ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УНИТАРНОЕ ПРЕДПРИЯТИЕ «ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МЕТРОЛОГИЧЕСКОЙ СЛУЖБЫ» (ФГУП «ВНИИМС»)

УТВЕРЖДАЮ

Заместитель директора ФГУП «ВНИИМС»

Н.В. Иванникова

» geractus 20/5 r.

Измерители-сигнализаторы температуры серии ETS

МЕТОДИКА ПОВЕРКИ

AP64801-16

Настоящая методика распространяется на измерители-сигнализаторы температуры серии ETS (далее по тексту - измерители), изготовленные фирмой HYDAC ELECTRONIC GMBH, Германия, и устанавливает методику их первичной и периодической поверок.

Межповерочный интервал - один год.

Таблица 1 - Метрологические характеристики измерителей-сигнализаторов температу-

ры серии ETS

	Значение характеристики, в зависимости					
Have cough average vanovement of	от модели прибора					
Наименование характеристики	ETS 320	ETS 3200	ETS 380	ETS 3800	ETS 1700	
Диапазон измерений, °С		ус 25 до с 100	The state of the state of	ус 30 до с 150	от 0 до плюс 100	
Пределы допускаемой основной абсолютной (или приведенной для ETS 1700) погрешности (при температуре окружающей среды 23±5 °C)	±1,0 °C			±1,0 %		
Пределы допускаемой дополнительной при- веденной погрешности, вызванной изменени- ем температуры окружающей среды в рабо- чем диапазоне эксплуатации	±0,15 %/ 10 °C			±0,3 % / 10 °C		
Повторяемость результатов измерений					±0,25 % (от диапазона измерений)	
Длина монтажной части ТС, мм	18	18, 100, 250, 350	100	100	100	
Диаметр монтажной части ТС, мм	6 ^{+0,1}			6+0,1		
Масса, г, не более	400 210		800			
Рабочие условия эксплуатации: - температура окружающей среды, °С - относительная влажность воздуха, %	от минус 25 до плюс 80; не более 95				от минус 25 до плюс 60; не более 95	

1 Операции поверки

- 1.1 При проведении проверки измерителей должны быть выполнены следующие операции:
 - внешний осмотр (п.5.1);
 - опробование, проверка версии встроенного программного обеспечения (ПО) (п.5.2);
 - определение основной погрешности (п.5.3);
- определение основной погрешности сигнализации температуры (п.5.4) (только при первичной поверке).

2 Средства поверки

- 2.1 При поверке используют следующие средства измерения и оборудование:
- термометр сопротивления эталонный ЭТС-100/1 3-го разряда по ГОСТ 8.558-2009 (Регистрационный № 19916-10);
- измеритель температуры многоканальный прецизионный МИТ 8 (Регистрационный 19736-11);
- термостат переливной прецизионный ТПП-1 моделей ТПП-1.0, ТПП-1.2 (Регистрационный № 33744-07).
- 2.2 Допускается применение других средств измерений с метрологическими характеристиками, удовлетворяющими следующему критерию: $\Delta \sqrt[4]{\Delta_n} \le 1/3$, где: Δ_0 погрешность эталонных СИ, Δ_n погрешность поверяемого измерителя.
- Применяемые при поверке средства измерений должны иметь действующие свидетельства о поверке.

3 Требования безопасности

При проведении поверки необходимо соблюдать:

- требования безопасности, которые предусматривают «Правила технической эксплуатации электроустановок потребителей» и «Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок» ПОТ РМ-016-2001;
- указания по технике безопасности, приведенные в эксплуатационной документации на эталонные средства измерений и средства испытаний;
- указания по технике безопасности, приведенные в руководстве по эксплуатации измерителей-сигнализаторов.

К проведению поверки допускаются лица, аттестованные на право проведения поверки данного вида средств измерений, ознакомленные с руководством по эксплуатации измерителей-сигнализаторов и прошедшие инструктаж по технике безопасности.

4 Условия поверки и подготовка к ней

- 4.1 При проведении поверки должны соблюдаться следующие условия:
- температура окружающего воздуха (20±5) °C;
- относительная влажность от 30 до 80 %;
- атмосферное давление от 84,0 до 106,7 кПа (от 630 до 800 мм рт. ст);
- частота питающей сети (50±0,5) Гц.
- 4.2 Электрическое питание калибраторов и термостатов должно осуществляться стабилизированным напряжением, изменение напряжения не должно превышать 2 %.
- Средства поверки, оборудование готовят в соответствии с руководствами по их эксплуатации.
- 4.4 При работе калибраторов и термостатов при воспроизведении температур св. плюс 100 °C включают местную вытяжную вентиляцию.
- 4.5 Поверяемые датчики и используемые средства поверки должны быть защищены от вибраций, тряски, ударов, влияющих на их работу.
- 4.6 Операции, проводимые со средствами поверки, с поверяемыми датчиками должны соответствовать указаниям, приведенным в эксплуатационной документации.
- 4.7 При установке датчиков в калибраторы температуры (термостаты сухоблочные) для обеспечения лучшего теплового контакта используют теплопередающие металлические вставки.
- 4.8 Для уменьшения погрешности при измерениях вследствие теплопередачи из зоны нагрева по защитной арматуре выступающую из калибратора часть датчики теплоизолируют.

5 Проведение поверки

5.1 Внешний осмотр

При внешнем осмотре устанавливают отсутствие механических повреждений корпуса измерителя (сколов, царапин, вмятин и т.д.), органов управления и сигнализации (в т.ч. индикатора).

5.2 Опробование

- 5.2.1 В соответствии с руководством по эксплуатации к измерителю подключают источник питания и определяют время установления рабочего режима по истечению времени работы тестовой программы, далее проверяют:
 - индикацию результатов измерений с установленной разрядностью;
 - возможность изменения значения уставок;
 - срабатывание светодиодной индикации при превышении значений уставок.
 - 5.2.2 Проверка версии программного обеспечения

Чтобы увидеть версию программного обеспечения измерителя необходимо зайти в меню измерителя при помощи кнопки «mode». Далее выбрать позицию меню «Ver» или «VerS».

Поверка измерителя проводится в форме подтверждения соответствия тому ПО, которое было документировано (внесено в базу данных) при испытаниях в целях утверждения типа. Процедура соответствия сводится к сравнению идентификационного наименования ПО и номера версии ПО измерителей с данными, которые были внесены в описание типа.

Измеритель считается поверенным, если идентификационные данные измерителя совпадают с данными указанными в таблице 2.

Таблица 2 - Идентификационные данные программного обеспечения

	Значение			
Идентификационные данные (признаки)	ETS 320,	ETS 3200	ETS 1700	
	ETS 380	ETS 3800		
Идентификационное наименование ПО	EDS300	EDS3KNG	Eds1k7-1	
Номер версии (идентификационный номер) ПО	S06 R53	V32 R04	V10 R05	
Цифровой идентификатор программного обеспечения	-			

Значащей частью в идентификационном номере являются все цифры. Если значащая часть идентификационного номера не совпадает, дальнейшую поверку не проводят.

5.3 Определение основной погрешности

Основную погрешность измерителей-сигнализаторов находят в пяти температурных точках, равномерно расположенных в диапазоне измерений, включая начало и конец диапазона измеряемых температур, методом непосредственного сличения с эталонным термометром в жидкостных термостатах.

- 5.3.1 Погружают в термостат или погружаемую часть измерителя-сигнализатора вместе с эталонным термометром.
- 5.3.2 В соответствии с эксплуатационной документацией устанавливают на термостате или калибраторе заданную температурную точку.
- 5.3.3 После установления заданной температуры и установления теплового равновесия между эталонным термометром, измерителем-сигнализатором и термостатирующей средой (стабилизация показаний эталонного термометра и измерителя) снимают не менее 10 показаний (в течение 10 минут) температуры эталонного термометра и выходного сигнала измерителя-сигнализатора с собственного индикатора.
 - 5.3.4 Операции по п.п. 5.2.2-5.2.3 проводят для остальных температурных точек.
 - 5.3.5 Основную погрешность (Δ_i) измерителя-сигнализатора вычисляют по формуле:

$$\Delta_t = \pm \left| \tilde{t}_i - \tilde{t}_d \right|$$

где: t_d – среднее арифметическое значение температуры, вычисленное по показаниям эталонного термометра, °C;

- t_i среднее арифметическое значение температуры, вычисленное по показаниям испытываемого измерителя-сигнализатора, °C.
- 5.3.6 Значения Δ_t в контрольных точках не должны превышать значений, указанных в технической документации на измерители-сигнализаторы.

5.4 Определение основной погрешности сигнализации температуры

Операции по данному пункту допускается проводить одновременно с п.5.3.

В соответствии с руководством по эксплуатации, используя мембранную панель измерителя-сигнализатора, выбирают схему срабатывания реле для одного, двух или четырех выходов (в зависимости от исполнения измерителя) и задают значения температур уставок срабатывания (точек переключения) S.P.1, S.P.2, S.P.3 и S.P.4, лежащих внутри диапазона измерений измерителя (при этом, разница между уставками должна быть не менее минимального значения гистерезиса).

Далее проводят плавный цикл нагрев-охлаждение, и в процессе этой процедуры отслеживают светодиодный индикатор срабатывания реле измерителя или наличие характерного звука срабатывания контактов реле (соответственно, точки S.P.1, S.P.2, S.P.3 и S.P.4 лежат внутри начальной и конечной точек нагрева (охлаждения).

В момент включения (выключения) светодиода или наличия характерного звука срабатывания контактов реле необходимо зафиксировать показания эталонного термометра. Разность между уставкой и показаниями эталонного термометра не должны превышать значения основной погрешности.

6 Оформление результатов поверки

- 6.1 Измеритель-сигнализатор температуры серии ETS, прошедший поверку с положительным результатом, признается годным и допускается к применению. На него оформляется свидетельство о поверке в соответствии с Приказом № 1815 Минпромторга России от 02 июля 2015 г. и (или) ставится знак поверки в паспорт и делается соответствующая запись в разделе «Свидетельство о поверке».
- 6.2 При отрицательных результатах поверки, в соответствии с Приказом № 1815 Минпромторга России от 02 июля 2015 г., оформляется извещение о непригодности.
- 6.3 По согласованию с заказчиком допускается исключать часть диапазона измерений, в котором в процессе поверки установлено несоответствие нормируемым значениям метрологических характеристик, приведенных в таблице 1.
- 6.4 По требованию заказчика допускается сокращать часть нормируемого диапазона измерений исходя из конкретных условий применения измерителя.

