

ООО Центр Метрологии «СТП»

Регистрационный номер записи в реестре аккредитованных лиц RA.RU.311229

«УТВЕРЖДАЮ»

Технический директор

ОО Ценир Метрологии «СТП»

И.А. Яценко

2016 г.

Государственная система обеспечения единства измерений

Система измерительная массового расхода (массы) перегретого пара цеха № 09 НПЗ ОАО «ТАИФ-НК»

МЕТОДИКА ПОВЕРКИ

МП 1703/2-311229-2016

1.p.64903.16

СОДЕРЖАНИЕ

1 Введение	3
2 Операции поверки	3
3 Средства поверки	3
4 Требования техники безопасности и требования к квалификации поверителей	4
5 Условия поверки	4
6 Подготовка к поверке	4
7 Проведение поверки	5
8 Оформление результатов поверки	8

1 ВВЕДЕНИЕ

- 1.1 Настоящая методика поверки распространяется на систему измерительную массового расхода (массы) перегретого пара цеха № 09 НПЗ ОАО «ТАИФ-НК», изготовленную и принадлежащую НПЗ ОАО «ТАИФ-НК», г. Нижнекамск, и устанавливает методику первичной поверки до ввода в эксплуатацию и после ремонта, а также методику периодической поверки в процессе эксплуатации.
- 1.2 Система измерительная массового расхода (массы) перегретого пара цеха № 09 НПЗ ОАО «ТАИФ-НК» (далее ИС) предназначена для измерений объемного расхода (объема) перегретого пара и вычисления массового расхода (массы) перегретого пара.
- 1.3 Принцип действия ИС заключается в непрерывном измерении, преобразовании и обработке посредством контроллера программируемого SIMATIC S7-400 (Госреестр № 15773-11) (далее SIMATIC S7-400) и устройства распределенного ввода-вывода SIMATIC ET200М (Госреестр № 22734-11) входных сигналов поступающих по измерительным каналам от расходомера вихревого Prowirl 200 (Госреестр № 58533-14), преобразователя давления измерительного Сегаbаг М РМР51 (Госреестр № 41560-09), термопреобразователя сопротивления платинового серии TR88 (Госреестр № 49519-12) с преобразователем измерительным серии iTEMP модели TMT82 (Госреестр № 50138-12).
 - 1.4 Поверка ИС проводится поэлементно:
- поверка первичных измерительных преобразователей, входящих в состав ИС,
 осуществляется в соответствии с их методиками поверки;
- вторичную («электрическую») часть поверяют на месте эксплуатации ИС в соответствии с настоящей методикой поверки;
- метрологические характеристики ИС определяют расчетным методом в соответствии с настоящей методикой поверки.
- 1.5 Интервал между поверками первичных измерительных преобразователей, входящих в состав ИС, в соответствии с описаниями типа на эти средства измерений (далее СИ).
 - 1.6 Интервал между поверками ИС 2 года.

2 ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки должны быть выполнены операции, приведенные в таблице 2.1.

Таблица 2.1 - Операции поверки

№ п/п	Наименование операции	Номер пункта методики поверки
1	Проверка технической документации	7.1
2	Внешний осмотр	7.2
3	Опробование	7.3
4	Определение метрологических характеристик	7.4
5	Оформление результатов поверки	8

3 СРЕДСТВА ПОВЕРКИ

3.1 При проведении поверки ИС применяют эталоны и СИ, приведенные в таблице 3.1.

Таблица 3.1 – Основные эталоны и СИ

Номер пункта методики	Наименование и тип основного и вспомогательного средства поверки и метрологические и основные технические характеристики средства поверки
5	Барометр-анероид М-67 с пределами измерений от 610 до 790 мм рт.ст., погрешность измерений \pm 0,8 мм рт.ст., по ТУ 2504-1797-75.

Номер пункта методики	Наименование и тип основного и вспомогательного средства поверки и метрологические и основные технические характеристики средства поверки
5	Психрометр аспирационный M34, пределы измерений влажности от 10 % до 100 %, погрешность измерений ±5 %.
5	Термометр ртутный стеклянный ТЛ-4 (№ 2) с пределами измерений от 0 °C до плюс 55 °C по ГОСТ 28498–90. Цена деления шкалы 0,1 °C.
7.4	Калибратор многофункциональный MC5-R-IS (далее — калибратор): диапазон воспроизведения силы постоянного тока от 0 до 25 мА, пределы допускаемой основной погрешности воспроизведения $\pm (0.02 \%$ показания ± 1 мкА).

- 3.2 Допускается использование других эталонов и СИ с характеристиками, не уступающими характеристикам, указанным в таблице 3.1.
- 3.3 Все применяемые эталоны должны быть аттестованы; СИ должны иметь действующий знак поверки и (или) свидетельство о поверке и (или) запись в паспорте (формуляре) СИ, заверенной подписью поверителя и знаком поверки.

4 ТРЕБОВАНИЯ ТЕХНИКИ БЕЗОПАСНОСТИ И ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

- 4.1 При проведении поверки должны соблюдаться следующие требования:
- корпуса применяемых СИ должны быть заземлены в соответствии с их эксплуатационной документацией;
- ко всем используемым СИ должен быть обеспечен свободный доступ для заземления, настройки и измерений;
- работы по соединению вспомогательных устройств должны выполняться до подключения к сети питания;
- обеспечивающие безопасность труда, производственную санитарию и охрану окружающей среды;
- предусмотренные «Правилами технической эксплуатации электроустановок потребителей» и эксплуатационной документацией оборудования, его компонентов и применяемых средств поверки.
 - 4.2 К работе по поверке должны допускаться лица:
 - достигшие 18-летнего возраста;
 - прошедшие инструктаж по технике безопасности в установленном порядке;
- изучившие эксплуатационную документацию на ИС, СИ, входящие в состав ИС, и средства поверки.

5 УСЛОВИЯ ПОВЕРКИ

При проведении поверки должны соблюдаться следующие условия:

- температура окружающего воздуха, °С

 20 ± 5

относительная влажность, %

от 30 до 80

- атмосферное давление, кПа

от 84 до 106

6 ПОДГОТОВКА К ПОВЕРКЕ

Перед проведением поверки выполняют следующие подготовительные операции:

- проверяют заземление СИ, работающих под напряжением;
- эталонные СИ и вторичные измерительные преобразователи ИС устанавливают в рабочее положение с соблюдением указаний эксплуатационной документации;

- эталонные СИ и вторичные измерительные преобразователи ИС выдерживают при температуре, указанной в разделе 5, не менее 3 часов, если время их выдержки не указано в эксплуатационной документации;
- осуществляют соединение и подготовку к проведению измерений эталонных СИ и вторичных измерительных преобразователей ИС в соответствии с требованиями эксплуатационной документации.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Проверка технической документации

- 7.1.1 При проведении проверки технической документации проверяют:
- наличие руководства по эксплуатации на ИС;
- наличие паспорта на ИС;
- наличие паспортов (формуляров) СИ, входящих в состав ИС;
- наличие у первичных измерительных преобразователей, входящих в состав ИС, действующего знака поверки и (или) свидетельства о поверке и (или) записи в паспорте (формуляре) СИ, заверенной подписью поверителя и знаком поверки;
 - наличие свидетельства о предыдущей поверке ИС (при периодической поверке);
 - наличие методики поверки на ИС.
- 7.1.2 Результаты проверки считают положительными при наличии всей технической документации по 7.1.1.

7.2 Внешний осмотр

- 7.2.1 При проведении внешнего осмотра ИС контролируют выполнение требований технической документации к монтажу СИ, измерительно-вычислительных и связующих компонентов ИС.
- 7.2.2 При проведении внешнего осмотра ИС устанавливают состав и комплектность ИС. Проверку выполняют на основании сведений, содержащихся в паспорте на ИС. При этом контролируют соответствие типа СИ, указанного в паспортах на СИ, записям в паспорте на ИС.
- 7.2.3 Результаты проверки считают положительными, если монтаж СИ, измерительновычислительных и связующих компонентов ИС, внешний вид и комплектность ИС соответствуют требованиям технической документации.

7.3 Опробование

7.3.1 Подтверждение соответствия программного обеспечения ИС

- 7.3.1.1 Подлинность программного обеспечения (далее ПО) ИС проверяют сравнением идентификационных данных ПО ИС с соответствующими идентификационными данными, зафиксированными при испытаниях в целях утверждения типа и отраженными в описании типа ИС. Проверку идентификационных данных ПО ИС проводят в соответствии с эксплуатационной документацией на ИС.
- 7.3.1.2 Проверяют возможность несанкционированного доступа к ПО ИС и наличие авторизации (введение пароля), возможность обхода авторизации, проверка реакции ПО ИС на неоднократный ввод неправильного пароля.
- 7.3.1.3 Результаты опробования считают положительными, если идентификационные данные ПО ИС совпадают с исходными, указанными в описании типа на ИС, исключается возможность несанкционированного доступа к ПО ИС, обеспечивается авторизация.

7.3.2 Проверка работоспособности ИС

- 7.3.2.1 Приводят ИС в рабочее состояние в соответствии с эксплуатационной документацией. Проверяют прохождение сигналов калибратора, имитирующих входные сигналы ИС. Проверяют на мониторе операторской станции управления ИС показания по регистрируемым в соответствии с конфигурацией ИС параметрам технологического процесса.
- 7.3.2.2 Результаты опробования считают положительными, если при увеличении и уменьшении значения входного сигнала ИС соответствующим образом изменяются значения измеряемой величины на мониторе операторской станции управления.

Примечание — Допускается проводить проверку работоспособности ИС одновременно с определением метрологических характеристик по 7.4 данной методики поверки.

7.4 Определение метрологических характеристик

7.4.1 Определение погрешности преобразования входного аналогового сигнала силы постоянного тока (от 4 до 20 мА) в значение измеряемого параметра

- 7.4.1.1 Отключают первичный измерительный преобразователь измерительного канала и к соответствующему каналу подключают калибратор, установленный в режим имитации сигналов силы постоянного тока (от 4 до 20 мА), в соответствии с инструкцией по эксплуатации.
- 7.4.1.2 С помощью калибратора устанавливают электрический сигнал силы постоянного тока. В качестве реперных точек принимают точки 4; 8; 12; 16; 20 мА.
- 7.4.1.3 Считывают значения входного сигнала с монитора операторской станции и в каждой реперной точке рассчитывают приведенную погрешность $\gamma_{\rm BH}$, %, по формуле

$$\gamma_{\rm B\Pi} = \frac{I_{_{\rm H3M}} - I_{_{\rm 9T}}}{I_{_{\rm max}} - I_{_{\rm min}}} \cdot 100, \tag{1}$$

где $I_{\text{\tiny LEM}}$ — значение тока, соответствующее показанию измеряемого параметра ИС в *i*-ой реперной точке, мА;

 I_{xx} — показание калибратора в *i*-ой реперной точке, мА;

I_{max} – максимальное значение границы диапазона аналогового сигнала силы постоянного тока (от 4 до 20 мА), мА;

I_{min} – минимальное значение границы диапазона аналогового сигнала силы постоянного тока (от 4 до 20 мА), мА.

7.4.1.4 Если показания ИС можно просмотреть только в единицах измеряемой величины, то при линейной функции преобразования значение тока рассчитывают по формуле

$$I_{\text{\tiny H3M}} = \frac{I_{\text{\tiny max}} - I_{\text{\tiny min}}}{X_{\text{\tiny max}} - X_{\text{\tiny min}}} \cdot (X_{\text{\tiny H3M}} - X_{\text{\tiny min}}) + I_{\text{\tiny min}},$$
 (2)

где X_{max} — максимальное значение измеряемого параметра, соответствующее максимальному значению границы диапазона аналогового сигнала силы постоянного тока (от 4 до 20 мА), в абсолютных единицах измерений;

X_{min} — минимальное значение измеряемого параметра, соответствующее минимальному значению границы диапазона аналогового сигнала силы постоянного тока (от 4 до 20 мА), в абсолютных единицах измерений;

X_{изм} – значение измеряемого параметра, соответствующее задаваемому аналоговому сигналу силы постоянного тока (от 4 до 20 мА), в абсолютных единицах измерений. Считывают с монитора операторской станции.

7.4.1.5 Результаты поверки считают положительными, если рассчитанная приведенная погрешность преобразования входного аналогового сигнала силы постоянного тока (от 4 до 20 мA) в значение измеряемого параметра не выходит за пределы $\pm 0.19 \%$.

7.4.2 Определение погрешности измерения массового расхода (массы) перегретого пара

7.4.2.1 Относительную погрешность измерения массового расхода (массы) перегретого пара $\delta_{\text{ом}}$, %, рассчитывают по формуле

$$\delta_{\text{GM}} = \pm \sqrt{\delta_{\text{g}}^2 + \delta_{\text{g}}^2 + \delta_{\text{BMY}}^2} , \qquad (3)$$

где $\delta_{\rm q}$ — пределы относительной погрешности измерения объемного расхода (объема) перегретого пара, %;

δ_ρ – относительная погрешность определения плотности перегретого пара при условиях измерения объемного расхода, %;

выч – пределы относительной погрешности при вычислении массового расхода (массы) перегретого пара, %.

7.4.2.2 Относительную погрешность определения плотности перегретого пара при рабочих условиях δ_{α} , %, рассчитывают по формуле

$$\delta_{\rho} = \pm \sqrt{\delta_{\rho M}^2 + 9\rho_T^2 \cdot \delta_T^2 + 9\rho_p^2 \cdot \delta_p^2} , \qquad (4)$$

где $\delta_{\rho M}$ — методическая погрешность определения плотности перегретого пара в соответствии с МИ 2451–98, %;

9_{От} – коэффициент влияния температуры на плотность перегретого пара;

 $\delta_{_{\rm T}}$ — относительная погрешность измерения температуры перегретого пара, %;

9р. – коэффициент влияния абсолютного давления на плотность перегретого пара;

δ_p – относительная погрешность измерения абсолютного давления перегретого пара, %.

7.4.2.3 Относительную погрешность измерения температуры перегретого пара $\delta_{\rm T}$, %, рассчитывают по формуле

$$\delta_{\rm T} = \pm \frac{100}{t + 273,15} \cdot \sqrt{\Delta_{\rm C}^2 + \left(\Delta_{\rm o_AU\Pi} + \Delta_{\rm o_UA\Pi}\right)^2 + \Delta_{\rm A}^2 + \left(\gamma_{\rm k} \cdot \frac{t_{\rm B} - t_{\rm H}}{100}\right)^2} , \tag{5}$$

где t – измеренная температура, °С;

∆_C – пределы допускаемой абсолютной погрешности термопреобразователя сопротивления платинового серии TR88, °C;

∆_{о_АЦП} – пределы допускаемой основной абсолютной погрешности (АЦП) преобразователя измерительного серии iTEMP модели TMT82, °C;

∆_{о_ЦАП} – пределы допускаемой основной абсолютной погрешности (ЦАП) преобразователя измерительного серии iTEMP модели TMT82, °C;

∆_д – пределы допускаемой дополнительной абсолютной погрешности преобразователя измерительного серии iTEMP модели TMT82, °C;

γ_к – пределы допускаемой приведенной погрешности в рабочих условиях устройства распределенного ввода-вывода SIMATIC ET200M, %;

t_в – настроенный верхний предел измерений температуры преобразователя измерительного серии iTEMP модели TMT82, °C;

t_н – настроенный нижний предел измерений температуры преобразователя измерительного серии iTEMP модели TMT82, °C.

7.4.2.4 Относительную погрешность измерения абсолютного давления перегретого пара δ_a , %, рассчитывают по формуле

$$\delta_{p} = \pm \sqrt{\frac{p_{\text{MB}}^{2}}{\left(p_{\text{M}} + p_{\text{a}}\right)^{2}} \cdot \left(\gamma_{o}^{2} + \gamma_{\pi}^{2} + \gamma_{\kappa}^{2}\right) + \frac{p_{\text{a}}^{2}}{\left(p_{\text{M}} + p_{\text{a}}\right)^{2}} \cdot \left(\frac{2}{\sqrt{6}} \cdot \left(\frac{p_{\text{a}_\text{max}} - p_{\text{a}_\text{min}}}{p_{\text{a}_\text{max}} + p_{\text{a}_\text{min}}}\right) \cdot 100\right)^{2}},$$
 (6)

где р_{ив} – настроенный верхний предел измерений преобразователя давления измерительного Cerabar M PMP51, МПа;

р_и – измеренное избыточное давление, МПа;

р_а – атмосферное давление (0,1 МПа), МПа;

γ₀ – пределы допускаемой основной приведенной погрешности преобразователя давления измерительного Cerabar M PMP51, %;

γ_д – пределы допускаемой дополнительной приведенной погрешности преобразователя давления измерительного Cerabar M PMP51, %;

р — максимальное атмосферное давление (0,104 МПа), МПа;

 p_{a_min} — минимальное атмосферное давление (0,096 МПа), МПа.

7.4.2.5 Коэффициент влияния измеряемого параметра y_i (абсолютного давления, температуры) на окончательный результат измерений у (плотность) ϑy_{yi} рассчитывают по формуле

$$\vartheta y_{yi} = \frac{\Delta y}{\Delta y_i} \cdot \frac{y_i}{y}, \tag{7}$$

где Δy — изменение окончательного результата измерений у при изменении измеряемого параметра y_i на значение Δy_i .

3начение Δy_i рекомендуется выбирать не более абсолютной погрешности измерения параметра y_i .

7.4.2.6 Результаты поверки считают положительными, если рассчитанная относительная погрешность измерения массового расхода (массы) перегретого пара не выходит за пределы ± 3.0 %.

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 8.1 При положительных результатах поверки оформляют свидетельство о поверке ИС в соответствии с приказом Минпромторга России от 2 июля 2015 г. № 1815 «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке».
- 8.2 Отрицательные результаты поверки ИС оформляют в соответствии с приказом Минпромторга России от 2 июля 2015 г. № 1815 «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке». При этом выписывается извещение о непригодности к применению ИС с указанием причин непригодности.