

Анализаторы электрических цепей векторные модульные М9370A, М9371A, М9372A, М9373A, М9374A, М9375A Методика поверки

651-16-10 МП

1. p64457-16

СОДЕРЖАНИЕ

1 Общие сведения
1 Оощие сведения
2 Операции поверки
3 Средства поверки
3 Средства поверки
4 Требования к квалификации поверителей
5 Требования безопасности
5 1 peodballing de sonaendern
6 Условия поверки
6 Условия поверки
7 Проведение поверки
8 Оформление результатов поверки
х Оформление результатов поверки

1 ОБЩИЕ ПОЛОЖЕНИЯ

Настоящий документ распространяется на анализаторы цепей векторные модульные M9370A. M9371A. M9372A. M9373A. M9374A. M9375A (далее анализаторы) всех вариантов исполнения и устанавливает методику, порядок и содержание их первичной и периодической поверок.

Первичную поверку анализатора проводят по настоящей методике на предприятии изготовителе в объеме согласно Таблице 1.

Интервал между поверками 1 год.

2 ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки анализатора проводят операции, указанные в таблице 1:

<u>Габли</u> №	Наименование операции	№ пункта ме- тодики	Первичная поверка	Периодическая поверка
1	Внешний осмотр	7.1	Да	Да
2	Опробование	7.2	Да	Да
3	Идентификация ПО анализатора	7.3	Да	Да
4	Проверка метрологических характеристик		Да	Да
4.1	Определение относительной погрешности установки частоты	7.4	Да	Да
4.2	Определение значений абсолютной погрешности установки мощности на выходе измерительных портов	7.5	Да	Да
4.3	Определение случайной составляющей погрешности измерений ко- эффициентов передачи и отражения	7.7	Да	Да
4.4	Определение уровня собственных шумов	7.8	Да	Да
4.5	Определение значений составляющей абсолютной погрешности измерений в динамическом диапазоне	7.9	Да	Да

3 СРЕДСТВА ПОВЕРКИ

3.1 При проведении поверки применяют средства измерений и приспособления указанные в таблице 2:

Наименование	Краткие характеристики
4. Набор мер коэффициентов передачи и отражения 85052D	Диапазон рабочих частот: $0-26.5$ ГГц: пределы допускаемой погрешности определения действительных значений модуля коэффициента отражения от \pm 0.8 до \pm 1.4 %, пределы допускаемой погрешности определения фазы коэффициента отражения от 0.5 до 1.5°, пределы допускаемой погрешности определения коэффициента передачи от \pm 0.03 до \pm 0.1 дВ, пределы допускаемой погрешности определения фазы коэффициента передачи от \pm 0.3 до \pm 2°.

2. Аттенюаторы ступенчатые программируемые 8494G и 8496G	частотный диапазон до 4 ГГц, значения ослаблений 11 и 110 дБ, пределы допускаемой абсолютной погрешности установки ослабления до \pm 0.5 дБ.
3. Частотомер электронно-счетный 53151А	Диапазон измерений частоты от $10~\Gamma$ ц до $26.5~\Gamma$ Гц: пределы основной допускаемой абсолютной погрешности измерений частоты при работе от внутреннего генератора \pm ($F\cdot 10^{-7}$ + ΔF), где F – частота сигнала, ΔF – разрешение по частоте
4. Блок измерительный ваттметра N1914A с преобразователем мощности N8485A и N8482A	Частотный диапазон от 100 кГц до 26,5 ГГц. динамический диапазон от минус 35 до 20 дБ/мВт, пределы допускаемой погрешности измерений мощности до \pm 4%
5 Генератор сигналов E8257D (с опцией 532)	Диапазон частот от 250 кГц до 32 ГГц. пределы допускаемой относительной погрешности частоты опорного генератора (за 1 год): ± 7.5·10 ⁻⁸ . пределы допускаемой основной погршности установки уровня выходной мощности ± 1.0 дБм.
6 Делитель мощности 11667В	Коэффициент передачи минус 6 ± 0.5 дБ. пределы погрешности фазы коэффициента передачи ±2 градуса

3.2 Вместо указанных в таблице 2 средств поверки допускается применять другие аналогичные средства поверки, обеспечивающие определение метрологических характеристик с требуемой точностью.

3.3 Все средства поверки должны быть исправны, поверены и иметь свидетельства о поверке или оттиск поверительного клейма на приборе или в технической документации.

4 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЯ

- 4.1 К проведению поверки допускаются лица, аттестованные в качестве поверителей.
- 4.2 Персонал, проводящий поверку, должен знать основные принципы работы векторных анализаторов цепей. быть компетентным в вопросах эксплуатации анализатора и его поверки в соответствии с настоящей методикой.

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

5.1 При проведении поверки следует соблюдать общие требования безопасности по ГОСТ 12.3.019-80 и «Правила безопасности при эксплуатации электроустановок потребителей».

Внимание! При проведении поверки необходимо принять меры защиты от статического напряжения, использовать антистатические заземленные браслеты и заземлённую оснастку.

6 УСЛОВИЯ ПОВЕРКИ

6.1 Условия поверки приведены в таблице 3.

Габлица 3.	
Температура окружающего воздуха. °С:	От +20 до +26
Относительная влажность воздуха при 23 °C. %	От 20 до 80
Атмосферное давление, кПа	от 84 до 106
Напряжение и частота сети электропитания	От 90 до 132 В или от 198 до 264 В
Transportation to the control of the	с частотой от 47 до 63 Гц

Во время определения метрологических характеристик температура в помещении не должна изменяться более чем на 1 градус Цельсия относительно температуры при которой была проведена калибровка анализатора.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Внешний осмотр

При проведении внешнего осмотра установить соответствие поверяемого анализатора следующим требованиям:

- комплектность анализатора и его компонентов соответствует указанной в документации на анализатор;
- отсутствие механических повреждений и ослабление элементов, четкость фиксации их положения;
- чёткость обозначений, чистоту и исправность разъёмов и гнёзд, наличие и целостность печатей и пломб;
 - наличие маркировки согласно требованиям эксплуатационной документации:

7.2 Опробование

Проверку работоспособности анализаторов проводить при помощи мер волнового сопротивления короткое замыкание (КЗ) и холостой ход (ХХ) из набора мер 85052D.

Произвести полную 2-х портовую калибровку анализатора в диапазоне рабочих частот анализатора, при уровне выходной мощности измерительного порта 0 дБ относительно 1 мВт и полосе ПЧ 3 кГц. Для калибровки анализатора использовать набор мер коэффициентов передачи и отражения 85052D.

Подключить на вход откалиброванных измерительных портов анализатора меры холостого хода «OPEN» или короткого замыкания «SHORT». Установить на анализаторе режим измерений S параметров (коэффициента отражения).

Результаты проверки работоспособности считать удовлетворительными, если зависимости коэффициента отражения от частоты, отображенные на экране анализатора соответствуют характеру подключенной к измерительному порту нагрузке. Повторить проверку работоспособности для всех измерительных портов анализатора. Допускается проводить проверку работоспособности с использованием мер «нагрузка согласованная» из комплекта мер 85052D.

7.3 Идентификация ПО анализатора

7.3.1 Определение идентификационных данных ПО.

Для приложений M937xA Firmware проверить следующие идентификационные данные ПО:

- наименование ПО;
- идентификационное наименование ПО;
- номер версии (идентификационный номер) ПО;
- цифровой идентификатор ПО (контрольную сумму исполняемого кода).

Для расчета цифрового идентификатора использовать программу (утилиту) «MD5_FileChecker», использующая алгоритм md5. Указанная программа находится в свободном доступе сети Internet (сайт www.winmd5.com).

Результаты испытаний считать положительными, если идентификационные данные ПО соответствуют указанным в приложении А.

7.4 Определение относительной погрешности установки частоты

Установить на анализаторе режим непрерывной генерации сигнала «СW». Подключить частотомер 53151А к измерительному порту 1 анализатора. Установить частоту сигнала, равную начальной частоте диапазона рабочих частот (300 кГц).

Произвести измерение частоты выходного сигнала с использованием электронно-счётного

частотомера. Измеренное значение частоты занести в протокол.

Повторить измерение частоты выходного сигнала на частотах: 50 МГц. 134.1 МГц. 548 МГц. 3 ГГц. 4.5 ГГц. 8.5 ГГц. 9 ГГц. 14 ГГц. 26,5 ГГц (в зависимости от модели анализатора).

Рассчитать значения относительных погрешностей установки частоты сигнала по формуле : $\delta f = (f_{\rm f} - f_0)/f_{\rm f}$.

где f_0 – значение частоты сигнала, измеренное частотомером. Гц:

fr – значение частоты сигнала, установленное на анализаторе. Гц.

Повторить перечисленные выше операции для каждого измерительного порта.

Значения об, на каждой из приведенных частот, занести в протокол.

Результаты поверки считать удовлетворительными, если значения относительной погрешности установки частоты находятся в пределах, указанных в приложении А.

7.5 Определение значений абсолютной погрешности установки мощности на выходе измерительных портов.

Рассчитать значение абсолютной погрешности установки выходной мощности на 1-ом измерительном порте анализатора по формуле:

 $\sqrt{Pi} = Py - Pиi$.

Ру – установленный уровень выходной мощности анализатора.

Полученные значения лРі занести в протокол.

Повторить измерения для каждого измерительного порта анализатора.

Результаты поверки считать удовлетворительными, если значения абсолютной погрешности установки мощности на измерительных портах находятся в пределах, указанных в приложении A.

7.6 Определение случайной составляющей погрешности измерений коэффициентов передачи и отражения

Произвести полную 2-х портовую калибровку анализатора в рабочей полосе частот анализатора. при уровне выходной мощности измерительного порта 0 дБ относительно 1 мВт и полосе 11Ч 3 кГц. Для калибровки анализатора использовать набор мер коэффициентов передачи и отражения 85052D.

Провести измерения случайной составляющей погрешности измерений коэффициентов отражения для чего:

- к порту 1 подключить нагрузку SHORT из калибровочного набора, установить режим измерения модуля и фазы коэффициента отражения (S11) в полосе частот от 300 кГц до 2 МГц (уровень выходной мощности 0 дБ относительно 1 мВт, полоса ПЧ 3 кГц). Провести измерения среднего значения и СКО модуля и фазы коэффициента отражения в заданном диапазоне частот. Описанную выше процедуру измерений S11 повторить в полосах частот: от 2 МГц до 1 ГГц; от 1.01 ГГц до 2 ГГц; от 2.01 ГГц до 4 ГГц; от 4.01 ГГц до 6,5 ГГц; от 6.51 ГГц до 9 ГГц; от 9.01 ГГц до 14 ГГц; от 14.01 ГГц до 20 ГГц; от 20.01 ГГц до 24 ГГц. Результаты измерений занести в протокол.

Измерения повторить для всех портов анализатора.

Провести измерения случайной составляющей погрешности измерений коэффициентов передачи для чего:

-соединить порты 1 и 2 анализатора при помощи гибкого фазостабильного кабеля. На анализаторе установить режим измерений модуля и фазы коэффициента передачи (\$21) в полосе частот от 300 кГц до 2 МГц (уровень выходной мощности 0 дБ относительно 1 мВт, полоса ПЧ 3 кГц). Провести измерения среднего значения и СКО модуля и фазы коэффициента передачи в заданном диапазоне частот. Описанную выше процедуру измерений \$21 повторить в полосах частот: от 2 МГц до 1 ГГц; от 1.01 ГГц до 2 ГГц; от 2,01 ГГц до 4 ГГц; от 4,01 ГГц до 6.5 ГГц; от 6.51 ГГц до 9 ГГц; от 9.01 ГГц до 14 ГГц; от 14,01 ГГц до 20 ГГц; от 20,01 ГГц до 24 ГГц. Результаты измерений занести в протокол.

Измерения повторить для коэффициента передачи S12.

Результаты поверки считать удовлетворительными, если СКО модуля и фазы коэффициентов передачи и отражения находятся в пределах, указанных в приложении А.

7.7 Определение уровня собственных шумов

Для определения уровня собственных шумов приемника (Pnoise) порта 1 анализатора необходимо:

Установить на анализаторе режим непрерывной генерации (CW) на частоте $(f_i - f_j)/2$. где $f_i = 10~\text{M}\Gamma\text{ц}$, $f_j = 250~\text{M}\Gamma\text{ц}$. К измерительному порту анализатора, работающему в качестве синтезатора частот, подключить СВЧ кабель. К другому разъему СВЧ кабеля подключить ваттметр поглощаемой мощности типа N1914A с преобразователем мощности N8485A. Установить, контролируя по ваттметру, уровень выходной мощности синтезатора 5 дБ относительно 1 мВт.

Отключить СВЧ кабель от измерительного преобразователя ваттметра и подключить его к измерительному порту приемника. у которого определяется уровень собственных шумов. Измерить уровень мощности (Plog) на входе этого приемника и занести его в протокол. Отключить СВЧ кабель от измерительных портов анализатора.

Подключить на измерительный порт приемника, у которого определяется уровень собственных шумов, согласованную нагрузку из состава набора мер коэффициентов передачи и отражения 85052D. Включить анализатор в режим свипирования по частоте в диапазоне от f_i до f_j с полосой $\Pi\Psi$ 1 $\Gamma_{\rm L}$. Снять показания максимального значения уровня мощности шума приемника (PdBm) в диапазоне частот от f_i до f_j и занести его в протокол.

Рассчитать уровень мощности шума испытуемого приемника в полосе частот от fi до fj по формуле:

Pnose = PdBm - (5.00-Plog).

и занести значение Pnoise в протокол.

Повторить измерения и определение уровня собственных шумов приемника в диапазонах частот: от 10 МГц до менее 250 МГц; от 250 МГц до 1 ГГц; от 1,01 ГГц до 4 ГГц; от 4.01 ГГц до 6.5 ГГц; от 6.51 ГГц до 9 ГГц; от 9,01 ГГц до 14 ГГц; от 14.01 ГГц до 18 ГГц; от 18.01 ГГц до 20 ГГц; от 20,01 ГГц до 24 ГГц.

Повторить измерения для каждого измерительного порта анализатора.

Результаты поверки считать удовлетворительными, если уровни собственных шумов измерительных приемников анализатора не превышают значений, указанных в приложении А.

7.8 Определение значений составляющей абсолютной погрешности измерений в динамическом диапазоне

7.8.1 Перед началом определения составляющей погрешности измерений мощности в динамическом диапазоне измерить значения ослабления аттенюаторов на частоте 1,2 ГГц:

Измерения ослабления аттенюаторов проводить по схеме, приведённой на рисунке 1.

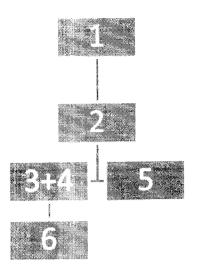


Рисунок 1.

1 – генератор сигналов Е8257D:

2 – делитель мощности 11636 А:

3 – аттенюатор коаксиальный ступенчатый 8494В;

4 – аттенюатор коаксиальный ступенчаты 8496В;

5 – нагрузка согласованная (50 Ом);

6 – ваттметр N1914A с преобразователями N8485A и N8482A.

Установить частоту выходного сигнала генератора E8257D 1.2 ГГц. установить мощность выходного сигнала генератора 10 дБ (исх. 1 мВт).

Устанавливать ослабление аттенюаторов с шагом 1 дБ в диапазоне до 10 дБ и с шагом 10 дБ в диапазоне до 80 дБ (измерять ваттметром с соответствующим преобразователем мощности до уровня минус 60 дБ/мВт).

Рассчитать поправочные коэффициенты для всех установленных значений ослабления по формуле:

$$K_i = P_{iijuep} - (P_0 - S),$$

 $_{\Gamma \text{де}}$ $P_{u_{3} wep}$ - значение мощности сигнала. измеренное ваттметром или анализатором спектра;

 P_0 - мощность выходного сигнала генератора (10 дБ исх. 1 мВт):

S - суммарное номинальное ослабление аттенюаторов (определяемое по шкалам аттенюаторов).

7.8.2 Перевести анализатор в режим измерений параметра S21 согласно РЭ.

При помощи аттенюаторов изменять ослабление входного сигнала с шагом 1 дБ в диапазоне значений ослабления до 10 дБ и с шагом 10 дБ в диапазоне значений ослабления от 10 дБ от 80 дБ. Изменение мощности сигнала контролировать при помощи ваттметра.

Рассчитать значение составляющей абсолютной погрешности измерений мощности в динамическом диапазоне по формуле:

$$\Delta_i = P_{0i} - P'_i + K_i,$$

где P_0 - мощность выходного сигнала генератора с учетом номинального значения ослабления аттенюаторов равна 10 дБ (исх. 1 мВт) минус S .

 P^{+} - мощность сигнала. измеренная ваттметром;

 $K_{\scriptscriptstyle T}$ - поправочный коэффициент:

i - индекс. означающий то. что величины, входящие в расчетную формулу, измерены при одном значении ослабления шагового аттенюатора.

В качестве составляющей погрешности измерений мощности в динамическом диапазоне Δ выбрать максимальное значение из Δ , .

Измерения провести для всех измерительных портов анализаторов.

Результаты поверки считать удовлетворительными, если значения составляющей абсолютной погрешности измерений в динамическом диапазоне находятся в допускаемых пределах, указанных в приложении A, для каждого измерительного порта анализатора.

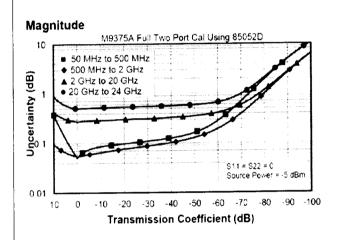
8. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

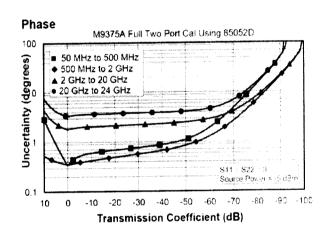
8.1. Результаты поверки оформить протоколом.

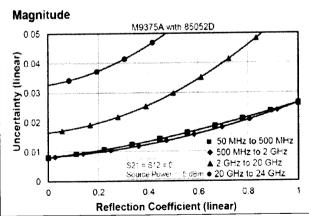
- 8.2. При положительных результатах поверки оформить «Свидетельстве о поверке», в соответствии с приложением 1 к «Порядку проведения поверки средств измерений, требований к знаку поверки и содержанию свидетельства о поверке, утвержденному приказом Министерства промышленности и торговли РФ от 2 июля 2015 г. N 1815».
- 8.3. При отрицательных результатах поверки оформляется Извещение о непригодности к применению на анализатор с указанием причин, согласно приложению 2 к «Порядку проведения поверки средств измерений, требований к знаку поверки и содержанию свидетельства о поверке, утвержденному приказом Министерства промышленности и торговли РФ от 2 июля 2015 г. N 1815».

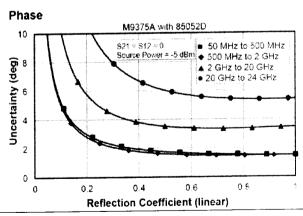
Заместитель начальника НИО-6 ФГУП «ВНИИФТРИ»

А.В. Апрелев

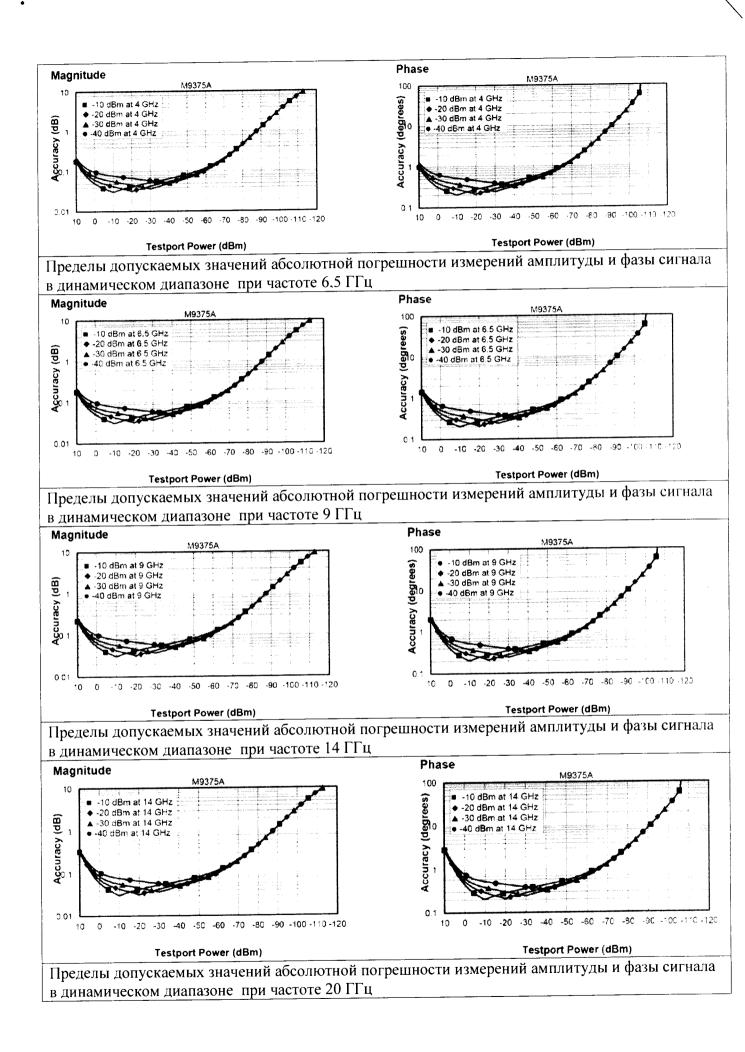

Метрологические и технические характеристикиМетрологические и технические характеристики анализаторов приведены в таблице 1.
Таблица 1.


Таблица 1. Наименование характеристики	Значение характеристики						
Tumber of Summer Superior	M9370A	M9371A	M9372A	M9373A	M9374A	M9375A	
Нижняя граница диапазона ча- стот, кГц	300						
Верхняя граница диапазона частот, ГГц	4	6,5	9	14	20	26.5	
Разрешение по частоте, Гц от 300 кГц до 2,5 ГГц свыше 2,5 до 5 ГГц свыше 5 до 10 ГГц свыше 10 до 20 ГГц свыше 20 ГГц Пределы допускаемой относительной погрешности установ-	1 2 3 6 12 ±1·10 ⁻⁶						
ки частоты выходного сигнала Входное сопротивление, Ом	50 (75 с дополнительным адаптером)						
Диапазоны частот	Динамические характеристики Уровень шума при полосе пропускания промежуточной частоты 10 Гц, дБ относительно мВт (дБм)				диапазон.		
от 10 МГц до менее 250 МГц		минус			98		
от 250 МГц до 1 ГГц		минус			115		
свыше 1 ГГц до 4 ГГц		минус			115		
свыше 4 ГГц до 6,5 ГГц	минус 108 115						
свыше 6,5 ГГц до 9 ГГц	минус 108 114						
свыше 9 ГГц до 14 ГГц	минус 108 114 минус 108 112						
свыше 14 ГГц до 18 ГГц	MATY 100						
свыше 18 ГГц до 20 ГГц	минус 108				95		
свыше 20 ГГц до 24 ГГц	минус 98 95						


Параметры анализатора при калибровке с помощью набора мер коэффициентов передачи и отражения 85052D


жения 03032В								
Диапазон частот	Направ	Согласо	вание	Характеристики передачи		Характеристики		
	лен-	источ-	нагруз			отражения		
	ность,	ника,	ки, дБ	ампли-	фаза,	ампли-	фаза.	
	дБ	дБ		туда,	0	туда, дБ	°	
·				дБ				
от 300 кГц до менее 2 МГц	42	37	42	± 0,068	$\pm 0,450$	$\pm 0,003$	± 0.020	
от 2 МГц до 1 ГГц	42	37	42	$\pm 0,019$	± 0.123	± 0.003	± 0.020	
свыше 1 ГГц до 2 ГГц	42	37	42	$\pm 0,021$	$\pm 0,136$	± 0.003	± 0.020	
свыше 2 ГГц до 4 ГГц	38	31	38	$\pm 0,055$	± 0.361	$\pm 0,004$	$\pm 0,027$	
свыше 4 ГГц до 6,5 ГГц	38	31	38	$\pm 0,089$	$\pm 0,584$	$\pm 0,004$	± 0.027	
свыше 6,5 ГГц до 9 ГГц	36	28	36	$\pm 0,155$	$\pm 1,023$	$\pm 0,008$	± 0.052	
свыше 9 ГГц до 14 ГГц	36	28	36	$\pm 0,195$	± 1,286	$\pm 0,008$	± 0.052	
свыше 14 ГГц до 20 ГГц	36	28	36	$\pm 0,233$	$\pm 1,536$	$\pm 0,008$	$\pm 0,052$	
свыше 20 ГГц до 24 ГГц	36	25	30	± 0,442	$\pm 2,915$	$\pm 0,011$	± 0.072	

Пределы допускаемых значений составляющей абсолютной погрешности измерений в динамическом диапазоне





Неисправленные параметры анализатора							
Диапазон частот	Направленность, дБ		сование				
Anamason meror		источника, дБ	нагрузки, дБ				
от 300 кГц до менее 2 МГц	9	9	9				
от 2 МГц до 1 ГГц	21	19	21				
свыше 1 ГГц до 4 ГГц	21	20	19				
свыше 4 ГГц до 6,5 ГГц	21	20	15				
свыше 6,5 ГГц до 9 ГГц	20	15	11				
свыше 9 ГГц до 14 ГГц	11	11	9				

					7	
свыше 14 ГГц до 18 ГГц		9	9		6	
свыше 18 ГГц до 20 ГГц		4	6		4	
свыше 20 ГГц до 24 ГГц		3	5		+	
		Характеристики выхо	одного сигнала	<u>. </u>		
Диапазоны частот		Диапа	азон выходной		ги, дом	
от 10 до менее 250 МГц			от 0 до ми			
	от 250 МГц до 6,5 ГГц от 7 до минус 40					
свыше 6,5 до 9 ГГц			от 6 до ми			
свыше 9 до 14 ГГц			от 6 до ми			
свыше 14 до 18 ГГц			от 4 до ми			
свыше 18 до 20 ГГц			от 2 до ми		^	
свыше 20 до 24 ГГц			от минус 3 до			
Пределы допускаемо	рй абсо	лютной погрешности	установки урс	вня выхо	дного сигнала. дом	
Диапазоны частот		при уровне мощност	и от минус	при урог	зне мощности	
		40 до минус 30 дБм			с 30 до максимального	
					я диапазона	
от 10 до менее 250 МГц		± 4.5			± 2,5	
от 250 МГц до 1 ГГц		± 1,5			± 1,5	
свыше 1 ГГц до 6,5 ГГц		± 1,5			± 1,5	
свыше 6,5 ГГц до 20 ГГ	ц	± 1,5			± 1,5	
свыше 20 до 24 ГГц		± 3,0		± 3,0		
		Характеристики измер Значение шум		та		
Диапазоны частот		лосе пропус	скания промеж	уточной 	сти минус 5 дБм и по- частоты 1 кГц	
		амплитуда	, дБ		фаза,	
от 10 МГц до 4 ГГц		0,003			0.030	
свыше 4 до 6,5 ГГц		0,003		0,030		
свыше 6,5 до 9 ГГц		0,003		0,030		
свыше 9 до 14 ГГц		0,003		0,030		
свыше 14 до 18 ГГц		0,003		0,030		
свыше 18 до 20 ГГц		0,003			0,030	
свыше 20 до 24 ГГц		0,006				
Диапазоны частот	Дей сим	ствующее значение ам ости от ширины поло	плитуды при сы пропускани	уровне мо ия промеж	ощности 6 дБм в зави- куточной частоты. дБ	
		10 кГц	100 кГц,		600 к1 ц	
от 250 МГц до 10 ГГц	0,0020		0,0055		0,0120	
свыше 10 до 14 ГГц	0,0030		0,0075		0,0160	
Диапазоны частот	Дейс	ействующее значение фазы при уровне мощности 6 дБм в зависимост от ширины полосы пропускания промежуточной частоты°				
	10 κΓμ 100 κΓμ 600 κΙ μ				600 кГц	
от 250 МГц до 8,5 ГГц		0,010	0,025		0,060	
свыше 8.5 до 14 ГГц		0.020	0,055		0.120	
Пределы допускаемых	<u> </u>	ий абсолютной погрег	шности измере	ний ампл	итуды и фазы сигнала	
в динамическом диапаз	оне пр	ои частоте 4 ГГц	·			

Идентификационные данные (признаки) метрологически значимой части ПО приведены в таблице 2.

Таблица 2. Цифровой иден-Алгоритм вычис-Номер версии Идентификаци-Наименование ления цифрового тификатор ПО (идентификаци-ПО онное наименоидентификатора (контрольная онный номер) ПО вание ПО ПО сумма) Keysight 10 libraries 16.3.17914.4 и ПО для векторного MD5 Version выше анализатора цепей