Тип 1		
составляющих тока, % от I ₁	K _{H(h)IB}	Тип 1	Тип 1	Тип 1	Тип 1	Тип 1	Тип 1	Тип 1		
	K _{H(h)IC}	Тип 1	Тип 1	Тип 1	Тип 1	Тип 1	Тип 1	Тип 1		
Активная мощность обратной последовательности, % от P _H	P ₂	0	0,01111	-0,01111	0,0906	0,08924	0,0359	-0,0041		
Угол между током и напряжением обратной последовательности, градус	Φ(υΙ)2	0	0	180	0	10	20	-96,94		
Активная мощность нулевой последовательности, % от P _H	\mathbf{P}_0	0	0,01111	-0,01111	0,11092	0,1092	0,1806	-0,0315		
Угол между током и напряжением нулевой последовательности, градус	Ф(UI)0	0	0	180	0.00	10	20	-124		
Активная мощность прямой последовательности, % от P _H	P ₁	10,00	10,678	9,989	9,798	9,650	9,838	8,881		
Угол между током и напряжением прямой последовательности, градус	Φ (UI)1	0	0	0	0	10,00	20,00	27,00		

Примечания:

- г) последовательно выполните операции, указанные в п.п. а)...в) настоящего подраздела, для всех комплексных испытательных сигналов, заданных в таблице 7.5; Результаты испытаний считаются удовлетворительными, если значение погрешности не превышает значений, приведенных для данной модификации в Приложении Б.
- 7.4.2.3 Произведите определение погрешности измерения максимального значения напряжения при перенапряжении и остаточного напряжения при провалах и прерывании, и длительности временного перенапряжения, провалов, прерываний для всех значений номинального напряжения U_{ин} с помощью Установки при испытательных сигналах с параметрами, приведенными в таблице 7.6.

При проведении проверки выполнить следующие операции:

а) подключите ИП в соответствии со схемой, приведенной на рисунке A.1 или на рисунке A.2 (измерительными каналами тока, сигнал в которых кодирован напряжением) приложения A;

I U_{ин} – номинальное напряжение Прибора, В;

 $² I_{\rm H}$ — номинальный ток ИП, A, если ток задается напряжением, то $I_{\rm H}$ определятся по формуле $I_{\rm H} = U_{\rm in}/R$ мс, где Rмс — значение сопротивления используемой меры сопротивления.

- б) установите в ИП профиль «Стандартный 220 В»;
- в) задайте на выходе Установки испытательный сигнал с параметрами, приведенными в таблице 7.6, и по окончании пакета испытательных сигналов Установки, на странице ИП «Архивы» сделайте запрос в пункте «случайные события» за интервал времени, когда Установка выдавала пакет испытательных сигналов;
- г) последовательно выполните операции, указанные в п.п. а)...в) настоящего подраздела для второго комплексного испытательного сигнала, заданного в таблице 7.6. Таблица 7.6

Параметры испытательных сигналов	Номер испытательного сигнала						
	18	19	20	21			
Количество событий (провалов, прерываний или перенапряжений)	7	7	7	4			
Длительность событий, с	2	0,2	2,0	0,2			
Период повторения событий, с	5	5	5	5			
Глубина провала, %	90	20		-			
Остаточное напряжения (для провала), В	_	0,8 U _H	_	_			
Остаточное напряжения (для прерывания), В	0,1 U _H	-					
Максимальное значения напряжения при перенапряжении, В	U _H	U _H	1,2U _H	1,15U _n			

Результат испытаний считается положительным если:

- обнаруженное число событий (провалов, прерываний или перенапряжений) соответствует заданному,
 - абсолютная погрешность измерения длительности событий не превышает ± 0.02 с,
 - погрешность измерения глубины провалов напряжения, остаточного напряжения при провале или прерывании, максимального значения напряжения при перенапряжении (для остальных модификаций ИП), не превышает значений, приведенных для данной модификации ИП в Приложении Б настоящей методики.
- 7.4.2.4 Произведите определение погрешности измерения кратковременной дозы фликера с помощью Установки при испытательных сигналах с параметрами, приведенными в таблице 7.7.

Таблица 7.7

Номер испытательного сигнала	22	25
Номинальное напряжение, В	220	220
Число изменений в минуту	2	110
Относительное изменение напряжения $\Delta U/U$, %	2,21	0,725
Кратковременная доза фликера	1	1

При проведении проверки выполнить следующие операции:

- а) подключите ИП в соответствии со схемой, приведенной на рисунке А.1 приложения А;
 - б) на странице «Текущие значения» войдите в пункт «Фликер»;
- в) задайте на выходе Установки испытательный сигнал с параметрами, приведенными в таблице 7.7;
 - г) запишите показания ИП в протокол поверки;
- д) последовательно выполните операции, указанные в п.п. а)...г) настоящего подраздела, для второго комплексного испытательного сигнала, заданного в таблице 7.7.

Результат испытаний считается положительным, если измеренные ИП значения кратковременной дозы фликера отличаются от значений, указанных в таблице 7.7, не более чем на 5 %.

7.4.2.5 Проверка погрешности определения параметров «Частота», «Отклонение частоты».

Погрешность оценки «частоты», «отклонения частоты», производят при следующих значениях: 42,5; 45; 47,5; 49; 51; 52,5; 55; 57,5 Гц и номинальном напряжении согласно таблице 7.8.

Таблица 7.8

No		•		Сиг	нала Ус	тановк	и УШ	У-МЭ :	3.1			
	Частота,		HAI	ТРЯЖЕ	ЕНИЕ				Te	ЭК	 .	
	Гц	Ua	Ub	Uc	φb	φс	Ia	Ib	Ic	φla	φIb	φlc
116	42,5	U _{hom}	U _{HOM}	U _{nom}	-120	120	I _{HOM}	IHOM	I _{HOM}	60	60	60
117	45	U _{nom}	U _{HOM}	U _{nom}	-120	120	I _{HOM}	I _{HOM}	I _{HOM}	60	60	60
118	47,5	U _{HOM}	U _{HOM}	U _{HOM}	-120	120	I _{HOM}	I _{HOM}	I _{HOM}	60	60	60
119	49	U _{HOM}	Unom	U _{HOM}	-120	120	I _{HOM}	I _{hom}	I _{HOM}	60	60	60
120	51	U _{hom}	U _{nom}	U _{nom}	-120	120	I _{HOM}	I _{HOM}	I _{HOM}	60	60	60
121	52,5	U _{hom}	U _{nom}	U _{nom}	-120	120	I _{HOM}	I _{HOM}	I _{HOM}	60	60	60
122	55	U _{hom}	Unom	U _{HOM}	-120	120	I _{HOM}	I _{HOM}	I _{HOM}	60	60	60
123	57,5	U _{hom}	U _{nom}	U _{nom}	-120	120	I _{HOM}	I _{HOM}	I _{HOM}	60	60	60

ИП считается выдержавшим испытания, если максимальное значение погрешности измерения отклонения частоты сети не превышает значения, указанного в Приложении Б настоящей методики.

7.4.2.6 Определение погрешности при измерении напряжения и тока

Определение погрешности измерения среднеквадратического значения напряжения и тока и среднеквадратического значения основной гармонической составляющей напряжения и тока проводить с помощью Установки при испытательных сигналах с параметрами, приведенными в таблице 7.9, при $\cos \varphi = 1$ для всех значений номинального напряжения U_{uh} и номинального тока I_{h} (номинального напряжения в канале измерения тока U_{ih}).

Определение погрешности измерения среднеквадратического значения силы тока и среднеквадратического значения основной гармонической составляющей тока проводить только для модификаций ИП с первичными преобразователями тока.

Подключение ИП производить в соответствии со схемой, приведенной на рисунке А.1 или на рисунке А.2 приложения А в зависимости от типа измерительного канала тока. При подключении ИП с измерительными каналами тока, сигнал в которых кодирован напряжением, используются меры электрического сопротивления универсальные или переменного тока, подключенные к источнику тока Установки.

Значения токов и сопротивлений применяемых мер выбирается с учетом номинальной мощности рассеивания. Для мер сопротивления типа МС 3080М эти значения приведены в Таблице 7.4

Определение погрешности измерения среднеквадратического значения переменного напряжения и силы тока и среднеквадратического значения основной гармонической составляющей напряжения и тока в проводе нейтрали проводить использую схему подключения приведенную на рисунке А.3 приложения А.

Таблица 7.9

U , % ot U_{uH}	При использовании токоизмерительных клещей
	I, % от 1 _H
100	100
75	50
50	20
25	10
10	5
1	100

Определение погрешности измерения среднеквадратического значения силы тока и среднеквадратического значения основной гармонической составляющей тока проводить только для модификаций ИП с первичными преобразователями тока.

Результаты испытаний считаются положительными, если значения погрешности не превышают значений, приведенных для данной модификации ИП в приложении Б настоящей методики.

7.4.2.7 Определение погрешности измерения активной и реактивной мощности

Определение погрешности проводить только для модификаций с первичными преобразователями тока с помощью Установки при испытательных сигналах с параметрами, приведенными в таблице 7.10, при $\cos \varphi = 1$ для всех значений номинального напряжения U_{uh} и номинального тока I_{ih} (номинального напряжения в канале измерения тока U_{ih}).

Подключение ИП производить в соответствии со схемой, приведенной на рисунке А.1 или на рисунке А.2 приложения А в зависимости от типа измерительного канала тока. При подключении ИП с измерительными каналами тока, сигнал в которых кодирован напряжением, используются меры электрического сопротивления универсальные или переменного тока, подключенные к источнику тока Установки.

Значения токов и сопротивлений применяемых мер выбирается с учетом номинальной мощности рассеивания. Для мер сопротивления типа МС 3080М эти значения приведены в Таблице 7.4.

Таблица 7.10

U , % ot U_H	При использовании токоизмерительных клещей	При использовании блока трансформаторов тока	Cos φ
	I, % от 1 _н /п	I, % от 1 _н	
120	150	150	1
100	100	100	0,5L
80	100	100	0,5C
100	50	50	1
100	10	10	0,2L
10	10	10	0,5L
100	2	2	0,5C

Результаты испытаний считаются положительными, если значение погрешности не превышает значений, приведенных для данной модификации ИП в приложении Б настоящей методики.

7.4.2.8 Определение абсолютной погрешности установки времени при работе в режиме синхронизации с Международной шкалой координированного времени (UTC) производить с помощью Модуля коррекции времени МКВ-02Ц или других радиочасов с абсолютной погрешностью измерения времени не более ±1 мс и/или двухканального осциллографа или частотомера.

Схема подключения ИП к средствам поверки приведена на рисунке А.4 Приложения А. При проведении проверки выполнить следующие операции:

1) Подключить к ИП сервер точного времени с поддержкой протокола NTP или PTP и синхронизировать внутренние часы ИП с часами сервера времени. Наличие синхронизации индицируется на лицевой панели ИП индикатором «PTP».

После выполнения синхронизации отключить сервер точного времени.

- 2) подключить к входу питания ИП поверочный адаптер из комплекта дополнительных принадлежностей; к входу питания поверочного адаптера подключить блок питания +5 В и запитать его от сети переменного тока;
- 3) включить ИП, выбрать в меню "НАСТРОЙКИ" пункт "ДАТА И ВРЕМЯ", далее "ВЫДАВАТЬ 1 РРЅ" и отметить пункт "ВКЛЮЧИТЬ";
- 5) подключить к Модулю МКВ-02Ц антенну из комплекта поставки и расположить её в зоне видимости спутников системы GPS;
 - 6) подключить к клеммам питания Модуля МКВ-02Ц провода питания;

- 7) подать питание на Модуль МКВ-02Ц. Убедиться, что после подачи питания загорелся светодиод индикации наличия питания. Не более чем через 20 мин светодиод 1 PPS начинает мигать раз в секунду или горит непрерывно (в зависимости от режима работы цифрового выхода);
- 8) подключить выход 1 Гц приёмника МКВ-02Ц в соответствии с его руководством по эксплуатации к входу 1-го канала измерителя интервала времени между фронтами (запуск осуществлять от канала МКВ-02Ц);
- 9) подключить цифровой выход поверочного адаптера (1PPS) к входу 2-го канала измерителя интервала времени между фронтами;
- 10) определить полярность прямоугольного сигнала и длительность среза импульсов 1 PPS ИП;
- 11) определить абсолютную погрешность синхронизации значение сдвига между фронтами импульсов 1 Гц МКВ-02Ц и срезами импульсов 1 РРЅ ИП;
- 12) Подключить Модуль МКВ-02Ц к ПК; запустить на ПК программу "TimeCorrection" (см. приложение Г руководства по эксплуатации Модуля МКВ-02Ц).

На вкладке «Настройки» установить при необходимости настройки связи Модуля МКВ-02Ц с подключённым портом. В результате на вкладке "ДАТА И ВРЕМЯ" программы "TimeCorrection" должны индицироваться дата и текущее время, выдаваемые Модулем МКВ-02Ц (см. строку "Системное время GPS (UTC)").

Убедиться в совпадении даты и текущего времени индицируемого на экране web сервера индицирующего ИП и даты и текущего времени выдаваемого Модулем МКВ-02Ц.

Результаты испытаний считаются положительными, если:

- полярность прямоугольного сигнала 1 PPS ИП положительная;
- длительность среза импульса 1 PPS ИП не превышает 20 мкс;
- абсолютная погрешность синхронизации не превышает ±5 мс;
- дата и текущее время, индицируемого на экране ИП, совпадают с датой и текущем временем, выдаваемым Модулем МКВ-02Ц.
- 7.4.2.9 Определение абсолютной погрешности хода внутренних часов ИП при отсутствии режима синхронизации с Международной шкалой координированного времени (UTC) допускается производить одним из двух методов:
 - с использованием сигнала синхронизации UTC;
 - по сигналам точного времени.
- а) При выполнении проверки с использованием сигнала синхронизации с UTC (данный пункт выполняется непосредственно после проведения работ по пункту 7.4.2.8) выполнить следующие операции:
 - 1) выждать четыре часа после выполнения действий по пункту 7.4.2.8;
 - 2) повторить действия подпунктов 2) -12) пункта 7.4.2.8

Результат испытания считается положительным, если уход внутренних часов ИП за 4 часа не превыпает ± 80 мс (соответствует суточному ходу $\pm 0,5$ с) для всех модификаций ИП.

- б) При выполнении проверки по сигналам точного времени необходимо выполнить следующие операции:
 - 1) синхронизировать часы ИП по началу шестого сигнала точного времени;
- 2) по истечении четырех суток начать наблюдение за временем на индикаторе ИП и по началу шестого сигнала точного времени зафиксировать показания часов ИП (Ти);
 - 3) рассчитать средний суточный ход часов ИП по формуле:

$$\Delta T_{\rm O} = (T_{\rm M} - T_{\rm S})/4,$$

где: $\Delta T_{\rm O}$ - средний суточный ход часов ИП при рабочей температуре, с/сут.

Тэ - истинное время, зафиксированное по началу шестого сигнала точного времени.

Результат испытания считается положительным, если средний суточный ход часов ИП при рабочей температуре не превышает 0,5 с/сут.

7.5 Проверка программного обеспечения

Проверка программного обеспечения ИП осуществляется путем проверки идентификационных данных ПО.

Идентификацию ПО производить следующим образом:

- произведите подготовку ИП к работе согласно руководству по эксплуатации;
- проверьте целостность ПО, для чего необходимо на странице «Сервис» выбрать подпункт "О Приборе".

На экране отображается таблица с указанием наименования ПО и номера его версии. Номер версии должен соответствовать значениям, указанным в описании типа на ИП.

8 Оформление результатов поверки

Результаты проверок ИП оформляют путем записи в протоколе поверки Рекомендуемая форма протокола представлен в приложении В.

При положительных результатах поверки на формуляр ИП наносится знак поверки и выдается свидетельство о поверке в соответствии с Приказом № 1815 от 20.07.2015г.. Так же знак поверки наносится в виде мастичной пломбы в гнезде крепежного винта крепления задней крышки ИП.

При отрицательных результатах поверки ИП признается непригодной к применению и на него выписывается извещение о непригодности в соответствии с Приказом № 1815 от 20.07.2015г. с указанием причин.

Приложение A Схемы подключения Прибора для определения погрешностей

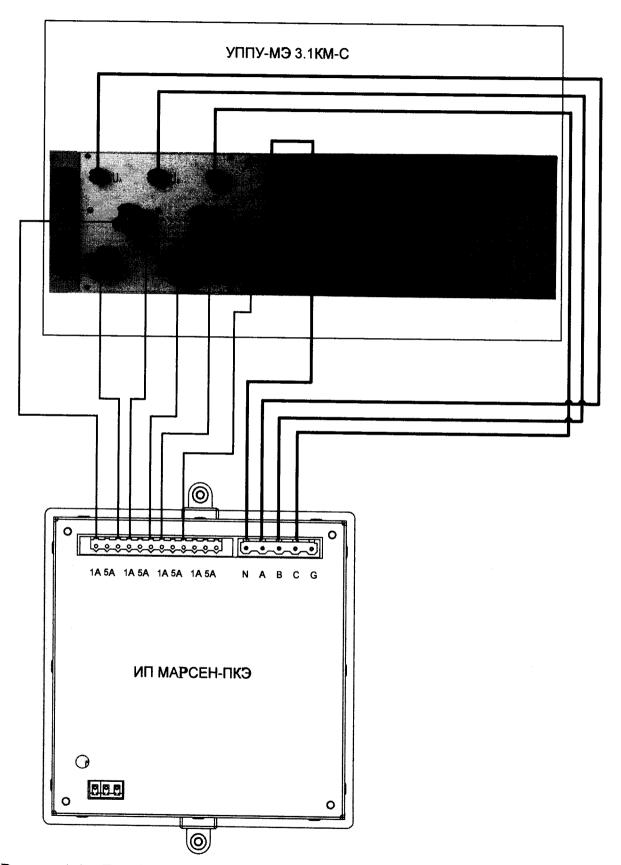


Рисунок А.1 - Трехфазная четырехпроводная схема подключения «ИП Марсен-ПКЭ-1/5» к УППУ-МЭ 3.1КМ (ток 1 A)

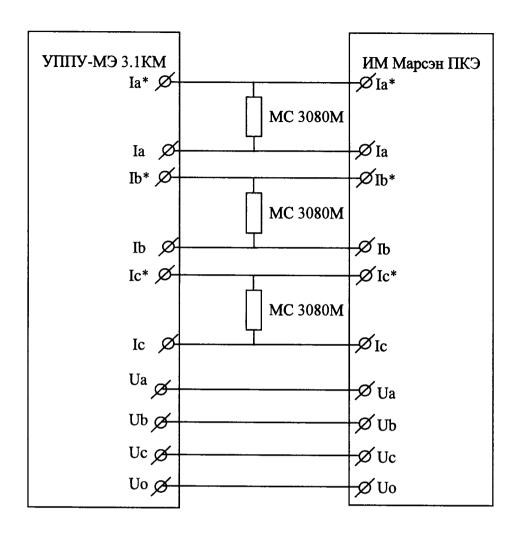


Рисунок A2 - Трехфазная четырехпроводная схема подключения «ИП Марсен-ПКЭ-vvvv» к УППУ-МЭ 3.1КМ (ток 1 A)

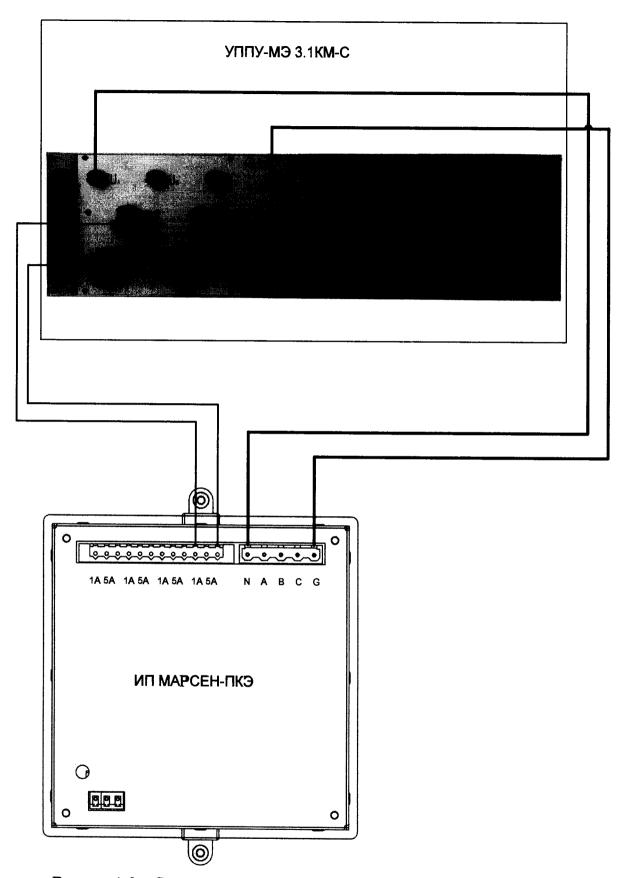


Рисунок А.3 - Схема подключения входов нейтрали «ИП Марсен-ПКЭ 1/5» к УППУ-МЭ 3.1КМ (ток 1 A)

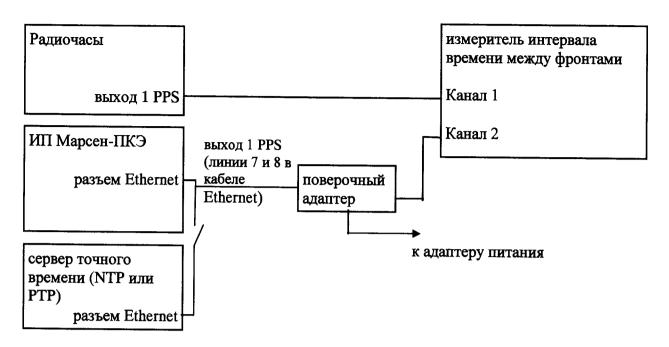


Рисунок А.4. Схема подключения ИП Марсен-ПКЭ для определения абсолютной погрешности установки времени при работе в режиме синхронизации с Международной шкалой координированного времени

Измерителем интервала времени между фронтами может быть частотомер электронно-счетный вычислительный Ч3-64 или двухканальный осциллограф.

ПРИЛОЖЕНИЕ Б

(обязательное)

Метрологические и технические характеристики

Основные метрологические характеристики указаны в таблицах Б1, Б2 и Б3.

В таблицах Б1- Б3 под терминами: напряжение переменного тока, напряжение гармоники (интергармоники), сила переменного тока, сила тока гармоники (интергармоники), напряжения и токи нулевой, прямой и обратной последовательностей понимаются среднеквадратические значения указанных величин.

Таблица Б1 - Метрологические характеристики модификации «ИП Марсен-ПКЭ»

Наименование характеристики	Диапазоны	модификации «ИП Марс	
патменование характеристики	измерений	· · · · · · · · · · · · · · · · · · ·	Примечание
	измерении	допускаемой основной погрешности	
		измерений	
11	2	3	4
1 Напряжение переменного тока	от 0,01	относительная, %	Класс А по
[U], B	U _{uH} 1)	±[0,1+0,01(U ₀ /U-1)]	ΓΟCT 30804.4.30
	до 2 Uин	[, , , , , , , , , , , , , , , , , , ,	1 0 0 1 0 0 0 1. 1.50
2 Напряжение основной (первой)	от 0,01	относительная, %	
гармонической составляющей	U _u	$\pm[0,1+0,01(U_0/U_1-1)]$	
$[U_1]$, B	до 2 Uин	-[-,-:-,-:(-0,-01 1)]	
3 Угол фазового сдвига между	от 0	абсолютная, градус	0,1U _H ≤ U ≤
основными гармоническими	до 360	±0,1	1,5U _H
составляющими входных		20,1	1,50H
напряжений, градус			
4 Частота напряжения	от 42,5	абсолютная, Гц	$0.1U_{\rm H} \le U \le 2U_{\rm H}$
переменного тока [f1], Гц	до 75	±0,01	бласс A по
	, ,		ΓΟCT 30804.4.30
5 Отклонение частоты, Гц	от минус	абсолютная, Гц	0,1UH < U < 2UH
, ,	7,5	±0,01	Класс А по
	до 25	20,01	ΓΟCT 30804.4.30
6 Отрицательное отклонение	от 0	абсолютная, % от Uo	1001 30004.4.30
напряжения, % от U _O ²⁾	до 100	±0,1	
7 Положительное отклонение	от 0	абсолютная, % от Uo	
напряжения, % от Uo	до 100	±0,1	
8 Установившееся отклонение	от минус	абсолютная, % от Uo	
напряжения, % от Uo	100	±0,1	
- , , ,	до 40	20,1	
9 Коэффициент несимметрии	от 0	абсолютная, %	
напряжения по обратной	до 20	±0,15	
последовательности и по нулевой		_0,10	
последовательности, %			
10 Суммарный коэффициент	от 0		$0.1 \ U_{\text{uH}} \le U \le 1.5$
гармонических составляющих	до 100		U _{uH} <u>U ≤ 1,5</u>
напряжения ⁴⁾ [KU], %	,,, = = = =		$U_{\text{MAX}}^{3)} < 2.8 U_{\text{uh}}$
			Класс І по
			ΓΟCT 30804.4.7
	ľ	абсолютная, %	$K_{\rm U} < 1.0$
		±0,05	1.0 - 1,0
	ľ	относительная, %	K _U ≥ 1,0
		±5,0	

Продолжение таблицы Б1.			
1	2	3	4
11 Коэффициент гармонической	от 0		$0.1U_{\rm H} \leq U \leq$
составляющей напряжения	до 50		1,5U _H
порядка $^{4)}$ h [$K_U(h)$], %			$U_{MAX} < 2.8U_H;$
- '/-			h от 2 до 50;
			Класс І по
			ГОСТ 30804.4.7
		абсолютная, %	$K_U(h) < 1,0$
		±0,05	TC (1) 10
		относительная, % ±5,0	$K_U(h) \ge 1,0$
12 Напряжение гармонической	От 0		$0.1 \mathrm{U_{uH}} \le \mathrm{U} \le 1.5$
подгруппы порядка h, [U _{sg,h}], В	до 0,5 U _{ин}		U _{uH} ;
			$U_{MAX} < 2.8 U_{uH}$;
			h от 2 до 50;
			Класс I
			по ГОСТ
			30804.4.7
		абсолютная, В	$U_{sg,h} \leq 0.01 U_{uH}$
		±0,0005 U ₀	J, _ ,
		относительная, %	$U_{sg,h} \ge 0.01 U_{uH}$
		±5,0	-6, /
13 Напряжение	От 0 до		$0.1 \mathrm{U_{uH}} \le \mathrm{U} \le 1.5$
интергармонической	0,15 U _{uh}		U _{uh}
центрированной подгруппы			$U_{MAX} < 2.8 U_{uH}$;
порядка h [Uisg,h], В			h от 0 до 50;
			Класс I по
			ГОСТ 30804.4.7
		абсолютная, В	$U_{isg,h} \leq 0.01 U_{uH}$
		±0,0005 U ₀	, <u> </u>
		относительная, % ±5	$U_{isg,h} \ge 0.01 \ U_{uH}$
14 Напряжение прямой	от 0		
последовательности, нулевой	до 2 Uин	абсолютная, В	
последовательности, нулевои последовательности и обратной	до 2 Оин	±0,0015 U _O	
последовательности и обратнои			
15 Остаточное напряжение (при	от 0.01	относительная, %	Класс А
провале), В	U _{uh}	±[0,1+0,01(U ₀ /U-1)]	
	до 1,1 U _{ин}	<u>-[</u> 0,1+0,01(00/0-1/]	по ГОСТ 30804.4.30
16 Остаточное напряжение (при	от 0.01	относительная, %	1001 30004.4.30
прерывании), В	U _{uh}	±[0,1+0,01(U ₀ /U-1)]	
	до 0,2 U _{ин}	=[0,1+0,01(00/0-1)]	
17 Глубина провала напряжения, %	от 10	абсолютная, %	
	до 100	аосолютная, % ±0,2	
18 Длительность прерывания	От 0,01 с	абсолютная, с	
напряжения, с	до 60 мин	±0,2	
19 Длительность провала	от 0,02 с	абсолютная, с	
напряжения, с	до 600 с	· ·	
20 Максимальное значение	от 1,1 U _{ин}	±0,02	
напряжения при перенапряжении	до 2 U _{ин}	приведенная, % от U _O	
[U _{мах}], В	ДО Z Uuн	±0,2	
[CMAX], D			

1	2	3	4
21 Коэффициент временного	от 1,1	относительная, %	$K_{\text{nep U}} = U_{\text{MAX}} / U_{\text{O}}$
перенапряжения $[K_{nep \ U}]$, отн.ед.	до 2,0	±10	
22 Длительность временного	от 0,02 с	абсолютная, с	Класс А
перенапряжения, с	до 600 с	$\pm 0,02$	по
23 Кратковременная доза	от 0,2	относительная, %	ГОСТ 30804.4.30
фликера, отн. ед.	до 10	±5,0	
24 Длительная доза фликера, отн.	от 0,2	относительная, %	
ед.	до 10	±5,0	
25 Пределы допускаемой	-	абсолютная, с	При
абсолютной погрешности		±0,005	синхронизации с
установки времени при приеме			Международной шкалой
метки синхронизации			координированно
			го времени (UTC)
26 Пределы допускаемой	-	абсолютная, с/сут	При отсутствии
абсолютной погрешности хода		±0,5	синхронизации с UTC
внутренних часов ИП			

Примечания:

- 1) $U_{\text{ин}}$ номинальное входное напряжение ИП, определяемое выбранным диапазоном измерения из ряда 240 B, 60 B для фазных и из ряда 415 B, 104 B для межфазных напряжений.
- 2) U_O опорное напряжение по ГОСТ 32144-2013 задается оператором в виде коэффициента преобразования внешнего измерительного трансформатора напряжения и номинального входного напряжения Прибора в диапазоне от 40 до 120 % от U_H.
- 3) U_{MAX} максимальное мгновенное значение напряжения, при котором Прибор индицирует и регистрирует перегрузку;
- 4) Измерение суммарного коэффициента гармонических составляющих и индивидуальных гармонических составляющих сигналов проводится в соответствии с ГОСТ 30804.4.30, ГОСТ 30804.4.7 на основе среднеквадратических значений гармонических подгрупп напряжения.

Таблица Б2 — Метрологические характеристики модификации «ИП Марсен-ПКЭ 1/5» (с каналами тока 1 и 5 A) - в дополнение к таблице Б1.

каналами тока 1 и 5 А) - в допол			<u></u>
Наименование	Диапазоны	Пределы и вид допускаемой основной	Примечание
характеристики	измерений	погрешности измерений	
1	2	3	4
1 Сила переменного тока [I], А	от $0.0\Pi_{\rm H}^{1)}$	относительная, %	
	до 2I _H	$\pm[0,1+0,01(I_H/I-1)]$	
2 Сила тока основной (первой)	от 0,01Ін	относительная, %	
гармоники тока [I _I], А	до 2I _H	$\pm[0,1+0,01(I_{H}/I_{1}-1)]$	
3 Суммарный коэффициент	от 0		$0.01 I_{\rm H} \le I \le 2 I_{\rm H};$
гармонических составляющих	до 200		h от 2 до 50;
тока ³⁾ [К _І], %			Класс I
			по ГОСТ 30804.4.7
		абсолютная, % ±0,05	K _I < 1,0
		относительная, %	K _I ≥ 1,0
4 Коэффициент	от 0	±5,0	h от 2 до 50;
гармонической составляющей	до 100		$0.01I_{\rm H} \le I \le 2I_{\rm H};$
тока порядка h ³⁾ , [K _{I(h)}], %			Класс І
			по ГОСТ 30804.4.7
		абсолютная, % ±0,05	$K_{I}(h) < 1,0$
		относительная, % ±5,0	K _I (h) ≥ 1,0
5 Гармонической			h от 2 до 50;
составляющей силы тока			Класс I
порядка h [$I_{(h)}$], A			по ГОСТ 30804.4.7
		относительная, % ±5	0,03I _H ≤ I
		абсолютная, % ±0,0015 І _Н	I < 0,03I _H
6 Интергармоническая	От 0 до		Для m от 0,5 до
составляющая силы тока	0,15I _H		50,5
порядка m (I _{Cm}), A			с дискретностью
			1,0 Класс I
		A Googramia - A	по ГОСТ 30804.4.7
		Абсолютная, А, ±0,0015 Ін	$I_{Cm} \leq 0.03I_{H}$
		Относительная, %, ±5	$I_{Cm} > 0.03I_{H}$
7 Сила токов прямой	от 0	абсолютная, А	$0.01I_{\rm H} \le I \le 2I_{\rm H}$
последовательности, нулевой	до 2I _Н	$\pm 0,0015 \; I_{H}$	
последовательности и			
обратной последовательности			
основной частоты, А 8 Коэффициент несимметрии	от 0	0500	
тока по обратной	от U до 50 %	абсолютная 0.2	0.211 -21
последовательности [К21], %;	до 30 %	0,2 1,0	$0.2I_{H} \leq I \leq 2I_{H}$
The state of the s	<u> </u>	1,0	$0.01I_{\rm H} \leq I \leq 0.2I_{\rm H}$

Продолжение таблицы Б2.			
11	2	3	4
9 Коэффициент несимметрии	от 0	абсолютная	
тока по нулевой	до 50 %	0,2	$0.21_{\rm H} \le \rm I \le 2I_{\rm H}$
последовательности [Ко], %.		1,0	$0.011_{\rm H} \le I \le 0.2I_{\rm H}$
10 Сила тока нейтрального	от 0	252222	
провода, А		абсолютная, А	$0.01 I_{\rm H} \le I \le 2 I_{\rm H}$
	до 21 _н	±0,01 I _H	
I1 Угол фазового сдвига	от 0	абсолютная, градус	$0.2 I_{\rm H} \leq I \leq 2I_{\rm H}$
между основными	до 360	.04	$0.2~\mathrm{U_{uH}} \le \mathrm{U} \le 2~\mathrm{U_{uH}}$
гармоническими	ļ	±0,1	
составляющими напряжения и			
тока одной фазы, градус			
12 Угол фазового сдвига	от 0	абсолютная, градус	$0.2 1_{\rm H} \le I \le 21_{\rm H}$
между током и напряжением	до 360		$0.2 U_{\rm uh} \le U \le 2 U_{\rm uh}$
прямой последовательности		±0,2	
[фип], градус			
13 Угол фазового сдвига	от 0	абсолютная, градус	$0.2 1_{\rm H} \le I \le 2I_{\rm H}$
между током и напряжением	до 360		$0.2~\mathrm{U_{uH}} \le \mathrm{U} \le 2~\mathrm{U_{uH}}$
нулевой		±0,2	
последовательности [фило],			
градус			
I4 Угол фазового сдвига	от 0	абсолютная, градус	$0.2 I_{\rm H} \leq I \leq 2I_{\rm H}$
между током и напряжением	до 360		$0.2 U_{\text{uh}} \leq U \leq 2 U_{\text{uh}}$
обратной		±0,2	
последовательности [фила],			
градус			
15 Угол фазового сдвига <i>h</i> -ми	от 0	абсолютная, градус	$0.1 1_{\rm H} \leq I \leq 11_{\rm H}$
гармоническими	до 360	7 1 7 0	$0.1 \text{ U}_{\text{uh}} \leq \text{U} \leq 1 \text{U}_{\text{uh}}$
составляющими фазного		±0,2	, - un <u> </u>
тока и соответствующего		·	
напряжения [фиі(h)], градус			
16 Активная электрическая	от 0,01Рн	относительная, %	$P_H = Q_H = S_H =$
мощность [Р], Вт,	до 2,25P _H		U _H ·I _H ;
·			$0.1 \mathrm{U_{uH}} \leq \mathrm{U} \leq 1.5$
			U _{uh}
			$K_P = 1$
		±0, I	$0.051_{\rm H} \le I \le 1.51_{\rm H}$
			0,00111 <u>1 1 1,011</u>
		±0,2	$0.01I_{\rm H} \le I \le 0.051_{\rm H}$
		2.5	$0.5 \le K_P < 1.0$
		±0,15	$0.1 I_{\rm H} \le I \le 1.5 I_{\rm H}$
		±0,25 %	$0.02 1_{\rm H} \le I \le 0.1 I_{\rm H}$
			02 - 12 - 05
		±[0,25+0,02(P _H /P -1)]	$0.2 \le K_P < 0.5$
		=[0,25+0,02(rH/r -1)]	$0.1 I_{\rm H} \le I \le 1.5 I_{\rm H}$
	L	l	

Продолжение таблицы Б2.			
1	2	3	4
17 Активная мощность прямой	ОТ	абсолютная, Вт	$0.1 I_{\rm H} \leq I \leq 2 I_{\rm H}$
последовательности, нулевой	0.01I _H ·U _H	±0,01P _H	
последовательности и	до	·	
обратной последовательности,	1.5I _H ·U _H		
Вт			
18 Активная трехфазная,	от 0,01Рн	относительная, %	$P_H = Q_H = S_H =$
фазная мощность основной	до 2,25Рн		U _{H'} I _H ;
гармонической составляющей			$0.1 \mathrm{U_{uH}} \leq \mathrm{U} \leq 1.5$
[P(I), P(I)a, P(I)B, P(I)c], BT			Uun
			$K_P = 1$
		±0,1	$0.05I_{\rm H} \le I \le 1.5I_{\rm H}$
		±0,2	$0.01I_{\rm H} \le I \le 0.05I_{\rm H}$
			$0.5 \le K_P < 1.0$
		±0,15	$0,1 I_{\rm H} \le I \le 1,5 I_{\rm H}$
		±0,25 %	$0.02 I_{\rm H} \le I \le 0.1 I_{\rm H}$
			$0.2 \leq \mathbf{K}_{\mathbf{P}} < 0.5$
		$\pm[0,25+0,02(P_H/P-1)]$	$0,1 I_{\rm H} \le I \le 1,5 I_{\rm H}$
19 Активная фазная мощность	ОТ	относительная	$0.1 I_{\rm H} < I < 1.5 I_{\rm H}$
гармоник $[P_{(h)a}, P_{(h)b}, P_{(h)c}], B_T$	$0,003I_{\text{H}}\cdot U_{\text{H}}$		$2\% \leq K_{I(h)}$
_	до 0,1I _н ·U _н		(4)
	-	±5,0 %	$K_P = 1$
•		·	K _P 0.5L1 0.5C
		±5,0 %	$2 \le h \le 10$
		±10,0 %	$11 \le h \le 50$
20 Реактивная электрическая	от 0,01Q _H	относительная, %	$0,1~\mathrm{U_{uH}} \leq \mathrm{U} \leq 1,5$
мощность, рассчитываемая	до 2,25Q _н		U _{uh}
геометрическим методом [Q],			$K_{RP}^{2)} = 1$
вар, определяемая по		±0,2	$0,05 I_{\rm H} \le I \le 1,5 I_{\rm H}$
формуле:		. 0. 0	
		±0,3	$0.02 I_{\rm H} \le I \le 0.05 I_{\rm H}$
$Q = \sqrt{S^2 - P^2}$.00	$0.5 \le K_{RP} \le 1.0;$
		±0,2	$0.1I_{\rm H} \le I \le 1.5I_{\rm H}$
		10.2	0.051 . 7 . 0.47
		±0,3	$0.05I_{\rm H} \leq I \leq 0.1I_{\rm H}$
		.00	$0.25 \le K_{RP} < 0.5;$
		±0,3	$0,1I_{\rm H} \leq I \leq 1,5I_{\rm H}$

Продолжение таблицы Б2.			
1	2	3	4
21 Реактивная электрическая	от 0,01Qн	относительная, %	$0.1~\mathrm{U_{uH}} \leq \mathrm{U} \leq 1.5$
мощность основной	до 2,25Q _н		U _{uH}
гармонической составляющей			$K_{RP} = 1$
[Q ₁], вар	:	±0,1	$0.05 I_{\rm H} \le I \le 1.5 I_{\rm H}$
		±0,2	$0.01 I_{\rm H} \le I \le 0.05 I_{\rm H}$
			$0.5 \leq K_{RP} \leq 1.0;$
		±0,15	$0.1I_{\rm H} \le I \le 1.5I_{\rm H}$
		±0,25	$0.02I_{\rm H} \le I \le 0.1I_{\rm H}$
			$0.2 \le K_{RP} < 0.5;$
		$\pm [0,25+0,02(Q_{H}/Q-1)]$	$0.2 \le RR < 0.5$, $0.1I_{H} < I < 1.5I_{H}$
			0,11 <u>H S 1 S 1,51</u> H
22 Реактивная трехфазная	ОТ	приведенная	$0.1 I_{\rm H} \le I \le 2 I_{\rm H}$
мощность основной	0,01I _H ·U _H	±1 %	
гармонической составляющей	до		
прямой последовательности	1,5I _H ·U _H		
[Q ₍₁₎₁], вар			
23 Полная электрическая	от 0,01 Sн	относительная, %	$0.01I_{\rm H} \leq I \leq 1.5I_{\rm H}$
мощность [S], В·А	до 2,25S _H		$0.1~\mathrm{U_{uH}} \leq \mathrm{U} \leq 1.5$
		.0.0	U _{uH}
		±0,2	от 0,1S _H до 2,25S _H
		±2,0	от 0,01S _н до 0,1S _н
24 Полная трехфазная, фазная	от 0,01 Sн	относительная, %	$0.01I_{\rm H} \le I \le 1.5I_{\rm H}$
мощность основной	до 2,25S _H		$0.1~\mathrm{U_{uH}} \leq \mathrm{U} \leq 1.5$
гармонической составляющей			U _{un}
$[S_{(1)}, S_{(1)a}, S_{(1)b}, S_{(1)c}], B\cdot A$		±0,2	от 0,1S _H до 2,25S _H
		±2,0	от 0,01S _н до 0,1S _н
25 Коэффициент мощности	от минус	абсолютная	от 0,05Рн до
	1,0	±0,01	2,25P _H
-1	до 1,0		$0.01 I_{\rm H} \leq I \leq 1.5 I_{\rm H}$
26 Активная электрическая	717-	класс точности 0,2S по I	·
энергия прямого и обратного			
направления, кВт-ч			
27 Активная энергия основной		Пределы допускаемой от	носительной
гармонической составляющей		погрешности измерения равны пределам	
[W _{a(1)}], кВт·час;		допускаемой относителы	ной погрешности
		измерения активной элек	трической энергии
28 Активная энергия основной		Пределы допускаемой от	
гармонической составляющей		погрешности измерения равны пределам	
прямой последовательности		допускаемой относительной погрешности	
[W _{a(1)1}], кВт·час;		измерения активной электрической мощно	
		основной гармоническо	
	1	прямой последовательно	ости

1	2	3 4	
29 Реактивная электрическая энергия прямого и обратного направления, квар·ч		класс точности 1 по ГОСТ 31819.23–2012 Значение реактивной электрической энергии рассчитывается на основе значения реактивной электрической мощности, определяемая геометрическим методом.	
30 Реактивная энергия основной гармонической составляющей [W _{p(1)}], квар·час;		Пределы допускаемой относительной погрешности измерения равны пределам допускаемой относительной погрешности измерения реактивной электрической мощности основной гармонической составляющей	
31 Реактивная энергия основной гармонической составляющей прямой последовательности [W _{p(1)1}], квар час;		Пределы допускаемой относительной погрешности измерения равны пределам допускаемой относительной погрешности измерения реактивной электрической мощности основной гармонической составляющей прямой последовательности	

Примечания:

- 1) Ін номинальный ток 1 А или 5 А
- 2) K_{RP} = Q/S коэффициент реактивной мощности.
- 3) Измерение суммарного коэффициента гармонических составляющих и индивидуальных гармонических составляющих сигналов проводятся в соответствии ГОСТ 30804.4.30, ГОСТ 30804.4.7 на основе среднеквадратических значений гармонических подгрупп тока.

Метрологические характеристики модификаци «ИП Марсен-ПКЭ-vvvv» (с каналами измерения тока в которых измерительная информация представлена сигналом напряжения с номинальными значениями в диапазоне от 22,50 до 5000 мВ) указаны в таблице Б3 - в дополнение к таблице Б1.

Номинальные значения токов для модификации «ИП Марсен-ПКЭ-vvvv» - I_{HU} , их долей и кратных величин рассчитываются в соответствии с формулой:

$$I_{HU} = K_{iU} \cdot U_{iH} \tag{1},$$

где:

 $U_{iH}-$ номинальные значения входных сигналов напряжений, кодирующих информацию о сигнале тока, задаются в диапазоне от 22,5 до 5000 мВ;

 K_{iU} — коэффициент с размерностью 1/Ом, учитывающий коэффициент преобразования внешнего датчика тока или электронного трансформатора тока.

При оценке метрологических характеристик модификации «ИП Марсен-ПКЭ-vvvv» коэффициент K_{iU} принимается заданным точно. Если коэффициент K_{iU} задан равным 1, то измеренные в каналах тока значения могут интерпретироваться как значения напряжений с соответствующими метрологическими характеристиками.

Таблица Б3 — Метрологические характеристики модификаций «ИП Марсен-ПКЭ-vvvv» (с каналами измерения тока в которых измерительная информация представлена сигналом напряжения с номинальными значениями в диапазоне от 22,50 до 5000 мВ) -

в дополнение к таблице Б1.

В дополнение к тао Наименование	T	Працации и рич	TT
характеристики	Диапазоны измерений	Пределы и вид допускаемой основной погрешности измерений	Примечание
1	2	3	4
1 Сила переменного тока [K _{iU} ·U _i], А	от 0,01·K _{iU} ·U _{iH} ¹⁾ до 2·K _{iU} ·U _{iH}	относительная, % ±[0,1+0,01·(U _{ін} /U _і -1)]	
2 Сила тока основной (первой) гармоники тока [K _{iU} ·U _{i1}], А	от 0,01·К _{iU} ·U _{iH} до 2·К _{iU} ·U _{iH}	относительная, % ±[0,1+0,01·(U _{iH} / U _{il} -1)]	
3 Суммарный коэффициент гармонических составляющих тока ³⁾ [K _I], %	от 0 до 200		$0,01 \cdot K_{iU} \cdot U_{iH} \le K_{iU} \cdot U_{i}$ $\le 2 \cdot K_{iU} \cdot U_{iH};$ h от 2 до 50; Kласс I по ГОСТ 30804.4.7
		абсолютная, % ±0,05	$K_{I} < 1,0$
		относительная, % ±5,0	K _I ≥ 1,0
4 Коэффициент гармонической составляющей тока порядка $h,^{3}$ [K _{I(h)}], %	от 0 до 100	·	h от 2 до 50; 0,01· K _{iU} · U _{iH} ≤ K _{iU} · U _i ≤ 2· K _{iU} · U _{iH} ; Класс I по ГОСТ 30804.4.7
		абсолютная, % ±0,05	$K_1(h) < 1,0$
		относительная, % ±5,0	$K_{\rm I}(h) \ge 1.0$
5 Гармонической составляющей силы тока порядка $h[I_{(h)}]$, А			h от 2 до 50; Класс I по ГОСТ 30804.4.7
		относительная, % ±5,0	$0.03 \cdot K_{iU} \cdot U_{iH} \leq K_{iU} \cdot U_{i}$
		абсолютная, % ±0,0015K _{iU} U _{iH}	K_{iU} · U_i < 0,03· K_{iU} · U_{iH}
6 Интергармоническая составляющей силы тока порядка m (I _{Cm}), А	От 0 до 0,15 К _{iU} · U _{iH}		Для m от 0,5 до 50,5 с дискретностью 1,0 Класс I по ГОСТ 30804.4.7
		Абсолютная, А, ±0,0015·К _{iU} · U _{iH}	$K_{iU} \cdot U_i \leq 0,03 \; K_{iU} \cdot U_{iH}$
		Относительная, %, ±5	$K_{iU} \cdot U_i > 0.03 K_{iU} \cdot U_{iH}$

Продолжение таблицы Б3			
1	2	3	4
7 Сила токов прямой	от 0	абсолютная, А	$0.01 \cdot K_{iU} \cdot U_{iH} \leq K_{iU} \cdot U_{i}$
последовательности, нулевой	до 2·K _{iU} ·U _{iH}	$\pm 0,01$ · K_{iU} · U_{iH}	$\leq 2 \cdot K_{iU} \cdot U_{iH}$
последовательности и			
обратной последовательности			
основной частоты, А			
8 Коэффициент несимметрии	от 0	абсолютная	
тока по обратной	до 50 %	0,2	$0,2\cdot K_{iU}\cdot U_{iH} \leq K_{iU}\cdot U_{i}$
последовательности [К21], %;			$\leq 2 \cdot K_{iU} \cdot U_{iH}$
		1	$0.01 \cdot K_{iU} \cdot U_{iH} \leq K_{iU} \cdot U_{i}$
			$\leq 0,2\cdot K_{iU}\cdot U_{iH}$
9 Коэффициент несимметрии	от 0	абсолютная	
тока по нулевой	до 50 %	0,2	$0.2 \cdot K_{iU} \cdot U_{iH} \leq K_{iU} \cdot U_{i}$
последовательности [Коі], %.		,	$\leq 2 \cdot K_{iU} \cdot U_{iH}$
		1	$0.01 \cdot K_{iU} \cdot U_{iH} \leq K_{iU} \cdot U_{i}$
			$\leq 0.2 \cdot K_{iU} \cdot U_{iH}$
10 Сила тока нейтрального	от 0	абсолютная, А	0,01· K _{iU} · U _{iH} <
провода, А	до 2·K _{iU} ·U _{iH}	$\pm 0.01~\mathrm{K_{iU}}$. $\mathrm{U_{iH}}$	$K_{iU} \cdot U_i \leq 2 \cdot K_{iU} \cdot U_{iH}$
11 Угол фазового сдвига ме-	0	-6	
жду основными	от 0 до 360	абсолютная, градус	$0,1\cdot K_{iU}\cdot U_{iH} \leq K_{iU}\cdot U_{i}$
гармоническими	до 300	40.1	$\leq 2 \cdot K_{iU} \cdot U_{iH}$
составляющими напряжения и		±0,1	$0.1 \cdot U_{uH} \leq U \leq 2 \cdot U_{uH}$
тока одной фазы, градус			
12 Угол фазового сдвига	от 0		0.0
между током и напряжением	до 360	абсолютная, градус	$0,2\cdot K_{iU}\cdot U_{iH} \leq K_{iU}\cdot U_{i}$
прямой последовательности	до 300	40. 2	$\leq 2 \cdot K_{iU} \cdot U_{iH}$
l		±0,2	$0,2\cdot U_{uH} \leq U \leq 2\cdot U_{uH}$
[Фии], градус 13 Угол фазового сдвига	0		
	от 0	абсолютная, градус	$0,2\cdot K_{iU}\cdot U_{iH} \leq K_{iU}\cdot U_{i}$
между током и напряжением нулевой	до 360	.0.0	$\leq 2 \cdot K_{iU} \cdot U_{iH}$
f *		±0,2	$0.2 \mathrm{U}_{\mathrm{uH}} \leq \mathrm{U} \leq 2 \mathrm{U}_{\mathrm{uH}}$
последовательности [фило],			
Градус			
14 Угол фазового сдвига	от 0	абсолютная, градус	$0,2 \cdot K_{iU} \cdot U_{iH} \leq K_{iU} \cdot U_i$
между током и напряжением	до 360		$\leq 2 \cdot K_{iU} \cdot U_{iH}$
обратной		±0,2	$0,2\cdot U_{uH} \leq U \leq 2\cdot U_{uH}$
последовательности [фиц2],			
градус			
15 Угол фазового сдвига <i>h</i> -ми	от 0	абсолютная, градус	$0,2\cdot K_{iU}\cdot U_{iH} \leq K_{iU}\cdot U_{i}$
гармоническими	до 360		$\leq 2 \cdot K_{iU} \cdot U_{iH}$
составляющими фазного		±0,2	$0,2\cdot U_{uH} \leq U \leq 2\cdot U_{uH}$
тока и соответствующего			
напряжения [Ф _{UI(h)}], градус			

Продолжение таблицы 63			
1	2	3	4
16 Активная электрическая мощность [Р], Вт,	от 0,01P _H до 2,25P _H	относительная, %	$P_{H} = Q_{H} = S_{H} = U_{H}$ $K_{iU} \cdot U_{iH}$; $0,1 \cdot U_{uH} \le U \le 1$,5 $\cdot U_{uH}$
		±0,1	$K_{P} = 1$ $0,05 \cdot K_{iU} \cdot U_{iH} \le K_{iU} \cdot U_{i}$ $\le 1,5 \cdot K_{iU} \cdot U_{iH}$
		±0,2	$\begin{vmatrix} 0.01 \cdot K_{iU} \cdot U_{iH} \leq K_{iU} \cdot U_{i} \\ \leq 0.05 \cdot K_{iU} \cdot U_{iH} \end{vmatrix}$
		±0,15	$\begin{array}{c} 0.5 \leq K_P < 1.0 \\ 0.1 \cdot K_{iU} \cdot U_{iH} \leq K_{iU} \cdot U_{i} \\ \leq 1.5 \cdot K_{iU} \cdot U_{iH} \end{array}$
		±0,25 %	$0.02 \cdot K_{iU} \cdot U_{iH} \leq K_{iU} \cdot U_{i}$ $\leq 0.1 \cdot K_{iU} \cdot U_{iH}$
		±[0,25+0,02(P _H /P -1)]	$0.2 \le K_P < 0.5$ $0.1 \cdot K_{iU} \cdot U_{iH} \le K_{iU} \cdot U_{i}$ $\le 1.5 \cdot K_{iU} \cdot U_{iH}$
17 Активная мощность прямой последовательности, нулевой последовательности и обратной последовательности, Вт	от 0,01·K _{iU} ·U _{iH} · U _H до 1,5·K _{iU} ·U _{iH} · U _H	абсолютная, Вт ±0,01Р _Н	$0,1\cdot K_{iU}\cdot U_{iH} \leq K_{iU}\cdot U_{i}$ $\leq 2\cdot K_{iU}\cdot U_{iH}$
18 Активная фазная мощность основной гармонической составляющей [P _{(1)a} , P _{(1)b} , P _{(1)c}], Вт	от 0,01·К _{iU} · U _{iH} · U _H до	относительная, %	$P_{H} = Q_{H} = S_{H} = U_{H} \cdot I_{H};$ $0,1 \ U_{u_{H}} \leq U \leq 1,5$ $U_{u_{H}}$
	1,5·K _{iU} · U _{iH} ·	±0,1	$\begin{split} K_P &= 1 \\ 0.05 \cdot K_{iU} \cdot U_{iH} \leq K_{iU} \cdot U_i \\ &\leq 1.5 \cdot K_{iU} \cdot U_{iH} \end{split}$
		±0,2	$0.01 \cdot K_{iU} \cdot U_{iH} \leq K_{iU} \cdot U_{i}$ $\leq 0.05 \cdot K_{iU} \cdot U_{iH}$
		±0,15	$\begin{array}{c c} 0.5 \leq K_{P} < 1.0 \\ 0.1 \cdot K_{iU} \cdot U_{iH} \leq K_{iU} \cdot U_{i} \\ \leq 1.5 \cdot K_{iU} \cdot U_{iH} \end{array}$
		±0,25 %	$0.02 \cdot K_{iU} \cdot U_{iH} \leq K_{iU} \cdot U_{i}$ $\leq 0.1 \cdot K_{iU} \cdot U_{iH}$
		±[0,25+0,02(P _H /P -1)]	$\begin{array}{c c} 0.2 \leq K_{P} < 0.5 \\ 0.1 \cdot K_{iU} \cdot U_{iH} \leq K_{iU} \cdot U_{i} \\ \leq 1.5 \cdot K_{iU} \cdot U_{iH} \end{array}$

Продолжение таблицы Б3			
1	2	3	4
19 Активная фазная мощность	ОТ	относительная	$0,1\cdot K_{iU}\cdot U_{iH} \leq K_{iU}\cdot U_{i}$
гармоник $[P_{(h)a}, P_{(h)b}, P_{(h)c}], B_T;$	$0,01\cdot K_{iU}\cdot U_{iH}\cdot U$		$\leq 1,5 \cdot K_{iU} \cdot U_{iH}$
	н		$2\% \leq K_{I(h)}$
	до		_ (/
	$1,5\cdot K_{iU}\cdot U_{iH}\cdot U_{H}$	±5,0 %	$K_P = 1$
			K _P 0.5L1 0.5C
		±5.0 %	$2 \le h \le 10$
		±10.0 %	$11 \le h \le 50$
20 Реактивная электрическая	от 0,01Qн	относительная, %	$0.1 \cdot U_{\text{uH}} \leq U \leq$
мощность, рассчитываемая	до 2,25Q _н		1,5·U _{ин}
геометрическим методом [Q],		,	$K_{RP}^{2)} = 1$
вар, определяемая по		±0,2	$0.05 \cdot K_{iU} \cdot U_{iH} \leq K_{iU} \cdot U_{i}$
формуле:		,	≤ 1,5·K _{iU} ·U _{iH}
		±0,3	
$Q = \sqrt{S^2 - P^2}$,	$0.02 \cdot K_{iU} \cdot U_{iH} < K_{iU} \cdot U_{i}$
	1		≤ 0,05·K _{iU} ·U _{iH}
		,	$0.5 \le K_{RP} \le 1.0;$
		±0,2	$0.1 \cdot K_{iU} \cdot U_{iH} \leq K_{iU} \cdot U_{i}$
		-0,2	$\leq 1.5 \cdot K_{iU} \cdot U_{iH}$
		±0,3	≤ 1,J·KiU·UiH
			$0.05 \cdot K_{iU} \cdot U_{iH} \leq K_{iU} \cdot U_{i}$
			$\leq 0.1 \cdot K_{iU} \cdot U_{iH}$
			$0.25 \le K_{RP} < 0.5;$
		±0,3	$0.1 \cdot K_{iU} \cdot U_{iH} \leq K_{iU} \cdot U_{i}$
			$\leq 1,5 \cdot K_{iU} \cdot U_{iH}$
21 Реактивная электрическая	от 0,01Qн	относительная, %	$0.1 \mathrm{U_{uH}} \leq \mathrm{U} \leq 1.5$
мощность основной	до 2,25Qн	,	U _{un}
гармонической составляющей			$K_{RP} = 1$
[Q ₁], вар		±0,1	$0.05 \cdot K_{iU} \cdot U_{iH} \leq K_{iU} \cdot U_{i}$
		·	$\leq 1.5 \cdot K_{iU} \cdot U_{iH}$
		±0,2	$0.01 \cdot K_{iU} \cdot U_{iH} <$
			$K_{iU} \cdot U_i \leq 0.05 \cdot K_{iU} \cdot U_{iH}$
			$0.5 \le K_{RP} \le 1.0;$
		±0,15	$0.1 \cdot K_{iU} \cdot U_{iH} \leq K_{iU} \cdot U_{i}$
		-0,20	$\leq 1.5 \cdot K_{iU} \cdot U_{iH}$
			<u> </u>
		±0,25	$0.02 \cdot K_{iU} \cdot U_{iH} \leq K_{iU} \cdot U_{i}$
		,	$\leq 0.1 \cdot K_{iU} \cdot U_{iH}$
			$0.2 \le K_{RP} < 0.5;$
		$\pm[0.25+0.02\cdot(Q_{H}/Q-1)]$	$0.1 \cdot K_{iU} \cdot U_{iH} \leq K_{iU} \cdot U_{i}$
		[-; · 3;0~ (< 1/]	$\leq 1.5 \cdot K_{iU} \cdot U_{iH}$
22 Реактивная трехфазная	от 0,01Qн	приведенная	$0.1 \cdot K_{iU} \cdot U_{iH} \leq K_{iU} \cdot U_{i}$
мощность основной	до 2,25Q _H	нриведенная ±1 %	$0,1 \cdot K_{iU} \cdot U_{iH} \leq K_{iU} \cdot U_{i}$ $\leq 2 \cdot K_{iU} \cdot U_{iH}$
гармонической составляющей		<u></u> , ,	≥ ∠'NiU' UiH
прямой последовательности			
$[Q_{(1)1}]$, вар			
			<u> </u>

Продолжение таблицы Б3								
1	2	3	4					
23 Полная электрическая	от 0,01 S _H	относительная, %	0,01⋅K _{iU} ⋅U _{iH} ≤					
мощность [S], В·А	до 2,25S _H		$K_{iU} \cdot U_i \leq 1,5 \cdot K_{iU} \cdot U_{iH}$					
			$0,1 \mathrm{U_{uH}} \leq \mathrm{U} \leq 1,5$					
			U _{uн}					
		±0,2	от 0,1S _H до 2,25S _H					
		±2,0	от 0,01S _H до 0,1S _H					
24 Полная трехфазная, фазная	от 0,01 S _н	относительная, %	0,01⋅K _{iU} ⋅U _{iH} ≤					
мощность основной	до 2,25S _H	, , , , , , , , , , , , , , , , , , , ,	$K_{iU} \cdot U_i \leq 1,5 \cdot K_{iU} \cdot U_{iH}$					
гармонической составляющей		$0.1 \text{ Uur} \le U \le 1.5$						
$[S_{(1)}, S_{(1)a}, S_{(1)b}, S_{(1)c}], B\cdot A$		Uun						
		±0,2	от 0,1S _H до 2,25S _H					
			0.015					
25 Koodshuuraya Mourracay	077.3477770	±2,0	от 0,01S _H до 0,1S _H					
25 Коэффициент мощности	от минус	абсолютная	от 0,05P _H до					
$[K_P]$	1,0 до 1,0	±0,01	2,25P _H					
	до 1,0		0,01·K _{iU} ·U _{iH} ≤					
26 Активная электрическая			$K_{iU} \cdot U_i \leq 1, 5 \cdot K_{iU} \cdot U_{iH}$					
энергия прямого и обратного		класс точности 0,2S по I	OCI 31819.22-2012					
направления, кВт-ч								
27 Активная энергия		Пределы допускаемой от						
основной гармонической		погрешности измерения г						
составляющей [W _{a(1)}],								
кВт·час;		допускаемой относительной погрешности измерения активной электрической мощности						
		основной гармонической составляющей						
28 Активная энергия		Пределы допускаемой относительной						
основной гармонической		погрешности измерения р						
составляющей прямой		допускаемой относительн						
последовательности [W _{a(1)1}],		измерения активной элек	- I					
кВт-час;		основной гармоническог	й составляющей					
		прямой последовательности						
29 Реактивная электрическая		класс точности 1 по ГО						
энергия прямого и обратного		Значение реактивной эле						
направления, квар ч		рассчитывается на основе значения						
		реактивной электрическ						
30 Pearstrang arrange		определяемая геометрич						
30 Реактивная энергия основной гармонической		Пределы допускаемо						
основной гармонической составляющей $[W_{p(1)}]$,		погрешности измерени						
составляющей [w _{p(1)}], квар час;		допускаемой относительной погрешности						
The state of the s		измерения реактивно мощности основной	- 1					
		составляющей.	тармолической					
31 Реактивная энергия		Пределы допускаемо	ой относительной					
основной гармонической		погрешности измерения равны пределам						
составляющей прямой		допускаемой относительной погрешности						
последовательности [W _{p(1)1}],		измерения реактивной электрической						
квар час;		мощности основной гармонической составляющей прямой последовательности.						
	<u></u>							

Примечания:

- 1) $U_{iн}$ номинальные значения входных сигналов напряжений, кодирующих информацию о сигнале тока, задаются в диапазоне от 22,5 до 5000 мВ; K_{iU} —коэффициент преобразования (1/Ом)
- 2) K_{RP} = Q/S коэффициент реактивной мощности.
- 3) Измерение суммарного коэффициента гармонических составляющих и индивидуальных гармонических составляющих сигналов проводятся в соответствии ГОСТ 30804.4.30, ГОСТ 30804.4.7 на основе среднеквадратических значений гармонических подгрупп тока.

Пределы допускаемых дополнительных погрешностей измерений при изменении температуры окружающего воздуха в рабочих условиях применения на каждые 10 °C равны 20 % от значений пределов соответствующих основных погрешностей измерения величин, указанных в таблицах Б1, Б2 и Б3.

Приложение В (рекомендуемое)

Протокол (первичной) поверки № _____

		от			
1 Поверяемый Преобразовател <u>ИП Марсен-ПК</u>	ь измерительны	й "ИП Марсен-П	КЭ" исполнени	(e:	_
класс точности					
Заводской №			год выпуска		
Поверка провод	цилась по МП 22	03-0295-2015			
2 Эталонные с	редства измерен	ний применяеми	ые при поверко	e:	
- отн. вла - атм. да 4 Результаты і	атура ажность вление	% мм.рт.ст.			
5 Заключение:			1		
Поверитель					