ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ «Яровит»

Устройство сбора и передачи данных Яровит 3Д30

> МЕТОДИКА ПОВЕРКИ 31330.07.01 МП

л.р. 64437-16

СОГЛАСОВАНО

Руководитель лаборатории электроэнергетики ФГУП «ВНИИМ им.Д.И.Менделеева» Е. З. Шапиро « » 2016 г.

1 Введение

Настоящая методика устанавливает объем, средства и методы поверки устройства сбора и передачи данных Яровит 3Д30 (далее – контроллер), изготавливаемых ООО «Яровит» РФ, г. Москва.

Устройства сбора и передачи данных Яровит 3Д30 предназначены для измерений силы постоянного тока.

Контроллеры применяются для сбора и измерений входных сигналов, поступающих от соответствующих вычислителей, корректоров, расходомеров, счетчиков, датчиков и т.д., мониторинга и управления состоянием объекта измерений Контроллеры обеспечивают хранение показаний приборов учета с привязкой к календарному времени, обработку, отображение и передачу полученной информации на верхний уровень измерительных систем.

Интервал между поверками – 6 лет.

2 Условия проведения поверки

2.1 Проведение поверки следует проводить при следующих климатических условиях:

- температура окружающего воздуха: 15 25° С;
- относительная влажность воздуха: 45 80 %;
- атмосферное давление: 84 107 кПа (630 800 мм рт. ст.);

2.2 Перед проведением поверки необходимо выполнить следующие подготовительные работы:

 провести технические и организационные мероприятия по обеспечению безопасности проводимых работ в соответствии с действующими положениями ГОСТ 12.2.007.0-75 и ГОСТ 12.2.007.3-75;

 подготовить к работе средства измерений, используемые при поверке, в соответствии с руководствами по их эксплуатации (все средства измерений должны быть исправны и поверены).

Общие требования безопасности при проведении поверки – согласно ГОСТ 12.3.019-80.

3 Операции поверки

3.1 При проведении поверки выполняют операции, указанные в таблице 1. Таблица 1

	Номер	Необходимость выполнени		
Наименование операции поверки	пункта	при	при	
	методики	первичной	периодической	
	поверки	поверке	поверке	
Внешний осмотр	5.1	Да	Да	
Опробование	5.2	Да	Да	
Подтверждение соответствия программного	5.3	Да	Да	
обеспечения				
Определение абсолютной погрешности	5.4	Да	Да	
суточного хода внутренних часов				
Определение относительной погрешности	5.5	Да	Да	
измерений силы постоянного тока				

4 Средства поверки

Генератор сигналов специальной формы AFG-73051 (госреестр № 53065-13); Радиочасы МИР РЧ-01 (госреестр № 27008-04);

Мультиметр цифровой M890G (госреестр №16245-97);

Калибратор программируемый П320, предел измерений 100 мВ,1,10,100,600В; 1,10,100мА. Погрешность менее 0,01%. (госреестр №7493-79).

Допускается использование других типов средств измерений, обеспечивающих определение метрологических характеристик с заданной точностью.

Все средства поверки должны быть исправны, и иметь подтверждение о пригодности к применению в установленном порядке.

5 Проведение поверки

5.1 Внешний осмотр

Проверка внешнего вида, маркировки и наличия необходимых надписей на наружных панелях, а также комплектность поставки. Проверка проводится визуально, путем сличения с эксплуатационной документацией.

Результат внешнего осмотра считают положительным, если маркировка, надписи на наружных панелях и комплектность соответствуют эксплуатационной документации и отсутствуют механические повреждения, способные повлиять на работоспособность Контроллера.

В случае невыполнения этих условий контроллер бракуется и выдается извещение о непригодности.

5.2 Опробование.

При опробовании проверяют исправность органов управления, индикации и коммутирующих устройств.

Проверку проводить с момента подачи напряжения питания.

5.2.1 Подключить контроллер к питанию и компьютеру, согласно приложению А, проверить целостность интерфейсных кабелей, правильность подключения соответствующих портов ЭВМ и Контроллера;

5.2.2 Включить контроллер со стартовой конфигурацией:

IP-адрес 192.168.2.2

Маска подсети 255.255.255.0.

Доступ к нему осуществляется через веб-браузер, с указанием IP-адреса контроллера, и порта 10002 или 10004:

http://192.168.2.2:10002

Имя пользователя: root

Пароль: openscada

Для более тонкой и точной настройки и проверки системы, пользователю предоставляется доступ посредством SSH. Для подключения к устройству необходимо воспользоваться любым SSH клиентом (putty, ssh, и т. д.), используя IP-адрес устройства. По умолчанию используется:

логин: root

Пароль: 12345

Если пароль или стартовая конфигурация были изменены, воспользоваться текущими паролем и стартовой конфигурацией.

Результаты опробования считают удовлетворительными, если авторизация прошла без ошибок, был выполнен вход в интерфейс управления Контроллером и при выполнении вышеперечисленных операций органы управления, индикация и коммутирующие устройства работают исправно.

5.3 Подтверждение соответствия программного обеспечения.

Проведение проверки приборов заключается в определении идентификационных данных программного обеспечения (далее по тексту – ПО), указанных в описании типа.

Проверку проводят следующим образом:

Для считывания данных требуется перейти в WEB-интерфейсе контроллера в раздел «Системный WEB конфигуратор» (System WEB Configurator).

В соответствующих строках будут представлены: наименование программного обеспечения, номер версии (идентификационный номер) программного обеспечения.

5.3.1. Внутренний накопитель контроллера содержит 8 разделов, mtd0-mtd7. Раздел mtd7 является рабочим, данные на котором изменяются в процессе работы, на нем записаны прикладные программы. Метрологически значимое программное обеспечение записано в разделах mtd0-mtd6, и их целостность должна быть проверена.

5.3.2. Подключиться к контроллеру по протоколу SSH, используя логин: root, пароль:12345. Ввести команду:

cat /dev/mtd0 | md5sum

В ответ будет выведена MD5 сумма указанного раздела (mtd0 в этом примере). Следует выполнить эту команду для каждого из разделов mtd0-mtd6.

Раздел	MD5 сумма
mtd0	07305afeca13651dbce8b9797af7e760
mtd1	35d784ec0e48aed58a40e651b1cd29cf
mtd2	7dbcdd8cccdde4333121e4e9b9074610
mtd3	09a1d434dbd7197e7c3af8a7c28ca38b
mtd4	09a1d434dbd7197e7c3af8a7c28ca38b
mtd5	67ab79fc6f5082d01992bdd5a7bb2e7f
mtd6	1fa46507820a5d546d8185c434f2ee92

Контрольные суммы должны соответствовать:

Номер версии ПО представлен на рисунке 1.

	Dynamic WEB configurator		
	AVorkStation		
Work station	"Work station"		
	Station Subsystems Tasks Translations		
	ID: WorkStation	. 1 2 2 2	,
	Station name: Work station		8
	Program: Андромеда	-	20
	Version: 0.9		
	System user: root		2
	Operation system: Linux-3.18.8-linux4sam_5.0-alpha1-dirty		2
	CPU: 1x0GHz		7
	Real-time clock resolution: 10ms		9
	LENERGA CRAFSET AND 1_AU AT 1 YOB Confio-file: /atc/oscada.xml		
	Work directory: [usr/share/openscada -	1	į
	Modules directory: /usr/lit/openscada	let in the second se	35
	Icons directory: Icons:/usr/share/openscada/Icons	เ	
	Documents directory: docs;/usr/share/openscada/docs		
	Work DB: SQUIte.GenDB *	· · · · · · · · · · · · · · · ·	. 1
	Save the system at exit:		ý
	Save the system period:G		1
	Language: huten_USten		ĝ.
	r Nessages		
	Least level: Information (1) *		
	To sysiog:		
	To stdout: 🐨		-
orkStation/%2fgen%2fstat			ł
		AN INCOMENTATION AND AN AND AN AND AND AND AND AND AND	en sen sen sen sen sen sen sen sen sen s

рис.1.

5.4 Определение абсолютной погрешности суточного хода внутренних часов.

5.4.1 С помощью «Радиочасов «МИР РЧ-01», установить время на ПК.

5.4.2 Подключиться к контроллеру по протоколу SSH, используя логин: root, пароль:12345. Используя комманду «date» установить время на контроллере, используя следующий синтаксис:

date -s 44:MM:CC

где ЧЧ — текущее время, часы, ММ — текущее время, минуты, СС — текущее время, секунды, например:

date -s 15:20:30

После ввода команды, нажатием клавиши «Enter», время системных часов контроллера будет установлено в 15 часов 20 минут 30 секунд. Ввести комманду следует при совпадении указанного времени, и времени, установленного на ПК, непрерывно наблюдая за ним.

После установки системного времени, его следует записать в аппаратные часы, выполнив комманду:

hwclock -w

5.4.3 По истечении 24 часов повторить пункт 5.4.1.

5.4.4 Подключиться к Контроллеру по протоколу SSH, используя логин: root, пароль:12345. Для непрерывного вывода текущего системного времени, ввести команду:

while [1]; do date; done (Обратите внимание на пробелы)

Остановить вывод можно нажав комбинацию клавиш Ctrl+C.

5.4.5 Вычислить абсолютную погрешность хода внутренних часов контроллера по формуле:

$$T=T_K-T_{\Pi K},$$

где: Т – абсолютная погрешность измерения текущего времени контроллером;

 T_{K} – показания часов контроллера;

*Т*_{ПК} – показания часов ПК.

5.4.6 Результаты поверки считаются удовлетворительными, если значение T – абсолютная погрешность при измерении текущего времени контроллером не превышает ± 5,0 с/сутки.

5.5 Определение относительной погрешности измерений силы постоянного тока

Определение относительной погрешности измерений силы постоянного тока производится методом сравнения измеренного параметра со значением параметра, воспроизводимого образцовым средством измерения.

Подключение поверяемого прибора к эталонному СИ осуществляется в соответствии со схемой подключения, приведенной в Приложении А Руководствам по эксплуатации образцовых средств измерений.

Относительную погрешность измерений (δХ) контроллера определять по формуле:

$$\delta X = \frac{Xu_{3M} - X_{3M}}{X_{3M}} 100$$

где: Х_{эт} – значение измеряемой величины, измеренное эталонным СИ;

Хизм - значение измеряемой величины, измеренное испытуемым Прибором;

δХ относительная погрешность измерений

Установите режим измерения тока по одному из каналов поверяемого контроллера.

Подключите выход калибратора тока ко входу канала контроллера и последовательно подайте на вход канала токи lвх, равные 4,5 мА; 8 мА; 12 мА; 16 мА; 20 мА.

Повторите операцию для друго аналоговых входа контроллера.

Результаты поверки считаются удовлетворительными, если значение относительной погрешности измерений силы постоянного тока не превышает ± 2 %.

6. Оформление результатов поверки

6.1 На основании положительных результатов поверки выдается свидетельство о поверке, оформленное в соответствии с действующим законодательством об обеспечении единства измерений, в паспорт контроллера вносится запись о положительном результате поверки и наносится поверительное клеймо.

6.2 При отрицательных результатах поверки, хотя бы по одному из пунктов методики поверки, контроллер признается непригодным к дальнейшей эксплуатации и на него выдается извещение о непригодности, оформленное в соответствии с действующим законодательством об обеспечении единства измерений и вносится соответствующая запись в паспорт.

Приложение А (обязательное)

Приложение Б (рекомендуемое)

ПРОТОКОЛ ПОВЕРКИ №

ОТ_____ Г.

Устройство сбора и передачи данных Яровит 3Д30 заводской № _____, версия ПО _____

1 Условия поверки:

- температура окружающего воздуха, °С_____
- относительная влажность, % _____
- атмосферное давление, мм рт. ст. _____

2 Внешний осмотр

3 Определение метрологических характеристик

- 3.1 Абсолютной погрешности суточного хода внутренних часов _____
- 3.2 Относительная погрешность измерений силы постоянного тока
- Таблица 1 Канал №1

Задаваемая калибратором						
сила постоянного тока, мА	4	5	10	12	15	20
Результат измерений						
Погрешность измерений, мА						

Таблица 2 Канал №2

Задаваемая калибратором сила постоянного тока, мА	4	5	10	12	15	20
Результат измерений						
Погрешность измерений, мА						

6. Результат поверки (годен, брак)

Поверитель: