

ООО Центр Метрологии «СТП»

Регистрационный номер записи в реестре аккредитованных лиц RA.RU.311229

«УТВЕРЖДАЮ»

Технический директор ООО Дентр Метрологии «СТП»

И.А. Яценко

2016 г.

Государственная система обеспечения единства измерений

Система измерений количества и показателей качества конденсата газового нестабильного на объекте «Пункт замера конденсата на 0 км конденсатопровода «Заполярное НГКМ – г. Новый Уренгой»

МЕТОДИКА ПОВЕРКИ

МП 1501/1-311229-2016

Np.64901-16

СОДЕРЖАНИЕ

1 Введение	3
2 Операции поверки	4
3 Средства поверки	4
4 Требования техники безопасности и требования к квалификации поверителей	5
5 Условия поверки	5
6 Подготовка к поверке	5
7 Проведение поверки	6
8 Оформление результатов поверки	11

1 ВВЕДЕНИЕ

- 1.1 Настоящая методика поверки распространяется на систему измерений количества и показателей качества конденсата газового нестабильного на объекте «Пункт замера конденсата на 0 км конденсатопровода «Заполярное НГКМ − г. Новый Уренгой» (далее − СИКГК), заводской № 378458, изготовленную ООО Научно-производственное предприятие «ГКС», г. Казань, принадлежащую УТЖУ ООО «Газпром переработка», г. Сургут, и устанавливает методику первичной поверки до ввода в эксплуатацию и после ремонта, а также методику периодической поверки в процессе эксплуатации.
- 1.2 СИКГК предназначена для измерений объема (объемного расхода) и плотности конденсата газового нестабильного (далее КГН) и вычисления массы КГН.
- 1.3 Принцип действия СИКГК заключается в непрерывном измерении, преобразовании и обработке при помощи системы обработки информации (далее СОИ) входных сигналов, поступающих по измерительным каналам от преобразователей расхода, давления, температуры, компонентного состава, влагосодержания и плотности.
 - 1.4 В состав СИКГК входят:
 - блок измерительных линий (далее БИЛ);
 - блок контроля качества (далее БКК);
 - СОИ.
- $1.5 \ B$ БИЛ на каждой измерительной линии (далее ИЛ) (1 рабочая, 1 резервная и 1 контрольно-резервная) установлены:
- преобразователь расхода ультразвуковой «Daniel» модели 3804 (регистрационный номер 38665-08);
 - датчик температуры 3144Р (регистрационный номер 39539-08);
 - преобразователь давления измерительный 3051TG (регистрационный номер 14061-04).
 - 1.6 БКК включает:
 - датчик температуры 644 (регистрационный номер 39539-08);
 - преобразователь давления измерительный 3051TG (регистрационный номер 14061-04);
 - преобразователь давления измерительный 3051ТА (регистрационный номер 14061-10);
 - расходомер ультразвуковой UFM 3030 (регистрационный номер 32562-09);
- преобразователи плотности жидкости измерительные модели 7835 (регистрационный номер 15644-06) (основной и контрольно-резервный);
 - влагомер поточный модели L (регистрационный номер 25603-03);
- хроматограф газовый промышленный Maxum edition II (регистрационный номер 45191-10).
 - 1.7 СОИ СИКГК состоит из:
- контроллеры измерительные FloBoss S600 (регистрационный номер 38623-08) (основной и резервный) (далее FloBoss S600).
- 1.8 Взрывозащищенность (искробезопасность) электрических цепей СИКГК обеспечивается применением преобразователей измерительных HID2026 (регистрационный номер 40667-09).
- 1.9 СИКГК реализует косвенный метод динамических измерений массы КГН в трубопроводе.
- 1.10 Масса КГН вычисляется по результатам измерений объема (объемного расхода) и плотности КГН, приведенной к условиям измерений объема (объемного расхода).
- 1.11 СИКГК представляет собой единичный экземпляр измерительной системы, спроектированной для конкретного объекта из компонентов серийного отечественного и импортного изготовления. Монтаж и наладка СИКГК осуществлены непосредственно на объекте эксплуатации в соответствии с проектной документацией СИКГК и эксплуатационными документами ее компонентов.

- 1.12 Поверка СИКГК проводится поэлементно:
- поверка СИ, входящих в состав СИКГК, осуществляется в соответствии с их методиками поверки;
- вторичную часть измерительных каналов (далее ИК) СИКГК поверяют на месте эксплуатации СИКГК в соответствии с настоящей методикой поверки;
- метрологические характеристики СИКГК определяют расчетным методом в соответствии с настоящей методикой поверки.

Примечание – Преобразователь расхода в БИК и соответствующий ИК подлежит калибровке.

- 1.13 Поверку преобразователей расхода ультразвуковых «Daniel» модели 3804 (заводской № 09-030151/09-070265, заводской № 09-030152/09-070266, заводской № 09-030155/09-070278), входящих в состав СИКГК, допускается проводить в соответствии с МИ 3201-2009 «Рекомендация. Государственная система обеспечения единства измерений. Преобразователи расхода ультразвуковые «Daniel» модели 3804 фирмы «Emerson Process Management/Daniel Measurement and Control Inc.», США. Методика поверки установками поверочными СР, СР-М с компаратором». При проведении поверки по указанной методике поверки относительная погрешность преобразователей расхода ультразвуковых «Daniel» модели 3804 не должна превышать значений, указанных в описании типа на них.
- 1.14 Интервал между поверками СИ, входящих в состав СИКГК, в соответствии с описаниями типа на эти СИ.
 - 1.15 Интервал между поверками СИКГК 2 года.

2 ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки должны быть выполнены операции, приведенные в таблице 2.1.

Таблица 2.1 – Операции поверки

No	How covered of the co	Номер пункта
п/п	Наименование операции	методики поверки
1	Проверка технической документации	7.1
2	Внешний осмотр	7.2
3	Опробование	7.3
4	Определение метрологических характеристик СИКГК	7.4
5	Оформление результатов поверки	8

3 СРЕДСТВА ПОВЕРКИ

3.1 При проведении поверки СИКГК применяют эталоны и СИ, приведенные в таблице 3.1.

Таблица 3.1 – Основные эталоны и СИ

Номер пункта	Наименование и тип основного и вспомогательного средства поверки и				
методики	метрологические и основные технические характеристики средства поверки				
	Барометр-анероид М-67 с пределами измерений от 610				
5.1	до 790 мм рт.ст., погрешность измерений ±0,8 мм рт.ст., по				
	ТУ 2504-1797-75				
<i>F</i> 1	Психрометр аспирационный М34, пределы измерений влажности от 10 % до				
5.1	100 %, погрешность измерений ±5 %				
	Термометр ртутный стеклянный ТЛ-4 (№ 2) с пределами измерений от 0 °C				
5.1	до 55 °C по ГОСТ 28498-90. Цена деления шкалы 0,1 °C				

Номер пункта	Наименование и тип основного и вспомогательного средства поверки и			
методики	метрологические и основные технические характеристики средства поверки			
7.4	метрологические и основные технические характеристики средства повер Калибратор многофункциональный MC5-R-IS (далее – калибратор): диапа воспроизведения силы постоянного тока от 0 до 25 мА, пределы допускаем основной погрешности воспроизведения ±(0,02 % показания + 1 мк диапазон воспроизведения последовательности импульсов от 0 до 9999 импульсов; диапазон воспроизведения частотных сигналов прямоуголы формы от 0,0028 Гц до 50 кГц, пределы допускаемой основнотносительной погрешности воспроизведения ±0,01 %			

- 3.2 Допускается использование других СИ, по своим характеристикам не уступающим указанным в таблице 3.1.
- 3.3 Все применяемые эталоны должны быть аттестованы; СИ должны иметь действующий знак поверки и (или) свидетельство о поверке и (или) запись в паспорте (формуляре) СИ, заверенной подписью поверителя и знаком поверки.

4 ТРЕБОВАНИЯ ТЕХНИКИ БЕЗОПАСНОСТИ И ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

- 4.1 При проведении поверки должны соблюдаться следующие требования:
- корпуса применяемых СИ должны быть заземлены в соответствии с их эксплуатационной документацией;
- ко всем используемым СИ должен быть обеспечен свободный доступ для заземления, настройки и измерений;
- работы по соединению вспомогательных устройств должны выполняться до подключения к сети питания;
- обеспечивающие безопасность труда, производственную санитарию и охрану окружающей среды;
- предусмотренные «Правилами технической эксплуатации электроустановок потребителей» и эксплуатационной документацией оборудования, его компонентов и применяемых средств поверки.
 - 4.2 К работе по поверке должны допускаться лица:
 - достигшие 18-летнего возраста;
 - прошедшие инструктаж по технике безопасности в установленном порядке;
- изучившие эксплуатационную документацию на СИКГК, СИ, входящие в состав СИКГК, и средства поверки.

5 УСЛОВИЯ ПОВЕРКИ

5.1 При проведении поверки должны соблюдаться следующие условия:

– температура окружающего воздуха, °C

от плюс 15 до плюс 25

- относительная влажность, %

от 30 до 80

- атмосферное давление, кПа

от 84,0 до 106,7

6 ПОДГОТОВКА К ПОВЕРКЕ

Перед проведением поверки выполняют следующие подготовительные операции:

- проверяют заземление СИ, работающих под напряжением;
- эталонные СИ и СОИ СИКГК устанавливают в рабочее положение с соблюдением указаний эксплуатационной документации;
 - эталонные СИ и СОИ СИКГК выдерживают при температуре, указанной в разделе 5,

не менее трех часов, если время их выдержки не указано в инструкции по эксплуатации;

– осуществляют соединение и подготовку к проведению измерений эталонных СИ и СОИ СИКГК в соответствии с требованиями эксплуатационной документации.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Проверка технической документации

- 7.1.1 При проведении проверки технической документации проверяют:
- наличие руководства по эксплуатации СИКГК;
- наличие паспорта СИКГК;
- наличие свидетельства о предыдущей поверке СИКГК (при периодической поверке);
- наличие паспортов (формуляров) СИ, входящих в состав СИКГК;
- наличие действующего знака поверки и (или) свидетельства о поверке и (или) заверенной подписью поверителя и знаком поверки записи в паспорте (формуляре) СИ, входящих в состав СИКГК, подлежащих поверке;
- наличие действующего калибровочного клейма и (или) сертификата о калибровке и (или) заверенной подписью калибровщика и калибровочным клеймом записи в паспорте (формуляре) СИ, входящих в состав СИКГК, подлежащих калибровке.
- 7.1.2 Результаты проверки считают положительными при наличии всей технической документации по пункту 7.1.1.

7.2 Внешний осмотр

- 7.2.1 При проведении внешнего осмотра СИКГК контролируют выполнение требований технической документации к монтажу СИ, измерительно-вычислительных и связующих компонентов СИКГК.
- 7.2.2 При проведении внешнего осмотра СИКГК устанавливают состав и комплектность СИКГК.
- 7.2.3 Проверку выполняют на основании сведений, содержащихся в паспорте на СИКГК. При этом контролируют соответствие типа СИ, указанного в паспортах на СИ, записям в паспорте на СИКГК.
- 7.2.4 Результаты проверки считают положительными, если внешний вид, маркировка и комплектность СИКГК соответствуют требованиям технической документации.

7.3 Опробование

7.3.1 Подтверждение соответствия программного обеспечения

- 7.3.1.1 Подлинность программного обеспечения (далее ПО) СИКГК проверяют сравнением идентификационных данных ПО с соответствующими идентификационными данными, зафиксированными при испытаниях в целях утверждения типа и отраженными в описании типа СИКГК.
 - 7.3.1.1 Для просмотра идентификационных данных ПО необходимо:
- 1) используя автоматизированное рабочее место оператора, открыть приложение «Internet Explorer», ввести I/P-адрес проверяемого контроллера расхода (основного или резервного);
 - 2) в окне авторизации ввести логин и пароль и войти в веб-интерфейс контроллера;
- 3) записать версию ПО (Application SW), указанную на начальной странице вебинтерфейса.
- 7.3.1.2 Полученные идентификационные данные сравнить с исходными, которые представлены в таблице 7.1.

Таблица 7.1 – Идентификационные данные ПО СИКГК

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	VxWorks
Номер версии (идентификационный номер) ПО	05.55
Цифровой идентификатор ПО	
Алгоритм вычисления цифрового идентификатора ПО	
Другие идентификационные данные	FloBoss S600

- 7.3.1.3 Проверяют возможность несанкционированного доступа к ПО СИКГК и наличие авторизации (введение логина и пароля), возможность обхода авторизации, проверка реакции ПО СИКГК на неоднократный ввод неправильного логина и (или) пароля (аутентификация).
- 7.3.1.4 Результаты опробования считают положительными, если идентификационные данные ПО СИКГК совпадают с идентификационными данными, которые приведены в таблице 7.1, а также исключается возможность несанкционированного доступа к ПО СИКГК и обеспечивается аутентификация.

7.3.2 Проверка работоспособности

- 7.3.2.1 Приводят СИКГК в рабочее состояние в соответствие с технической документацией фирмы-изготовителя на нее. Проверяют прохождение сигналов калибратора, имитирующих измерительные сигналы. Проверяют на мониторе автоматизированного рабочего места оператора СИКГК показания по регистрируемым в соответствии с конфигурацией СИКГК параметрам технологического процесса.
- 7.3.2.2 Результаты опробования считаются положительными, если при увеличении/уменьшении значения входного сигнала соответствующим образом изменяются значения измеряемой величины на мониторе автоматизированного рабочего места оператора СИКГК.

Примечание — Допускается проводить проверку работоспособности СИКГК одновременно с определением метрологических характеристик по пункту 7.4 настоящей методики поверки.

7.4 Определение метрологических характеристик

7.4.1 Определение приведенной погрешности преобразования входного аналогового сигнала силы постоянного тока (от 4 до 20 мА)

- 7.4.1.1 Отключить первичный измерительный преобразователь (далее ИП) ИК, к соответствующему каналу, включая барьер искрозащиты (при наличии), в соответствии с инструкцией по эксплуатации подключить калибратор, установленный в режим имитации сигналов силы постоянного тока и задать электрический сигнал силы постоянного тока. В качестве реперных точек принимаются точки 4; 8; 12; 16; 20 мА.
- 7.4.1.2 Считать значения входного сигнала в единицах измеряемой величины с дисплея FloBoss S600 и в каждой реперной точке вычислить приведенную погрешность γ_1 , %, по формуле

$$\gamma_{I} = \frac{X_{u_{3M}} - X_{gm}}{X_{max} - X_{min}} \cdot 100, \tag{1}$$

где X_{usm} — значение измеряемой величины, считанное с дисплея FloBoss S600, в единицах измеряемой величины;

 $X_{_{\mathfrak{I}\mathfrak{M}}}$ — значение измеряемой величины, соответствующее заданному калибратором значению силы постоянного тока, в единицах измеряемой величины;

X_{max} – максимальное значение диапазона измерений ИК, в единицах измеряемой величины;

 X_{\min} — минимальное значение диапазона измерений ИК, в единицах измеряемой величины.

7.4.1.3 Значение измеряемой величины, соответствующее заданному калибратором значению силы постоянного тока (от 4 до 20 мА), рассчитывается по формуле

$$X_{2m} = \frac{X_{\text{max}} - X_{\text{min}}}{16} \cdot (I_{2m} - 4) + X_{\text{min}}, \qquad (2)$$

где I_{2m} — заданное калибратором значение силы постоянного тока, мА.

- 7.4.1.4 Результаты поверки считаются положительными, если рассчитанная приведенная погрешность преобразования входного аналогового сигнала силы постоянного тока (от 4 до 20 мA) в каждой реперной точке не выходит за пределы $\pm 0.2 \%$.
 - 7.4.2 Определение абсолютной погрешности при измерении импульсного сигнала
- 7.4.2.1 Отключить первичный ИП ИК, к соответствующему каналу в соответствии с инструкцией по эксплуатации подключить калибратор, установленный в режим генерации импульсов, и подать импульсный сигнал (10000 импульсов).
- 7.4.2.2 Считать значения входного сигнала с дисплея FloBoss S600 и вычислить абсолютную погрешность Δ_n , импульсы, по формуле

$$\Delta_n = n_{u_{3M}} - n_{_{9m}},\tag{3}$$

где

n_{sev} – количество импульсов, подсчитанное FloBoss S600, импульсы;

n – количество импульсов, заданное калибратором, импульсы.

- 7.4.2.3 Результаты поверки считаются положительными, если рассчитанная абсолютная погрешность при измерении импульсного сигнала не выходит за пределы ±1 импульс.
- 7.4.2.4 Процедуры по пунктам 7.4.2.1-7.4.2.3 выполнить не менее трех раз для каждого ИК расхода газа.
 - 7.4.3 Определение относительной погрешности при измерении частотного сигнала
- 7.4.3.1 Отключить первичный ИП ИК, к соответствующему каналу в соответствии с инструкцией по эксплуатации подключить калибратор, установленный в режим воспроизведения частотных сигналов, и задать частотный сигнал. В качестве реперных точек принимаются точки, равномерно распределенные в пределах диапазона измерений (включая крайние точки диапазона).
- 7.4.3.2 Считать значение периода входного частотного сигнала с дисплея FloBoss S600 и вычислить относительную погрешность δ_f , %, по формуле

$$\delta_f = \frac{\frac{10^6}{T_{u_{3M}}} - f_{_{9M}}}{f_{_{9M}}} \cdot 100,\tag{4}$$

где

 T_{uxm} — период сигнала, считанная с дисплея FloBoss S600, мкс;

 f_{-} — частота сигнала, заданного калибратором, Γ ц.

7.4.3.3 Результаты поверки считаются положительными, если рассчитанная относительная погрешность при измерении частотного сигнала в каждой реперной точке не выходит за пределы ± 0.05 %.

Примечание — Процедуры по пунктам 7.4.1-7.4.3 проводят для рабочего и резервного FloBoss S600.

7.4.4 Расчет относительной погрешности измерения массы КГН

7.4.4.1 Относительную погрешность измерения массы КГН δ_m , %, рассчитывают по формуле

$$\delta_m = \sqrt{\left(\delta_V^2 + \delta_{\rho_V}^2 + \delta_B^2\right)},\tag{5}$$

где

 δ_{ν} — относительная погрешность преобразователей расхода, %;

 δ_{2} — относительная погрешность определения плотности КГН, %;

 $\delta_{_{B}}$ — относительная погрешность FloBoss S600 при вычислении массы КГН, %.

7.4.4.2 Относительную погрешность определения плотности КГН $\,\delta_{\rho_{\!\scriptscriptstyle V}}\,$, %, рассчитывают по формуле

$$\delta_{\rho_{\nu}} = \sqrt{\left(\delta_{\rho_{\Pi}}^2 + \delta_{\rho_{\Pi\nu}}^2\right)},\tag{6}$$

где

 δ_{a} — относительная погрешность измерения плотности КГН, %;

 $\delta_{\rho_{\Pi V}}$ — составляющая относительной погрешности определения плотности КГН, обусловленная отличием условий в местах измерений объемного расхода (объема) и плотности, %.

Примечание — Допускается принимать плотность КГН в месте измерений объемного расхода (объема) равной плотности КГН в месте измерений плотности при выполнении условия (5.7) СТО Газпром 5.9–2007.

7.4.4.3 Относительную погрешность измерения плотности КГН рассчитывают по формуле

$$\delta_{\rho_{\Pi}} = \frac{\Delta_{\rho_{\Pi}}}{\rho} \cdot 100,\tag{7}$$

где

 $\Delta_{\rho_{\Pi}}$ — абсолютная погрешность измерения плотности КГН, кг/м³;

 ρ — измеренное значение плотности КГН, кг/м³.

7.4.4.4 Составляющую относительной погрешности определения плотности, обусловленная отличием условий в местах измерений объемного расхода (объема) и плотности рассчитывают по формулам:

$$\delta_{\rho_{\Pi \nu}} = \frac{1}{h} \sqrt{\left(\overline{\beta}_{l} \Delta t \delta_{\Delta t}\right)^{2} + \left(\overline{\beta}_{l} \Delta t \delta_{\beta_{l}}\right)^{2} + \left(\overline{\beta}_{p} \Delta p \delta_{\Delta p}\right)^{2} + \left(\overline{\beta}_{p} \Delta p \delta_{\beta_{p}}\right)^{2}}, \tag{8}$$

$$h = 1 - \overline{\beta}_t \Delta t + \overline{\beta}_p \Delta p, \tag{9}$$

$$\overline{\beta}_{t} = 0, 5 \cdot \left(\beta_{t_{\nu}} + \beta_{t_{\Pi}}\right), \tag{10}$$

$$\Delta t = t_V - t_{\Pi},\tag{11}$$

$$\overline{\beta}_{p} = \frac{\gamma_{p_{\Pi}} (p_{c} - p_{\Pi}) - \gamma_{p_{V}} (p_{c} - p_{V})}{\left[1 + \gamma_{p_{V}} (p_{c} - p_{V})\right] (p_{V} - p_{\Pi})},$$
(12)

$$\Delta p = p_{\nu} - p_{\Pi},\tag{13}$$

$$\delta_{g} = 0,6\%, \tag{14}$$

$$\delta_{\beta_n} = 0,4\%,\tag{15}$$

где $\delta_{_{\Lambda I}}$ — относительная погрешность определения разности температур, %;

 $\delta_{\Lambda p}$ — относительная погрешность определения разности давлений, %;

 $\beta_{t_{\nu}}, \beta_{t_{\pi}}$ – коэффициенты, 1/°С, определяемые по таблице А.2 приложения А СТО Газпром 5.1;

 $t_{_{\!V}},t_{_{\!\varPi}}$ — температура КГН при измерении объема и плотности соответственно, °C;

 $\gamma_{p_{\Pi}}, \gamma_{p_{V}}$ — коэффициенты, 1/МПа, определяемые по таблице А.1 приложения А СТО Газпром 5.1;

 p_{c} — давление КГН при стандартных условиях, МПа;

 p_{ν}, p_{π} — давление КГН при измерении объема и плотности соответственно, МПа.

7.4.4.5 Относительную погрешность определения разности давлений рассчитывают по формуле

$$\delta_{\Delta p} = \frac{\left(p_V^2 \delta_{p_V}^2 + p_{\Pi}^2 \delta_{p_{\Pi}}^2\right)^{0.5}}{p_V - p_{\Pi}},\tag{16}$$

где

 $\delta_{p_{V}}, \delta_{p_{\Pi}}$ — относительная погрешность измерения давления в местах установки преобразователей расхода и плотности соответственно, %.

7.4.4.6 Относительную погрешность измерения абсолютного давления δ_p , %, рассчитывают по формуле

$$\delta_p = \sqrt{\left(\frac{p_u}{p}\right)^2 \delta_{p_u}^2 + \left(\frac{p_a}{p}\right)^2 \delta_{p_a}^2},\tag{17}$$

где

 p_{u} — избыточное давление КГН, МПа;

р – абсолютное давление КГН, МПа;

 δ_{2} — относительная погрешность измерения избыточного давления, %;

 p_a — атмосферное давление, МПа;

 δ_n — относительная погрешность измерения атмосферного давления, %.

7.4.4.1 Относительную погрешность определения разности температур рассчитывают по формуле

$$\delta_{\Delta t} = \frac{1}{t_V - t_{\Pi}} \sqrt{\left(\Delta t_V^2 + \Delta t_{\Pi}^2\right)},\tag{18}$$

где

 $\Delta t_{V}, \Delta t_{\Pi}$ – абсолютные погрешности измерения температуры в местах установки преобразователей расхода и плотности соответственно, °C.

7.4.4.2 Относительную погрешность измерения избыточного давления рассчитывают по формуле

$$\delta_{p_u} = \sqrt{\sum_{i=1}^{n} \left(\delta_{p_{u_ocn_i}}^2 + \delta_{p_{u_ocn_i}}^2\right)},\tag{19}$$

где

п – количество измерительных преобразователей (далее – ИП) измерительного канала (далее – ИК) избыточного давления;

 $\delta_{p_{u_{-}} \propto k_{-}^{i}}$ — основная относительная погрешность *i*-го ИП ИК избыточного давления, %;

 $\delta_{p_{u_\delta on_i}}$ — дополнительная относительная погрешность *i*-го ИП ИК избыточного давления, %.

7.4.4.1 Относительную погрешность измерения атмосферного давления рассчитывают по формуле

$$\delta_{p_a} = \sqrt{\sum_{i=1}^{m} \left(\delta_{p_{a_ocn_i}}^2 + \delta_{p_{a_oon_i}}^2\right)},\tag{20}$$

где m — количество измерительных преобразователей ИП ИК атмосферного давления;

 $\delta_{p_{\bullet_{-} \circ \bullet e^{-}}}$ — основная относительная погрешность *i*-го ИП ИК атмосферного давления, %;

 $\delta_{p_{a_don_i}}$ — дополнительная относительная погрешность *i*-го ИП ИК атмосферного давления, %.

7.4.4.2 Абсолютную погрешность измерения температуры рассчитывают по формуле

$$\Delta t = \sqrt{\sum_{i=1}^{l} \left(\Delta t_{ocn_i}^2 + \Delta t_{\partial on_i}^2 \right)},\tag{21}$$

где l – количество измерительных преобразователей ИП ИК температуры;

 δ_{p_i} — основная абсолютная погрешность *i*-го ИП ИК температуры, °C;

 $\delta_{p_{a},p_{a},p_{a}}$ — дополнительная абсолютная погрешность i-го ИП ИК температуры, °C.

7.4.4.3 Результаты поверки считаются положительными, если рассчитанная относительная погрешность измерений массы КГН не выходит за пределы ± 0.25 %.

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 8.1 При положительных результатах поверки оформляют свидетельство о поверке СИКГК в соответствии с приказом Министерства промышленности и торговли Российской Федерации от 2 июля 2015 г. № 1815 «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке».
- 8.2 Отрицательные результаты поверки СИКГК оформляют в соответствии с приказом Министерства промышленности и торговли Российской Федерации от 2 июля 2015 г. № 1815 «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке». При этом выписывается извещение о непригодности к применению СИКГК с указанием причин непригодности.