СОГЛАСОВАНО

УТВЕРЖДАЮ

Генеральный директор ООО «СТРИЖ Телематика»

А. А. Синицин

09 2016 г.

Генеральный директор ООО «ИЦРМ»

А. В. Щетинин

2016 г.

«Испытательный центр разработок в области метрологии»

Счётчики электрической энергии статические трехфазные АМПЕР 3

Методика поверки

МП 4228-002-29475497-2015

1.p.64472-16

Содержание

1 Вводная часть	3
2 Операции поверки	
3 Средства поверки	3
4 Требования к квалификации поверителей	Δ
5 Требования безопасности	Λ
6 Условия поверки	
7 Подготовка к поверке	······
8 Проведение поверки	5
9 Оформление результатов поверки	20
10 Приложение А	

1 ВВОДНАЯ ЧАСТЬ

- 1.1 Настоящая методика поверки устанавливает методы и средства первичной и периодической поверок (и калибровки) счетчиков электрической энергии статических трехфазных АМПЕР 3, далее по тексту счетчики.
- 1.2 Счетчики подлежат поверке с периодичностью, устанавливаемой потребителем с учётом режимов и интенсивности эксплуатации, но не реже одного раза в 16 лет.

2 ОПЕРАЦИИ ПОВЕРКИ

2.1 Операции, выполняемые при поверке счетчиков, и порядок их выполнения приведены в таблице 1

Таблица 1

***	Номер пунк-	Необходимость выполнения	
Наименование операции поверки	та методики поверки	при пер- вичной поверке	при перио- дической поверке
Внешний осмотр	8.1	Да	Да
Проверка электрической прочности изоляции	8.2	Да	Нет
Проверка электрического сопротивления изоляции	8.3	Да	Да
Опробование	8.4	Да	Да
Подтверждение соответствия программного обеспечения	8.5	Да	Да
Проверка отсутствия самохода	8.6	Да	Да
Проверка стартового тока (чувствительности)	8.7	Да	Да
Проверка метрологических характеристик	8.8	Да	Да

- 2.2 При получении отрицательного результата в процессе выполнения любой из операций поверки счетчики бракуют, их поверку прекращают.
- 2.3 После устранения недостатков, вызвавших отрицательный результат, счетчики вновь представляют на поверку.

3 СРЕДСТВА ПОВЕРКИ

3.1 Перечень средств измерений, используемых при поверке, приведен в таблице 2.

Таблина 2

Наименование, обозначение	Тип	Требуемые характеристики	
Осн	овные средства поверки	1	
1. Установка поверочная универсальная	УППУ-МЭ 3.1К	Г. Р. № 39138-08	
2. Сервер синхронизации времени	ССВ-1Г	Γ.P. № 58301-14	
Вспомог	ательные средства пове	ерки	
 установка для проверки пара- метров электрической безопасно- сти 	GPT-79803	Γ. P. № 50682-12	
4. Термогигрометр электронный	«CENTER» модель	Γ.P. № 22129-09	
5. Барометр-анероид метеорологический	БАММ-1	Γ.P. № 5738-76	
Примсчание - Допускается вающих измерение соответствующи	и использование других	с средств измерений, обеспечи-	

вающих измерение соответствующих параметров с требуемой точностью.

4 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

- 4.1 К проведению поверки допускают лица, аттестованные в качестве поверителей средств измерений электрических величин.
- 4.2 Поверитель должен пройти инструктаж по технике безопасности и иметь действующее удостоверение на право работы в электроустановках с напряжением до 1000 В с квалификационной группой по электробезопасности не ниже III.

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 5.1 При проведении поверки должны быть соблюдены требования безопасности, установленные ГОСТ 12.3.019-80, «Правилами техники безопасности, при эксплуатации электроустановок потребителей», «Межотраслевыми правилами по охране труда (правилами безопасности) при эксплуатации электроустановок». Соблюдают также требования безопасности, изложенные в эксплуатационных документах на счетчики и применяемые средства измерений.
- 5.2 Средства поверки, которые подлежат заземлению, должны быть надежно заземлены. Подсоединение зажимов защитного заземления к контуру заземления должно производиться ранее других соединений, а отсоединение – после всех отсоединений.
- 5.3 Должны также быть обеспечены требования безопасности, указанные в эксплуатационных документах на средства поверки.

6 УСЛОВИЯ ПРОВЕДЕНИЯ ПОВЕРКИ

- 6.1 При проведении поверки должны быть соблюдены следующие условия:
- счетчик проверяют в корпусе с установленным кожухом и без крышки зажимов;
- температура окружающего воздуха плюс (20 ± 5) °C;
- относительная влажность окружающего воздуха от 30 до 80 %;

- атмосферное давление от 80 до 106,7 кПа;
- отсутствие постоянного магнитного поля внешнего происхождения.

Параметры, обеспечиваемые поверочной установкой:

- номинальная частота тока сети $(50,0\pm0,5)$ Гц;
- значение выходного напряжения переменного трехфазного тока от 40 ${f B}$ до 276 ${f B}$;
 - значение выходного переменного трехфазного тока от 0,01 А до 100 А;
- отклонение значения силы тока в каждой из фаз от значений, указанных в каждом конкретном случае не более \pm 1 %;
- отклонение каждого из фазных (или линейных) напряжений от среднего значения не более $\pm 1 \%$;
- сдвиги фаз между токами и напряжениями (независимо от значения коэффициента мощности) не должны отличаться друг от друга более чем на 2°;
- коэффициент искажения формы кривых синусоидального напряжения и тока не более 2 %.

7 ПОДГОТОВКА К ПОВЕРКЕ

- 7.1 Перед проведением поверки необходимо выполнить следующие подготовительные работы:
- провести технические и организационные мероприятия по обеспечению безопасности проводимых работ в соответствии с действующими положениями ГОСТ 12.2.007.0-75;
- выдержать счетчики в условиях окружающей среды, указанных в п.6, не менее 2 ч, если они находились в климатических условиях, отличающихся от указанных в п.6;
- подготовить к работе средства измерений, используемые при поверке, в соответствии с руководствами по их эксплуатации (все средства измерений должны быть исправны и поверены).

8 ПРОВЕДЕНИЕ ПОВЕРКИ

8.1 Внешний осмотр

При внешнем осмотре проверяют соответствие счетчиков следующим требованиям:

- лицевая панель счетчиков должна быть чистой и иметь четкую маркировку в соответствии с ГОСТ 31818.11-2012, ГОСТ 31819.21-2012, ГОСТ 31819.23-2012;
 - в комплекте счетчиков должны быть документы:
- 1) «Счетчики электрической энергии статические трехфазные АМПЕР 3. Паспорт»;
- 2) «Счетчики электрической энергии статические трехфазные АМПЕР 3. Руководство по эксплуатации» РЭ 4228-002-29475497:
- 3) «Счетчики электрической энергии статические трехфазные АМПЕР 3. Методика поверки» МП 4228-002-29475497-2015;
- на крышке зажима счетчиков должна быть нанесена схема подключения счетчиков к электрической сети;

все крепящие винты должны быть в наличии, резьба винтов должна быть исправна, механические элементы хорошо закреплены.

Результаты проверки считаются положительными, если выполняются все вышеуказанные требования.

8.2 Проверка электрической прочности изоляции

Проверку электрической прочности изоляции напряжением переменного тока проводить с помощью установки для проверки параметров электрической безопасности GPT-79803 (далее по тексту- GPT-79803) в следующей последовательности:

- 1) Покрыть корпуса счетчиков сплошной, прилегающей к поверхности корпуса металлической фольгой («Земля») таким образом, чтобы расстояние от фольги до зажимов было не более 20 мм.
- 2) Установить винты силовых зажимов в положение, соответствующее закреплению максимально допустимого сечения проводов.
- 3) Подать от установки на точки приложения испытательное напряжение практически синусоидальной формы частотой (45-65) Γ ц в соответствии с таблицей 3.

Таблица 3

гаолица з	
Среднеквадратическое значение испытательного напряжения, кВ	Точка приложения испытательного напряжения
4	Между всеми цепями тока и напряжения, соединенными вместе, с одной стороны, и «землей» — с другой стороны
2	Между цепями, которые не предполагается соединять вместе во время работы
4) Remember 1700 Trans	

- 4) Выдержать изоляцию под действием испытательного напряжения в течение 1 мин.
 - 5) Снизить испытательное напряжение до нуля и отключить GPT-79803.

Результаты проверки считаются положительными, если во время проверки не произошло пробоя или перекрытия изоляции испытуемых цепей.

8.3 Проверка электрического сопротивления изоляции

Проверку электрического сопротивления изоляции проводить при помощи GPT-79803 в следующей последовательности:

- 1) Подключить GPT-79803 между цепями тока и напряжения, указанными в таблице 3.
- 2) Установить на выходе установки GPT-79803 напряжение постоянного тока 500 В.
- Провести измерение электрического сопротивления изоляции не менее 3 раз.
 Результаты проверки считают удовлетворительными, если значение сопротивления изоляции составило не менее 20 МОм.

8.4 Опробование

Опробование счетчиков заключается в проверке функционирования дисплея и клавиатуры управления (в зависимости от модификации счетчика). Проверку проводить при номинальном значении напряжения на силовых зажимах счетчиков в следующей последовательности:

1) Собрать схему, представленную на рисунке А.1 Приложения А.

- 2) При помощи установки поверочной универсальной УППУ-МЭ 3.1К (далее по тексту УППУ) воспроизвести значение напряжения переменного тока равное $U_{\text{ном}}$.
- 3) Последовательно нажимая кнопки клавиатуры управления счетчика в ручном режиме индикации убедиться, что после каждого нажатия кнопки происходит изменение информации, отображаемой на дисплее в соответствии с описанием режима индикации в руководстве по эксплуатации.

Результаты проверки считаются положительными, если при включении отображаются все пиксели графического дисплея, и после каждого нажатия кнопки происходит соответствующее изменение отображаемой информации.

8.5 Подтверждение соответствия программного обеспечения

Встроенное программное обеспечение (далее по тексту – ПО) установок может быть проверено, установлено или переустановлено только на заводе-изготовителе с использованием специальных средств программно-технических устройств, поэтому при поверке встроенное программное обеспечение не проверяется.

8.6 Проверка стартового тока

Проверку стартового тока проводится при помощи УППУ, устанавливая следующие параметры испытательных сигналов:

– для счётчиков класса точности 1 по ГОСТ 31819.21 и ГОСТ 31819.23 (непосредственного включения):

$$U = U_{\text{hom}}$$
; $I = 0.004 \cdot I_6$; $\cos \varphi = 1$

– для счётчиков класса точности 1 по ГОСТ 31819.21 и ГОСТ 31819.23 (включаемых через трансформаторы):

$$U = U_{\text{HOM}}$$
; $I = 0.002 \cdot I_{\text{HOM}}$; $\cos \varphi = 1$

– для счётчиков классов точности 0,5S но ГОСТ 31819.22 и 0,5 (при измерении реактивной эпергии)

$$U=U_{\text{HOM}}$$
; $I=0.001 \cdot I_{\text{HOM}}$; $\cos \varphi = 1$.

-для счётчиков класса точности 2 по ГОСТ 31819.23 (непосредственного включения):

$$U = U_{\text{hom}}$$
; $I = 0.005 \cdot I_{6}$; $\cos \varphi = 1$

-для счётчиков класса точности 2 по ГОСТ 31819.23 (включаемых через трансформаторы):

$$U = U_{\text{Hom}}$$
; $I = 0.003 \cdot I_{\text{Hom}}$; $\cos \varphi = 1$

Проверку проводить в следующей последовательности:

- 1) Подключить счетчик к УППУ согласно рисунку А.1 Приложения А.
- 2) Проверку проводят, наблюдая за приращением показаний энергии счётчика.
- 3) Для счётчиков с двумя направлениями учёта проверку проводят в обоих направлениях.
- 4) Счётчики должны начинать непрерывную регистрацию показаний активной и реактивной (для счётчиков соответствующих исполнений) энергии при симметричной нагрузке, коэффициенте мощности, равном 1, и значении тока:
- $I=0,004\cdot I_{6}$ для счётчиков класса точности 1 по ГОСТ 31819.21 и ГОСТ 31819.23 непосредственного включения;
- $I=0,002\cdot I_{\text{ном}}$ для счётчиков длясса точности 1 по ГОСТ 31891.21 и ГОСТ 31819.23, включаемых через трансформаторы;
- $I=0,005\cdot I_{6}$ для счётчиков класса точности 2 по ГОСТ 31819.23 непосредственного включения;
 - $I = 0,003 \cdot I_{\text{ном}}$ для счётчиков класса точности 2 по ГОСТ 31891.23, включаемых

через трансформаторы;

 $I=0,001\cdot I_{\mathsf{Hom}}$ — для счётчиков классов точности 0,5S по ГОСТ 31819.22 и 0,5 (при измерении реактивной энергии).

Результаты проверки считаются положительными, если при значениях тока по п. 4) счётчик начинает и продолжает регистрировать показания активной и реактивной энергии (в зависимости от исполнения).

8.7 Проверка отсутствия самохода

Проверку отсутствия самохода проводить при помощи УППУ в следующей последовательности:

- 1) подключить счетчик к УППУ согласно рисунку А.1 Приложения А;
- 2) подключить счетчик к компьютеру через интерфейс, например, оптический, с помощью устройства фотосчитывающего УФС-И (входящего в состав УППУ).
- 3) установить на выходе УППУ следующий испытательный сигнал: напряжение $1,15 \cdot U_{\text{ном}}$; сила тока 0 A;
- 4) После приложения напряжения, равного $1,15 \cdot U_{\text{ном}}$, при отсутствии тока в цепи тока испытательные выходные устройства счётчиков активной и реактивной (для счётчиков соответствующих исполнений) энергии должны создавать не более одного импульса. Минимальный период испытания Δt , мин, должен составлять:

$$\Delta t \ge \frac{R \cdot 10^6}{k \cdot m \cdot U_{\text{max}} \cdot I_{\text{max}}} \qquad (1)$$

где: k – постоянная счетчика, имп./(кВт·ч) или имп./(квар·ч));

m – число измерительных элементов;

 $U_{\text{ном}}$ – номинальное напряжение, В;

 $I_{\it Makc}$ — максимальный ток, A;

R=600 для счётчиков активной энергии классов точности 1, 0,5S и реактивной энергии класса 0,5;

R = 480 для счётчиков реактивной энергии классов точности 1 и 2.

5) В течение времени, вычисленного формуле (1), проводят наблюдение за оптическими выходными устройствами активной и реактивной (для счётчиков соответствующих исполнений) энергии.

Результаты проверки считаются положительными, если за время наблюдения оптические выходные устройства активной и реактивной энергии выдадут не более одного импульса.

- 8.8 Проверка метрологических характеристик
- 8.8.1 Проверка основной относительной погрешности измерения активной и реактивной электрической энергии счетчиков.

Проверку основной относительной погрешности при измерении активной (реактивной) энергии проводить при помощи УППУ при значениях информативных параметров входного сигнала, указанных в таблицах 4 – 11 в следующей последовательности:

- 1) Подключить счетчики к поверочной установке УППУ в соответствии с рисунком A.1 Приложения A.
 - 2) Подключить считывающее устройство (входящее в состав УППУ) к поверочно-

му выходу счетчика.

- 3) Подать на счетчики напряжение $U_{\text{ном}}$.
- 4) Запустить ПО.
- 5) Последовательно провести испытания для прямого и обратного направлений активной энергии следующим образом:
 - установить на выходе установки УППУ сигналы в соответствии с таблицей 4-7;
- считать с дисплея установки УППУ значения погрешностей измерения энергии прямого и обратного направлений δ_W , %;
- 6) Последовательно провести испытания (таблицы 8-11) для прямого и обратного направлений реактивной энергии, выполнив действия в п. 5)

Результаты проверки считаются положительными, если полученные значения погрешностей измерения активной и реактивной энергии не превышают значений, приведенных в таблицах 4-11.

Таблица 4 – Проверка погрешности измерения активной энергии для счетчиков класса

точности 1 при симметричной многофазной нагрузке

Номер		а для счетчиков		Пределы допускаемой ос-
испы-	С непосред- ственным включением	Включаемых через трансформатор	Коэффициент мощности соз ф	новной относительной по- грешности при измерении активной энергии, %
1	$0,05\cdot I_{6}$	$0.02 \cdot I_{HOM}$		±1,5
2	0,1· <i>I</i> ₆	$0.05 \cdot I_{HOM}$]	±1,0
3	I_6	I _{HOM}	1	±1,0
4	I _{make}	I _{make}		±1,0
5	$0,1\cdot I_{6}$	$0.05 \cdot I_{HOM}$		±1,5
6	$0,2\cdot I_{6}$	$0,1\cdot I_{HOM}$		±1,0
7	I_6	I_{HOM}	0,5 Lи0,8 С	±1,0
8	I _{макс}	I _{make}	ļ	±1,0
Π	римечания	·		
1 2	Знаком «L» обоз Знаком «С» обоз	начена индуктивная начена емкостная на	нагрузка.	

2 Знаком «С» обозначена емкостная нагрузка.

Таблица 5 – Проверка погрешности измерения активной энергии для счетчиков класса точности 1 при однофазной нагрузке и симметрии многофазных напряжений, приложенных к цепям напряжения

Номер ис-	Информативные па	го сигнала	Пределы допускаемой основной относительной погрешности при измерении активной энергии, %	
пытания	с непосредствен- ным включением	Включаемых через транс- <i>Cos ф</i> форматор		
1	$0,1 \cdot I_{6}$	$0.05 \cdot I_{HOM}$		± 2,0
2	$0,2 \cdot I_{6}$	$0,1\cdot I_{HOM}$		± 2,0
3	I_6	I_{HOM}	1,0	± 2,0
4	I _{make}	I _{makc}		± 2,0

Номер ис-	Информативные параметры входного сигнала тока, А			Пределы допускаемой основ ной относительной погрешно	
пытания	с непосредствен-			сти при измерении активной энергии, %	
5	0,2· <i>I</i> ₆	$0,1\cdot I_{HOM}$		± 2,0	
6	I_6	0,2. Іном	0,5 L	± 2,0	
7	I _{макс}	I _{Makc}	· 	± 2,0	

Примечания

1 Испытания должны быть проведены последовательно для каждой фазы счетчиков.

2 Знаком «L» обозначена индуктивная нагрузка.

Таблица 6 — Проверка погрешности измерения активной энергии для счетчиков класса

точности 0,5S при симметричной нагрузке

Номер испы- тания	Значение тока для счет- чиков	Коэффициент мощности соз ф	Пределы допускаемой основной относительной погрешности при измерении активной энергии, %
1	$0.01 \cdot I_{HOM}$		±1,0
2	$0.05 \cdot I_{HOM}$		$\pm 0,5$
3	I_{HOM}	1	$\pm 0,5$
4	I _{Makc}		± 0.5
5	$0,02 \cdot I_{HOM}$		
6	$0,1\cdot I_{HOM}$		±1,0
7	I _{HOM}	0,5 L и 0, 8 С	±0,6
,	4 ном		±0,6
8	I _{макс}		±0,6

Таблица 7 – Проверка погрешности измерения активной энергии для счетчиков класса точности 0,5S при однофазной нагрузке и симметрии многофазных напряжений, приложен-

ных к цепям напряжения

Номер ис- пытания	ВХОЛНОГО СИГНАЛА		Пределы допускаемой основной относительного погрешности при измерении	
	Ток, А	Cos \varphi	активной энергии, %	
1	$0,05 \cdot I_{HOM}$		±0,6	
2	$0,1\cdot I_{HOM}$	1,0	±0,6	
3	I_{HOM}		±0,6	
4	I _{Makc}		±0,6	
5	$0,1 \cdot I_{HOM}$		±1,0	
6	$0,2\cdot I_{HOM}$	0,5 L	±1,0	
7	I _{Makc}	±1,0		
Прим	ечания			

Номер ис-	Информативные параметры входного сигнала		Пределы допускаемой основной относительной погрешности при измерении			
	Ток, А	Cos φ	активной энергии. %			
1 Испытания должны быть проведены последовательно для каждой фазы счетчиков. 2 Знаком «L» обозначена индуктивная нагрузка.						

Таблица 8 — Проверка погрешности измерения реактивной энергии для трехфазных

счетчиков классов точности 1 и 2 при симметричной нагрузке

Номер испы- тания			Коэффициент sin φ (при ин- дуктивной и	Пределы допускаемой основной относительной погрешности при измерении активной энергии, % для класса точности	
	ным включением	Включаемых через транс- форматор	емкостной нагрузке)	1	2
1	$0,05 \cdot I_6$	$0.02 \cdot I_{HOM}$		±1,5	±2,5
2	$0,1 \cdot I_{6}$	$0.05 \cdot I_{HOM}$		±1,0	
3	I_6	I_{HOM}	1	$\pm 1,0$	±2,0
4	I _{Makc}	I _{Makc}		±1,0	±2,0
5	$0,1 \cdot I_6$	$0.05 \cdot I_{HOM}$		±1,5	±2,0
5	$0,2\cdot I_{6}$	0,1·I _{HOM}		$\pm 1,0$	±2,5
6	I_6	I _{HOM}	0,5		±2,0
7	I _{Makc}		-	±1,0	±2,0
8		I _{Makc}		±1,0	±2,0
9	$0.2 \cdot I_6$	$0.1 \cdot I_{HOM}$		±1,5	±2,5
10	I_6	I_{HOM}	0,25	±1,5	±2,5
10	I _{Makc}	I _{Makc}		±1,5	±2,5

Таблица 9 – Проверка погрешности измерения реактивной энергии для трехфазных счетчиков классов точности 1 и 2 при однофазной нагрузке и симметрии многофазных

напряжений, приложенных к цепям напряжения

Номер испыта-	Информативные пара то	аметры входного с ока, А	относительной изме реактивной	каемой основной погрешности при рении батергии, % а точности	
кин	С непосредственным включением	Включаемых через транс- форматор	Sin φ	1	2
1	0,1· <i>I</i> ₆	$0,05 \cdot I_{HOM}$		±1,5	±3,0
2	$0,2\cdot I_6$	$0,1 \cdot I_{ ext{HOM}}$		±1,5	±3,0
3	I_6	I_{HOM}	1,0	±1,5	±3,0
4	I _{makc}	I_{Makc}		±1,5	±3,0

Номер испыта-	Информативные пар то	аметры входного с ока, А	Пределы допускаемой основной относительной погрешности при измерении реактивной энергии, % для класса точности		
РИН	С непосредственным включением	Включаемых через транс- форматор	Sin φ	1	2
5	0,2· <i>I</i> ₆	$0,1\cdot I_{HOM}$		±1,5	±3,0
6	I_6	$0,2\cdot I_{HOM}$	0,5 L	±1,5	±3,0
7	I _{макс}	I _{Makc}		±1,5	±3,0
-	имечания спытания должны быть				±3,0

¹ Испытания должны быть проведены последовательно для каждой фазы счетчиков.

2 Знаком «L» обозначена индуктивная нагрузка.

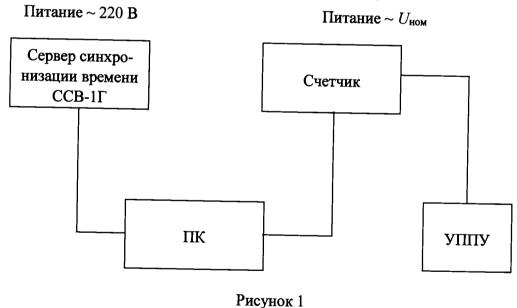
Таблица 10 – Проверка погрешности измерения реактивной энергии при симметричной нагрузке для исполнений счётчиков класса точности 0,5 при симметричной многофазной нагрузке

Номер испы- тания	Значение тока для счетчиков	Коэффициент sin φ (при индуктивной и емкост- ной нагрузке)	Пределы допускаемой основной относительной погрешности при измерении активной энергии, %
1	$0,01 \cdot I_{HOM}$		±1,0
2	$0,05 \cdot I_{HOM}$	1	± 0,5
3	I_{HOM}	1	± 0,5
4	I _{make}		± 0,5
5	$0,02 \cdot I_{HOM}$		±1,0
6	$0,1 \cdot I_{HOM}$	0.7	± 0,6
7	I_{HOM}	0,5	± 0,6
8	I _{Makc}		± 0,6
9	$0,1 \cdot I_{HOM}$	0,25	±1,0
10	I_{HOM}		±1,0 ±1,0
11	I _{Makc}	•,=-	±1,0 ±1,0

Таблица 11 – Проверка погрешности измерения реактивной энергии при симметричной нагрузке для исполнений счётчиков класса точности 0,5 при однофазной нагрузке и симмет-

рии многофазных напряжений, приложенных к цепям напряжения

Номер ис-	Информативн	ые параметры входного сиг- нала	Пределы допускаемой основной относительной погрешности при
пытания	Ток, А	$sin \ \varphi$ (при индуктивной или емкостной нагрузке)	измерении реактивной энергии, %
1	$0,05 \cdot I_{HOM}$	1.0	±0,6
2	$0,1\cdot I_{HOM}$	1,0	±0,6


Номер ис-	Информативн	ые параметры входного сиг- нала	Пределы допускаемой основной относительной погрешности при
пытания			измерении реактивной энергии, %
3	I_{HOM}		±0,6
4	I _{Makc}		
	- Marc		±0,6
5	$0,1\cdot I_{HOM}$		±1,0
6	I_{HOM}	0,5	±1,0
7	I _{Makc}		±1,0
Приме	TOTTER		±1,U

Примечания

- 1 Испытания должны быть проведены последовательно для каждой фазы счетчиков.
- 2 Знаком «L» обозначена индуктивная нагрузка.
- 8.8.2 Проверка допускаемой основной абсолютной погрешности измерения текущего времени

Проверку допускаемой основной абсолютной погрешности измерения текущего времени проводят методом измерения периода повторения секундных импульсов встроенных часов в следующем порядке:

- 1) Собрать схему в соответствии с рисунком 1.
- 2)При помощи УППУ подать на счётчик номинальное напряжение;

- 3) Синхронизировать текущее время счетчика с текущим временем на сервере синхронизации времени ССВ-1Г (далее по тексту – сервер).
 - 4) Дождаться выполнения синхронизации времени счетчика с сигналами сервера.
- 5) Убедиться, что показания внутренних часов счетчика и сервера совпадают. Если данное условие не выполняется, результаты проверки считаются отрицательными.
 - 6) По истечении 24 часов повторить пункты 3) 5).

7) Вычислить основную абсолютную погрешность текущего времени за сутки, измеряемого контроллером по формуле:

$$\Delta T = T_{c} - T_{ccb}, \qquad (2)$$

Где ΔT – погрешность измерения текущего времени за сутки;

Т_с – время счетчика на момент измерения;

 $T_{\text{ссв}}$ – время сервера на момент измерения.

Результаты проверки считаются положительными, если полученное значение допускаемой основной абсолютной погрешности измерения текущего времени в нормальных условиях с учётом коррекции не превышает ±0,5 с за сутки.

8.8.3 Проверка допускаемой основной относительной погрешности измерения фазного/линейного напряжения переменного тока

Проверку проводят при помощи УППУ в следующей последовательности:

1) Собрать схему, приведенную на рисунке А.1 Приложения А.

2) При помощи УППУ воспроизвести испытательные сигналы согласно таблице 12. Таблица 12

Значение	Значение тока для сч	Пределы допускае-	
напряжения, В	с непосредственным включаемых через включением трансформатор		мой относительной погрешности, %
$0.80 \cdot U_{ extsf{hom}}$		ринцор	1
U_{HOM}	I_6	$I_{ ext{HOM}}$	± 0,5
$1,2 \cdot U_{HOM}$		- AOM	

3) Сравнить показания, измеренные УППУ и счетчиком.

4) Рассчитать относительную погрешность измерения напряжения переменного тока по формуле (3).

$$\delta X = \frac{X_{\text{\tiny H}} - X_{\text{\tiny o}}}{X_{\text{\tiny o}}} \cdot 100; \tag{3}$$

где X_{H} – показание счетчика;

 X_0 – показание УППУ;

Результаты проверки считаются положительными, если полученные значения относительной погрешности измерения фазного/линейного напряжения переменного тока не превышают пределов, приведенных в таблице 13.

8.8.4 Проверка допускаемой основной относительной погрешности измерения силы переменного тока.

Проверку проводят при помощи УППУ в следующей последовательности:

1) Собрать схему, приведенную на рисунке А.1 Приложения А.

2) При помощи УППУ воспроизвести испытательные сигналы согласно таблице 13.

Таблица 13

Значение тока для с	нётчиков, А	2	Пределы допускае- мой относительной погрешности, %	
с непосредственным включением	включаемых через трансформатор	Значение напряжения, В		
$0,01 \cdot I_{6}$	$0,01 \cdot I_{\text{HOM}}$			
I_6	I_{HOM}	$U_{\mathtt{HOM}}$	± 0,5	
$I, 5 \cdot I_6$	$1,5\cdot I_{ ext{HOM}}$	1		

- 3) Сравнить показания, измеренные УППУ и счетчиком.
- 4) Рассчитать относительную погрешность измерения силы переменного тока по формуле (3).

Результаты проверки считаются положительными, если полученные значения относительной погрешности не превышают пределов, приведенных в таблице 13.

8.8.5 Проверка допускаемой основной абсолютной погрешности измерения частоты переменного тока.

Проверка допускаемой абсолютной погрешности измерения частоты переменного тока проводится одновременно с п 8.8.6 при проверке допускаемой абсолютной погрешности измерения отклонения частоты переменного тока.

Результаты проверки считаются положительными, если полученные значения абсолютной погрешности не превышаю $\pm 0.01~\Gamma$ ц.

8.8.6 Проверка допускаемых основных погрешностей измерения отрицательного и положительного отклонения напряжения переменного тока, измерения отклонения частоты переменного тока.

Проверку проводить в следующей последовательности:

- 1) Собрать схему, представленную на рисунке А.1 Приложения А.
- 2) При помощи УППУ подать на счетчик испытательный сигнал 1, с характеристиками, представленными в таблице 14, в зависимости от номинального значения напряжения и силы переменного тока.

Таблица 14

V			Исп	ытательн	ый сигнал		
Характеристика	1	2	3	4	5	6	7
δU_A , %	0	- 50	- 20	- 90	50	20	-90
δU_B , %	0	- 50	- 20	- 90	50	20	-90
δU_C ,%	0	- 50	- 20	- 90	50	20	-90
Δf , Γ ц	0	- 7.5	0,996	0.2	- 0.2	- 1	7.5

- 3) Считывают со счетчика результаты измерений всех характеристик и сравнивают со значениями, воспроизведенными УППУ.
 - 4) Рассчитать абсолютные погрешности измерения по формуле (4).

$$\Delta X = X_{\rm H} - X_{\rm o},\tag{4}$$

где X_{H} – показание счетчика;

 X_0 – показание УППУ.

Результаты проверки считаются положительными, если полученные значения абсолютной погрешности не превышает значений для измерения отрицательного и положи-

тельного отклонения напряжения переменного тока \pm 0,5 % и для измерения отклонения частоты переменного тока \pm 0,01 Γ ц.

- 8.8.7 Проверку допускаемых основных абсолютных погрешностей измерения характеристик провалов напряжения и перенапряжений проводят в следующей последовательности:
 - 1) Собрать схему, представленную на рисунке А.1 Приложения А.
- 2) В меню УППУ «Параметры провалов и перенапряжений» выбирают «опорное напряжение» «заданное».
- 3) Задают в устройстве пороговое значение провала напряжения, равное 10,00% относительно заданного напряжения, и пороговое значение перенапряжения, равное 10,00% относительно заданного напряжения.
- 4) Подают на измерительные входы счетчика с выходов УППУ испытательный сигнал 1 с параметрами, приведёнными в таблице 15 в зависимости от номинального значения напряжения счетчика $U_{\text{пом}}$.
- 5) Поочерёдно устанавливают с помощью УППУ испытательные сигналы 1 7 с характеристиками, приведёнными в таблице 15 (значения характеристик провалов междуфазных напряжений и междуфазных перенапряжений приведены в качестве нормированных значений (показаний УППУ) для расчёта погрешностей).
- 6) Считывают со счетчика результаты измерений характеристик провалов напряжения (длительность провала напряжения, глубина провала напряжения) и перенапряжений (длительность) для каждого испытательного сигнала.
- 7) Рассчитывают погрешности измерений характеристик провалов напряжения и перенапряжений по формуле (4).

Таблица 15

Испытательный сигнал	Характеристика провала,	провала, для фазного и междуфазного					
Сигнал	перенапряжения	A	В	C	AB	BC	CA
	δ <i>U</i> _π , %	12	12	12	12	12	12
1	$\Delta t_{\Pi}^{1)}$, c	60	60	60	60	60	60
	Количество	11	1	1	1	1	1
_	δU_{Π} , %	30	30	30	30	30	30
2	$\Delta t_{\Pi}^{(1)}$, c	10	10	10	10	10	10
	Количество	2	2	2	2	2	2
	δU_{Π} , %	50	50	50	50	50	50
3	$\Delta t_{\rm n}^{(1)}$, c	1	1	1	1	1	1
	Количество	5	5	5	5	5	5
	δU_{Π} , %	99	99	99	99	99	99
4	$\Delta t_{\Pi}^{(1)}$, c	0,02	0,02	0,02	0,02	0,02	0,02
	Количество	10	10	10	10	10	10
5	$\Delta t_{\text{nep}U}^{(1)}$, c	60	60	60	60	60	60
	Количество	1_	1	1	1	1	1
6	$\Delta t_{\text{nep}U}^{(1)}$, c	1	1	1	1	1	1
	Количество	5	5	5	5	5	5
7	$\Delta t_{\text{nep}U}^{(1)}$, c	0,02	0,02	0,02	0,02	0,02	0,02
	Количество	10	10	10	10	10	10

Испытательный	Характеристика	Значен	ние характ	еристики	провала,	перенапря	жения
сигнал	провала,	д	ля фазног	о и между	фазного н	апряжени	ISI RI
	перенапряжения	\boldsymbol{A}	В	C	AB	BC	CA

Примечание - 1) Период повторения провалов напряжения и перенапряжений задаётся в два раза больше их длительности. Длительность и период повторения провалов напряжения и перенапряжений должны быть кратны периоду сигнала основной частоты (параметр «Привязка» УППУ должен иметь значение «к периоду»).

Результаты проверки считаются положительными, если полученные значения абсолютной погрешности не превышают:

- пределов допускаемой абсолютной погрешности измерения длительности провалов и прерываний напряжения $\pm 0,04$ с;
- пределов допускаемой абсолютной погрешности измерения глубины провала напряжения $\pm 0.5~\%$;
- пределов допускаемой абсолютной погрешности измерения длительности перенапряжения $\pm 0,04$ с.
- 8.8.8 Проверка допускаемых основных погрешностей измерения активной, реактивной и полной мощностей, коэффициента мощности.

Порядок следования фаз должен соответствовать порядку, указанному в схеме подключений счетчика.

Напряжения и токи должны быть симметричными, если не указано другое.

8.8.7.1 Проверка допускаемой основной относительной погрешности измерения активной электрической мощности.

Проверку проводить в следующей последовательности:

- 1) Собрать схему, представленную на рисунке А.1 Приложения А.
- 2) При помощи УППУ воспроизвести испытательный сигнал с характеристиками представленными в таблице 16.
- 3) Ввести передаточное число счетчика в кВт \cdot ч (постоянную импульсного выхода счетчика).

Таблина 16

No/No	Напряжение, % от Uном	Сила тока, % от Іном	c os φ
1		10	1,0
2		10	0,5L
3		10	0,25L
4		20	1
5	90	20	0,5L
6	80	100	1,0
7		100(A)	
8		100(B)	
9		100(C)	1,0
10		150	
1		10	1,0
2		10	0,5L
3		10	0,25L
4	100	20	1
5		20	0,5L
6		100	1,0
7		100(A)	1,0

No/No	Напряжение, $\%$ от $U_{\text{ном}}$	Сила тока, % от Іном	cos φ
8		100(B)	
9		100(C)	
10		150	
1		10	1,0
2		10	0,5L
3		10	0,25L
4		20	1
5	120	20	0,5L
6	120	100	1,0
7		100(A)	
8		100(B)	1.0
9		100(C)	1,0
10		150	

Примечание - Буквы A, B, и C в графе «сила тока» означают, что указанный ток устанавливают только в одной из последовательных цепей счетчика A, B или C соответственно, при отсутствии тока в других последовательных цепях

4) Рассчитать относительную погрешность измерения активной электрической мощности по формуле (3).

Результаты проверки считаются положительными, если полученные значения относительной погрешности не превышают значений:

- ± 0.5 % для модификаций A и B;
- ±1,0 % для модификаций С и D
- 8.8.7.2 Проверка допускаемой основной относительной погрешности измерения реактивной электрической мощности.
 - 1) Собрать схему, представленную на рисунке А.1 Приложения А.
- 2) При помощи УППУ воспроизвести испытательный сигнал с характеристиками представленными в таблице 17.
- 3) Ввести передаточное число счетчика в вар·ч (постоянную импульсного выхода счетчика).
- 4) Рассчитать относительную погрешность измерения реактивной электрической мощности по формуле (3).

Результаты проверки считаются положительными, если полученные значения относительной погрешности не превышают значений:

- ±0,5 % для модификаций A;
- ±1,0 % для модификаций В и С;
- ± 2.0 % для модификаций D.

Таблица 17

No/N <u>o</u>	Напряжение, % от $U_{\text{ном}}$	Сила тока, % от Іном	Sin φ
1		10	1,0
2		10	0,5
3		10	0,25
4	80	50	0,5
5		100 (A)*	1,0
6		100 (B)*	1,0
7		100 (C)*	1,0

Напряжение, % от $U_{ном}$	Сила тока, % от Іном	Sin φ
		1,0
		1,0
100		1,0
		0,5
		0,25
		0,5
		1,0
		1,0
		1,0
		1,0
		1,0
120		1,0
		0,5
		0,25
		0,5
		1,0
		1,0
		1,0
		1,0
		1,0
	100	100 150 10 10 10 10 10 10 10 10 10 10 10 100(A)* 100(B)* 100(C)* 100 150 10 10 10 10 10 10 10 10 10

8.8.7.3 Проверка допускаемой основной относительной погрешности измерения полной электрической мощности.

1) Проверка допускаемой относительной погрешности измерения полной электрической мощности проводить одновременно с пунктами 8.8.7.1 и 8.8.7.3. Полная мощность (S) связана с активной (P) и реактивной (Q) мощностями следующим соотношением:

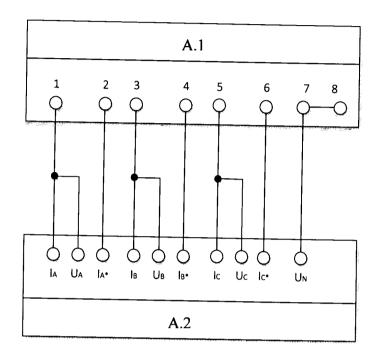
$$S = \sqrt{P^2 + Q^2}$$

2) Рассчитать относительную погрешность измерения полной электрической мощности по формуле (3).

Результаты проверки считаются положительными, если полученные значения относительной погрешности не превышают пределов:

- ±0,5 % для модификаций А;
- ±1,0 % для модификаций В и С;
- ±2,0 % для модификаций D.
- 8.8.7.4 Проверка допускаемой основной абсолютной погрешности измерения коэффициента мощности.

Проверка допускаемой основной абсолютной погрешности измерения коэффициента мощности проводить одновременно с пунктом 8.8.7.1.


Результаты проверки считаются положительными, если полученные значения абсолютной погрешности не превышают ± 0.01 .

9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 9.1 Счетчик, прошедший поверку с положительными результатами, признают годным и наносят на место пломбирования счетчика оттиск клейма поверителя.
- 9.2 Положительные результаты поверки оформляются записью в соответствующем разделе паспорта, заверенной подписью и оттиском клейма поверителя.
- 9.3 Результаты поверки вносят в протокол, оформленный в соответствии с ГОСТ 8.584-2004.
- 9.4 Счетчик, прошедший поверку с отрицательными результатами, бракуют. Клеймо предыдущей поверки гасят, а счетчик отправляют в ремонт. **В** паспорт вносят запись о непригодности с указанием причин.

Приложение А

Схемы подключения счетчиков

А1 – счетчик;

А2 – установка поверочная универсальная «УППУ-МЭ 3.1К».

Рисунок А.1 – Схемы подключения измерительных цепей