

ООО Центр Метрологии «СТП»

Регистрационный номер записи в реестре аккредитованных лип RA.RU.311229

«УТВЕРЖДАЮ»

Технический директор

ООО Центр Метрологии «СТП»

И.А. Яценко

6 m 2015 r.

Государственная система обеспечения единства измерений

Система измерительная установки 37-10 ООО «ЛУКОЙЛ-Пермнефтеоргсинтез»

МЕТОДИКА ПОВЕРКИ

МП 9-311229-2015

1.p.65033-16

СОДЕРЖАНИЕ

1 Введение	3
2 Операции поверки	3
3 Средства поверки	3
4 Требования техники безопасности и требования к квалификации поверителей	4
5 Условия поверки	5
6 Подготовка к поверке	5
7 Проведение поверки	5
8 Оформление результатов поверки	8
Приложение А	9

1 ВВЕДЕНИЕ

- 1.1 Настоящая методика поверки распространяется на систему измерительную установки 37-10 ООО «ЛУКОЙЛ-Пермнефтеоргсинтез», заводской № 37-10, принадлежащую ООО «ЛУКОЙЛ-Пермнефтеоргсинтез», г. Пермь, и устанавливает методику первичной поверки до ввода в эксплуатацию и после ремонта, а также методику периодической поверки в процессе эксплуатации.
- 1.2 Система измерительная установки 37-10 ООО «ЛУКОЙЛ-Пермнефтеоргсинтез» (далее ИС) предназначена для непрерывного измерения параметров технологического процесса в реальном масштабе времени (температуры, давления, перепада давлений, уровня, расхода, нижнего концентрационного предела распространения).
- 1.3 ИС состоит из первичных и промежуточных измерительных преобразователей (далее – ИП) (барьеры искрозащиты), преобразующих сигналы от первичных ИП в унифицированные сигналы силы постоянного тока (от 4 до 20 мА) и обеспечивающих искрозащиту входных информационных каналов; модулей ввода/вывода измерительно-управляющей **ExperionPKS** (далее – ExperionPKS); автоматизированных рабочих мест (далее – APM) операторов-технологов; программного обеспечения. Сбор информации о состоянии технологического процесса осуществляются посредством аналоговых и дискретных сигналов, поступающих по соответствующим измерительным каналам (далее – ИК).
 - 1.4 Поверка ИС проводится поэлементно:
- поверка первичных ИП (средств измерений), входящих в состав ИС, осуществляется в соответствии с их методиками поверки;
- вторичные ИП поверяют на месте эксплуатации ИС в соответствии с настоящей методикой поверки;
- метрологические характеристики ИС определяют расчетным методом в соответствии с настоящей методикой поверки.
- 1.5 Интервал между поверками первичных ИП (средств измерений), входящих в состав ИС, в соответствии с описаниями типа на эти ИП.
 - 1.6 Интервал между поверками ИС 4 года.

2 ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки должны быть выполнены операции, приведенные в таблице 2.1.

Таблица 2.1 – Операции поверки

№ п/п	Наименование операции	Номер пункта методики поверки				
1	Проверка технической документации	7.1				
2	Внешний осмотр	7.2				
3	Опробование	7.3				
4	Определение метрологических характеристик	7.4				
5	Оформление результатов поверки	8				
При	Примечание — Допускается проводить поверку только задействованных ИК.					

3 СРЕДСТВА ПОВЕРКИ

3.1 При проведении поверки применяют эталоны и средства измерений (далее – СИ), приведенные в таблице 3.1.

Таблица 3.1 – Основные эталоны и СИ.

таолица 5.1	Ochobnisic Stationisi ii Citi.						
Номер пункта методики	Наименование и тип основного и вспомогательного средства поверки и метрологические и основные технические характеристики средства поверки						
5.1	Барометр-анероид M-67 с пределами измерений от 610 до 790 мм рт. ст., погрешность измерений ± 0.8 мм рт. ст., по ТУ 2504-1797-75						
5.1	Психрометр аспирационный М34, пределы измерений влажности от 10 % до 100 %, погрешность измерений ±5 %						
5.1	Термометр ртутный стеклянный ТЛ-4 (№ 2) с пределами измерений от 0 °C до плюс 55 °C по ГОСТ 28498-90. Цена деления шкалы 0,1 °C						
7.4	Калибратор многофункциональный МС5-R-IS (далее – калибратор): диапазон воспроизведения силы постоянного тока от 0 до 25 мА, пределы допускаемой основной погрешности воспроизведения ±(0,02 % показания + 1 мкА); воспроизведение сигналов термометров сопротивления Pt100 в диапазоне температур от минус 200 °C до плюс 850 °C, пределы допускаемой основной погрешности воспроизведения в диапазоне						
Примечани	°C), от плюс 1000 °C до плюс 1372 °C ±(0,03 % показания °C) Тримечание — Для проведения поверки выбирают эталонные СИ с диапазоном измерений						
	диапазонам измерений ИС.						

- 3.2 Допускается использование других эталонов и СИ по своим характеристикам не уступающих указанным в таблице 3.1.
- 3.3 Все применяемые СИ должны иметь действующие поверительные клейма или свидетельства о поверке.

4 ТРЕБОВАНИЯ ТЕХНИКИ БЕЗОПАСНОСТИ И ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

- 4.1 При проведении поверки должны соблюдаться следующие требования:
- корпуса применяемых СИ должны быть заземлены в соответствии с их инструкциями по эксплуатации;
- ко всем используемым СИ должен быть обеспечен свободный доступ для заземления, настройки и измерений;
- работы по соединению вспомогательных устройств должны выполняться до подключения к сети питания;
- обеспечивающие безопасность труда, производственную санитарию и охрану окружающей среды;
- указания, предусмотренные «Правилами технической эксплуатации электроустановок» и эксплуатационной документацией оборудования, его компонентов и применяемых средств поверки.
 - 4.2 К работе по поверке должны допускаться лица:
 - достигшие 18-летнего возраста;
 - прошедшие инструктаж по технике безопасности в установленном порядке;
- изучившие эксплуатационную документацию на ИС, СИ, входящих в состав ИС, и средства поверки.

5 УСЛОВИЯ ПОВЕРКИ

При проведении поверки должны соблюдаться следующие условия:

- температура окружающего воздуха, °C $$(20\pm5)$$ – относительная влажность, % \$ от 30 до 80

– атмосферное давление, кПа от 84 до 106,7

6 ПОДГОТОВКА К ПОВЕРКЕ

Перед проведением поверки выполняют следующие подготовительные операции:

- проверяют заземление СИ, работающих под напряжением;
- эталонные СИ и вторичные ИП ИС выдерживают при температуре, указанной в разделе 5 не менее 3-х часов, если время их выдержки не указано в инструкции по эксплуатации:
- эталонные СИ и вторичные ИП ИС устанавливают в рабочее положение с соблюдением указаний эксплуатационной документации;
- осуществляют соединение и подготовку к проведению измерений эталонных СИ и вторичных ИП ИС в соответствии с требованиями эксплуатационных документаций.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Проверка технической документации

- 7.1.1 При проведении проверки технической документации проверяют:
- наличие руководства по эксплуатации на ИС;
- наличие паспорта на ИС;
- наличие свидетельства о предыдущей поверке ИС (при периодической поверке);
- наличие паспортов СИ, входящих в состав ИС;
- наличие у СИ, входящих в состав ИС, которые подлежат поверке, действующего знака поверки и (или) свидетельства о поверке и (или) записи в паспорте (формуляре) СИ, заверенной подписью поверителя и знаком поверки;
- наличие у СИ, входящих в состав ИС, которые подлежат калибровке, действующего калибровочного клейма и (или) сертификата о калибровке и (или) записи в паспорте (формуляре) СИ, заверенной подписью калибровщика и калибровочным клеймом.
- 7.1.2 Результаты поверки считаются положительными при наличии всей технической документации по п. 7.1.1.

7.2 Внешний осмотр

- 7.2.1 При проведении внешнего осмотра ИС контролируют выполнение требований технической документации к монтажу СИ, измерительно-вычислительных и связующих компонентов ИС.
- 7.2.2 При проведении внешнего осмотра ИС устанавливают состав и комплектность ИС. Проверку выполняют на основании сведений, содержащихся в паспорте на ИС. При этом контролируют соответствие типа СИ, указанного в паспортах на СИ, записям в паспорте на ИС.
- 7.2.3 Результаты проверки считают положительными, если монтаж СИ, измерительновычислительных и связующих компонентов ИС, внешний вид и комплектность ИС соответствуют требованиям технической документации.

7.3 Опробование

7.3.1 Подтверждение соответствия программного обеспечения ИС

7.3.1.1 Подлинность программного обеспечения (далее – ПО) ИС проверяют сравнением идентификационных данных ПО с соответствующими идентификационными данными, зафиксированными при испытаниях в целях утверждения типа и отраженными в описании типа ИС.

- 7.3.1.2 Проверяют возможность несанкционированного доступа к ПО ИС и наличие авторизации (введение логина и пароля), возможность обхода авторизации, проверка реакции ПО ИС на неоднократный ввод неправильного логина и (или) пароля (аутентификация).
- 7.3.1.3 Результаты опробования считают положительными, если идентификационные данные ПО ИС совпадают с идентификационными данными, которые приведены в описании типа ИС, а также исключается возможность несанкционированного доступа к ПО ИС и обеспечивается аутентификация.

7.3.2 Проверка работоспособности ИС

- 7.3.2.1 Приводят ИС в рабочее состояние в соответствии с технической документацией фирмы-изготовителя. Проверяют прохождение сигналов средств поверки, имитирующих измерительные сигналы. На дисплее монитора APM операторов-технологов проверяют показания по регистрируемым в соответствии с конфигурацией ИС параметрам технологического процесса.
- 7.3.2.2 Результаты опробования считаются положительными, если при увеличении/уменьшении значения входного сигнала соответствующим образом изменяются значения измеряемой величины на дисплее монитора APM операторов-технологов.

7.4 Определение метрологических характеристик

- 7.4.1 Определение основной абсолютной погрешности преобразования входного аналогового сигнала термопреобразователя сопротивления типа Pt100 по ГОСТ 6651–2009 и термоэлектрического преобразователя по ГОСТ Р 8.585–2001 с номинальной статической характеристикой «К» (НСХ «К») в значение измеряемой температуры
- 7.4.1.1 Отключить первичный ИП ИК температуры и к соответствующему каналу, включая барьер искрозащиты (при наличии), подключить калибратор, установленный в режим имитации сигналов от термопреобразователя сопротивления по ГОСТ 6651–2009 (далее ТС) или термоэлектрического преобразователя по ГОСТ Р 8.585–2001 (далее ТП) в соответствии с инструкцией по эксплуатации.
- $7.4.1.2~\mathrm{C}$ помощью калибратора установить электрический сигнал, соответствующий значениям измеряемой температуры. В качестве реперных точек принять точки, соответствующие 0 %, 25 %, 50 %, 75 %, 100 % диапазона измерений температуры.
- 7.4.1.3 Считать значения входного сигнала с дисплея монитора APM операторовтехнологов и в каждой реперной точке вычислить основную абсолютную погрешность $\Delta_{\rm BH}$, °C, по формуле

$$\Delta_{\rm B\Pi} = t_{_{\rm HSM}} - t_{_{\rm ST}} \,, \tag{1}$$

где t_{изм} - измеренное значение температуры, °С;

t₃т - заданное значение температуры, °С.

- 7.4.1.4 Результаты поверки считаются положительными, если рассчитанная основная абсолютная погрешность преобразования входного аналогового сигнала TC по FOCT 6651-2009 или $T\Pi$ по FOCT P 8.585-2001 в значение измеряемой температуры не выходит за пределы, указанные в приложении A настоящей методики поверки.
- 7.4.2 Определение погрешности преобразования входного аналогового сигнала силы постоянного тока (от 4 до 20 мА) ИС в цифровое значение измеряемого параметра
- 7.4.2.1 Отключить первичные ИП ИК и к соответствующем каналу, включая барьер искрозащиты (при наличии), подключить калибратор, установленный в режим имитации аналогового сигнала силы постоянного тока (от 4 до 20 мА).
- 7.4.2.2 С помощью калибратора установить электрический сигнал, соответствующий значениям измеряемого параметра. В качестве реперных точек принять точки 4; 8; 12; 16; 20 мА.
- 7.4.2.3 Считать значения входного сигнала с дисплея монитора APM операторовтехнологов и в каждой реперной точке вычислить основную приведенную погрешность $\gamma_{\rm B\Pi}$, %, по формуле

$$\gamma_{\rm BII} = \frac{I_{\rm M3M} - I_{\rm 3T}}{I_{\rm max} - I_{\rm min}} \cdot 100 \% \,, \tag{2}$$

где 1_{изм} – показания ИС в і-ой реперной точке, мА;

1_{эт} – показания калибратора в i-ой реперной точке, мА;

І_{тах} – максимальное значение границы диапазона аналогового сигнала, мА;

Ітіп — минимальное значение границы диапазона аналогового сигнала, мА.

Если показания ИС можно посмотреть только в единицах измеряемой величины, то при линейной функции преобразования значение l_{изм}, мА, рассчитывают по формуле

$$I_{\text{\tiny H3M}} = \frac{I_{\text{max}} - I_{\text{min}}}{Y_{\text{max}} - Y_{\text{min}}} \cdot (Y_{\text{\tiny H3M}} - Y_{\text{min}}) + I_{\text{min}}, \qquad (3)$$

где Y_{max} — максимальное значение измеряемого параметра, соответствующее максимальному значению границы диапазона входного аналогового сигнала силы постоянного тока (от 4 до 20 мА) (I_{max}), в абсолютных единицах измерений;

 Y_{min} — минимальное значение измеряемого параметра, соответствующее минимальному значению границы диапазона входного аналогового сигнала силы постоянного тока (от 4 до 20 мА) (I_{min}), в абсолютных единицах измерений;

Үизм – значение измеряемого параметра, соответствующее задаваемому аналоговому сигналу силы постоянного тока (от 4 до 20 мА), в абсолютных единицах измерений. Считывают с дисплея монитора APM операторов-технологов.

7.4.2.4 Результаты поверки считаются положительными, если рассчитанная приведенная погрешность преобразования входного аналогового сигнала силы постоянного тока (от 4 до 20 мА) в цифровое значение измеряемого параметра не выходит за пределы, указанные в приложении А настоящей методики поверки.

7.4.3 Определение погрешности ИК ИС

7.4.3.1 Основную приведенную погрешность ИК ИС үик, %, определяют по формуле

$$\gamma_{\text{MK}} = \pm 1.1 \cdot \sqrt{\gamma_{\text{III}}^2 + \gamma_{\text{BII}}^2}, \qquad (4)$$

где упп – основная приведенная погрешность первичного ИП ИК, %.

7.4.3.2 Основную относительную погрешность ИК ИС $\delta_{\text{ИК}}$, %, определяют по формуле

$$\delta_{\text{MK}} = \pm 1.1 \cdot \sqrt{\delta_{\text{III}}^2 + \left(\gamma_{\text{BII}} \cdot \frac{X_{\text{max}} - X_{\text{min}}}{X_{\text{H3M}}}\right)^2},$$
 (5)

где $\delta_{\Pi\Pi}$ — основная относительная погрешность первичного ИП ИК, %;

X_{max} – максимальное значение диапазона измерений ИК, в единицах измерений соответствующего ИК;

 X_{min} — минимальное значение диапазона измерений ИК, в единицах измерений соответствующего ИК;

Хизм – измеренное значение, в единицах измерений соответствующего ИК.

7.4.3.3 Основную абсолютную погрешность ИК ИС $\Delta_{\text{ИК}}$, в абсолютных единицах измерений, определяют по формулам:

$$\Delta_{\text{ИК}} = \pm 1, 1 \cdot \sqrt{\Delta_{\Pi\Pi}^2 + \Delta_{B\Pi}^2} \text{ или}$$

$$\Delta_{\text{ИK}} = \pm 1, 1 \cdot \sqrt{\Delta_{\Pi\Pi}^2 + \left(\frac{\gamma_{B\Pi}}{100\%} \cdot \left(X_{\text{max}} - X_{\text{min}}\right)\right)^2},$$
 (6)

- где $\Delta_{\Pi\Pi}$ основная абсолютная погрешность первичного ИП ИК, в единицах измерений соответствующего ИК;
 - $\Delta_{\rm B\Pi}$ основная абсолютная погрешность преобразования вторичного ИП ИК, в единицах измерений соответствующего ИК.
- 7.4.3.4 Результаты поверки считаются положительными, если рассчитанная основная погрешность ИК ИС не выходит за пределы, указанные в приложении **A** настоящей методики поверки.

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 8.1 При положительных результатах поверки оформляют свидетельство о поверке ИС в соответствии с ПР 50.2.006-94. К свидетельству о поверке прилагается протокол с результатами поверки ИС.
- 8.2 Отрицательные результаты поверки ИС оформляют в соответствии с ПР 50.2.006-94. При этом выписывается извещение о непригодности к применению ИС с указанием причин непригодности.

ПРИЛОЖЕНИЕ А

(обязательное)

МЕТРОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ ИК ИС

Таблица А.1 – Метрологические характеристики ИК ИС

	огинеские узрактерист	*	Метрологические характеристики измерительных компонентов ИК ИС					
Метрологические характеристики ИК ИС			Первичный ИП		Вторичный ИП			
Наиме- нование ИК ИС	Диапазоны измерений	Пределы допускаемой основной погрешности	Тип (выходной сигнал)	Пределы допускаемой основной погрешности	Тип барьера искрозащиты	Типа модуля ввода/вывода	Пределы допускаемой основной погрешности *	
1	2	3	4	5	6	7	8	
	от минус 50 °C до плюс 150 °C	±1,25 °C	ТСП-9204 (Pt100)	±(0,3+0,005· t) °C			±0,35 °C	
	от минус 200 °C до плюс 200 °C	±1,55 °C	ТСП-1107 (Pt100)	±(0,3+0,005· t) °C			±0,5 °C	
ИК темпера- туры	от минус 40°C до плюс 900°C	±3,6 °C (в диапазоне от минус 40 °C до плюс 333 °C); ±7,8 °C (в диапазоне от плюс 333 °C до плюс 900 °C)	TXA 9312 (XA(K))	±2,5 °C (в диапазоне от минус 40 °C до плюс 333 °C); ±6,75 °C (в диапазоне от плюс 333 °C до плюс 900 °C)	HID2082 CC/CU-PAIN01	1	±2,1 °C	
	от минус 200 °C до плюс 200 °C	±1,5 °C	ТСП-1107 (Pt100)	±(0,3+0,005· t) °C	I.S.1 9480		±0,3 °C	
ИК давления и перепада давлений	от минус 0,006 до 0,001 кгс/см ² от минус 0,004 до 0,001 кгс/см ² от минус 0,002 до 0,001 кгс/см ² от 0 до 0,04 кгс/см ²	±0,2 % диапазона измерений	3051CG (от 4 до 20 мА)	±0,075 % диапазона измерений	HID2030SK	CC/CU- PAIH02	±0,15 % диапазона преобразований	

1	2	3	4	5	6	7	8		
	от 0 до 60 кПа от 0 до 100 кПа от 0 до 400 кПа от 0 до 1 МПа от 0 до 1,6 МПа от 0 до 10 кгс/см ²	±0,2 % диапазона измерений	3051TG (от 4 до 20 мА)	±0,075 % диапазона измерений					
ИК давления и перепада давлений	от 0 до 100 кПа от минус 0,06 до 0,06 МПа от 0 до 0,16 МПа от 0 до 0,2 МПа от 0 до 0,4 МПа от 0 до 0,6 МПа от 0 до 1 МПа от 0 до 1,6 МПа	±0,2 % диапазона измерений	ЕЈА 530А (от 4 до 20 мА)	±0,075 % диапазона измерений	HID2030SK	CC/CU- PAIH02	±0,15 % диапазона преобразований		
	от минус 100 до 100 кПа	±0,15 % диапазона измерений ±0,15 %	EJX 110A (от 4 до 20 мА)	±0,075 % диапазона измерений ±0,075 %	I.S.1 9461	9461	±0,075 % диапазона		
	от 0 до 1 МПа от 0 до 1,6 МПа	диапазона измерений	ЕЈА 530A (от 4 до 20 мА)	диапазона измерений			преобразований		
ИК перепада давлений на сужающем устройстве	от 0 до 0,63 кПа (шкала от 0 до 85 м³/ч) от 0 до 0,980 кПа (шкала от 0 до 63 м³/ч)	диапазона	Стандартная диафрагма по ГОСТ 8.586.2 с угловым способом отбора давления; 3051CD	±0,1 % диапазона измерений	HID2030SK	CC/CU- PAIH02	±0,15 % диапазона преобразований		

ИК перепада давлений на сужающем устройстве	от 0 до 24,52 кПа (шкала от 0 до 32 м³/ч) от 0 до 37,15 кПа (шкала от 0 до 25 м³/ч) от 0 до 41,49 кПа (шкала от 0 до 2,5 м³/ч)	±0,2 % диапазона измерений	Стандартная диафрагма по ГОСТ 8.586.2 с угловым способом отбора давления; ЕЈХ 110A	±0,075 % диапазона измерений	HID2030SK	CC/CU- PAIH02	±0,15 % диапазона преобразований
	от 20 до 100 кПа (шкала от 0 % до 100 %)	±0,2 % диапазона измерений	3051TG (от 4 до 20 мА)	±0,075 % диапазона измерений			
	от 0 до 1000 мм от 0 до 2000 мм (шкала от 0 % до 100 %)	±0,3 % диапазона измерений	244 LD (от 4 до 20 мА)	±0,2 % диапазона измерений	HID2030SK	CC/CU- PAIH02	
	от 0 до 5860 мм (шкала от 0% до 100 %)	±9 мм	Micropilot FMR240 (от 4 до 20 мА)	±3 мм			±0,15 % диапазона преобразований
ИК уровня	от 0 до 5890 мм (шкала от 0% до 100 %)	±9 мм					
	от 0 до 8750 мм (шкала от 0% до 100 %)	±12,5 мм		±3 MM			
	от 0 до 8760 мм (шкала от 0% до 100 %)	±12,5 мм					
	от 0 до 1522 мм (шкала от 0 % до 100 %)	±0,25 % диапазона измерений	Levelflex FMP54 (от 4 до 20 мА)	±0,15 % диапазона измерений			

	от 20 до 100 кПа (шкала от 0 % до 100 %) от 0 до 2000 мм	±0,15 % диапазона измерений ±0,25 %	3051TG (от 4 до 20 мА) 244 LD	±0,075 % диапазона измерений ±0,2 %			
	(шкала от 0 % до 100 %)	диапазона измерений	(от 4 до 20 мA)	диапазона измерений			
ИК уровня	от 0 до 4130 мм (шкала от 0 % до 100 %)	±4,5 мм	Micropilot FMR240	I.S.1 9461		9461	±0,075 % диапазона преобразований
	от 0 до 4940 мм (шкала от 0 % до 100 %)	±5 мм	(от 4 до 20 мА)	±3 мм			
	от 0 до 1542 мм (шкала от 0 % до 100 %)	±0,2 % диапазона измерений	Levelflex FMP54 (от 4 до 20 мА)	±0,15 % диапазона измерений			
ИК нижнего концентра- ционного предела распрос- транения (далее — НКПР)	от 0 % до 100 % НКПР (СН4)	±5,5 % НКПР ¹⁾ ±11 % измеряемой величины ²⁾	POLYTRON PEX300 (от 4 до 20 мА)	±5 % НКПР ¹⁾ ±10 % измеряемой величины ²⁾	HID2030SK	CC/CU- PAIH02	±0,15 % диапазона преобразований

	от 0 до 8,7 кг/ч от 0 до 8,7 кг/ч от 0 до 855 кг/ч	см. приме- чание 1 см. приме- чание 1	Micro Motion FI700 (от 4 до 20 мА) Micro Motion FI700 (от 4 до 20 мА)	±0,5 % измеряемой величины ±0,2 % измеряемой			
	от 0 до 500 кг/ч от 0 до 4000 кг/ч	см. приме- чание 1	Micro Motion F2700 (от 4 до 20 мА)	величины ±0,2 % измеряемой величины			
ИК массового расхода	от 0 до 60 кг/ч	см. приме- чание 1	YEWFLO DY015 (от 4 до 20 мА)	$\pm 0,75$ % измеряемой величины для жидкости с Re ≥ 20000 ; $\pm 1,0$ % измеряемой величины для жидкости с $30000 > \text{Re} \geq 20000$ $\pm 1,0$ % измеряемой величины для газа и пара при V ≤ 35 м/с; $\pm 1,5$ % измеряемой величины для газа и пара при $1,0$ % измеряемой величины для газа и пара при $1,0$ % измеряемой величины для газа и пара при $1,0$ % м/с $1,0$ % измеряемой величины для газа и пара при $1,0$ % м/с $1,0$ % измеряемой величины для газа и пара при $1,0$ % м/с	HID2030SK	CC/CU- PAIH02	±0,15 % диапазона преобразований

<u></u>			y
ИК массового расхода	от 0 до 500 кг/ч от 0 до 900 кг/ч от 0 до 2000 кг/ч от 0 до 3200 кг/ч	см. приме- чание 1	8800DF (от 4 до 20 мА)

±0,65 % измеряемой величины для жидкости с Re ≥ 20000; ±1,0 % измеряемой величины для газа и пара с Re ≥ 15000; ±2,0 % измеряемой величины для жидкости, газа и пара с 20000 (15000) > > Re ≥ 10000; ±6,0 % измеряемой величины для жидкости, газа и пара с 20000; тогрешность преобразования расхода в токовый выходной сигнал ±0,025 % диапазона	HID2030SK	CC/CU- PAIH02	±0,15 % диапазона преобразований
диапазона преобразования			

ИК массового расхода	от 0 до 485 кг/ч от 0 до 2000 кг/ч	см. приме- чание 1	8800DF (от 4 до 20 мА)

±0,65 % измеряемой		,
величины для жидкости		
c Re ≥ 20000;		
±1,0 % измеряемой		
величины для газа и		
пара с Re ≥ 15000;	•	
±2,0 % измеряемой		
величины для жидкости,		
газа и пара		
c 20000 (15000) >		±0,075 %
$> \text{Re} \ge 10000;$	I.S.1 9461	диапазона
		преобразований
±6,0 % измеряемой		
величины для жидкости,		
газа и пара		
c $10000 > \text{Re} \ge 5000$;		
, _ !		
погрешность		
преобразования расхода		
в токовый выходной		
сигнал ±0,025 %		
диапазона		
преобразования		

ИК объемного расхода	от 0 до 12,5 м ³ /ч от 0 до 25 м ³ /ч от 0 до 63 м ³ /ч	см. приме- чание 1	8800DF (от 4 до 20 мА)	±0,65 % измеряемой величины для жидкости с Re ≥ 20000; ±1,0 % измеряемой величины для газа и пара с Re ≥ 15000; ±2,0 % измеряемой величины для жидкости, газа и пара с 20000 (15000) > > Re ≥ 10000; ±6,0 % измеряемой величины для жидкости, газа и пара с 10000 > Re ≥ 5000; погрешность преобразования расхода в токовый выходной сигнал ±0,025 % диапазона преобразования	HID2030SK	CC/CU- PAIH02	±0,15 % диапазона преобразований
	от 0 до 25 м ³ /ч от 0 до 40 м ³ /ч от 0 до 1500 м ³ /ч	см. приме- чание 1	Micro Motion F2700 (от 4 до 20 мА)	±0,15 % измеряемой величины			

ИК объемного расхода	от 0 до 1,6 м ³ /ч от 0 до 2,5 м ³ /ч от 0 до 16 м ³ /ч	см. приме- чание 1	8800DR (от 4 до 20 мА)	±1,0 % измеряемой величины для жидкости с Re ≥ 20000; ±1,35 % измеряемой величины для газа и пара с Re ≥ 15000; ±2,0 % измеряемой величины для жидкости, газа и пара с 20000 (15000) > > Re ≥ 10000; ±6,0 % измеряемой величины для жидкости, газа и пара с 10000 > Re ≥ 5000; погрешность преобразования расхода в токовый выходной сигнал ±0,025 % диапазона преобразования	HID2030SK	CC/CU- PAIH02	±0,15 % диапазона преобразований
	от 0 до 25 м ³ /ч от 0 до 32 м ³ /ч	см. приме- чание 1	Promass 83I (от 4 до 20 мА)	±0,1 % измеряемой величины			

ИК	от 0 до 65 м ³ /ч от 0 до 1320 м ³ /ч	см. приме- чание 1	YEWFLO DY050 (от 4 до 20 мА)	$\pm 0,75$ % измеряемой величины для жидкости с Re ≥ 50000 ; $\pm 1,0$ % измеряемой величины для жидкости с $50000 > \text{Re} \geq 20000$ $\pm 1,0$ % измеряемой величины для газа и пара при V ≤ 35 м/с; $\pm 1,5$ % измеряемой величины для газа и пара при 35 м/с $\leq V \leq 80$ м/с	HID2030SK	CC/CU-	±0,15 %
расхода	от 0 до 70,06 м ³ /ч	см. приме- чание 1	YEWFLO DY080 (от 4 до 20 мА)	$\pm 0,75$ % измеряемой величины для жидкости с Re ≥ 80000 ; $\pm 1,0$ % измеряемой величины для жидкости с $80000 > \text{Re} \geq 20000$ $\pm 1,0$ % измеряемой величины для газа и пара при V ≤ 35 м/с; $\pm 1,5$ % измеряемой величины для газа и пара при 35 м/с $\leq V \leq 80$ м/с	HID2030SK	PAIH02	преобразований

ИК	от 0 до 400 м ³ /ч	см. приме- чание 1	Prosonic F 93P (от 4 до 20 мА)	±(0,5+0,02×v _{max} /v) % измеряемой величины при поверке на заводе- изготовителе и в эксплуатации после калибровки на месте монтажа; ±(2,0+0,02×v _{max} /v) % измеряемой величины при монтаже на месте эксплуатации и после беспроливной поверки		CC/CU-	±0,15 %
объемного расхода	от 0 до 400 м ³ /ч	±0,065 м³/ч в диапазоне расходов от 0 м³/ч до 16,2 м³/ч ±0,8 % измеряемой величины в диапазоне расходов от 16,2 м³/ч до 400 м³/ч	ADMAG AXF200 (от 4 до 20 мА)	±0,054 м³/ч в диапазоне расходов от 0 м³/ч до 16,2 м³/ч ±0,5 % измеряемой величины в диапазоне расходов от 16,2 м³/ч до 400 м³/ч	HID2030SK	PAIH02	преобразований

ИК объемного от 0 до 2500 расхода) м ³ /ч см. прим чание	ме- 1 (от 4 до 20 мА)

I	±0,65 % измеряемой		
-	величины для жидкости		
	c Re ≥ 20000;		
	±1,0 % измеряемой		
	величины для газа и		
	пара с Re ≥ 15000;		
1			
	±2,0 % измеряемой		
	величины для жидкости,		
	газа и пара		
	c 20000 (15000) >		±0,075 %
١	$> \text{Re} \ge 10000;$	I.S.1 9461	диапазона
			преобразований
	±6,0 % измеряемой		
	величины для жидкости,		
	величины для жидкости, газа и пара		
	•		
	газа и пара		
	газа и пара		
	газа и пара c 10000 > Re ≥ 5000;		
	газа и пара с 10000 > Re ≥ 5000; погрешность		
	газа и пара с 10000 > Re ≥ 5000; погрешность преобразования расхода		
	газа и пара с 10000 > Re ≥ 5000; погрешность преобразования расхода в токовый выходной		

						T
1	2	1 1	A	,		
	,	1 1	4	1 1	6	1 7
_		J J		J	1	, ,
				<u> </u>	<u> </u>	

- * Значения пределов допускаемой основной погрешности измерительных модулей ввода-вывода ExperionPKS нормированы с учетом пределов допускаемой основной погрешности промежуточного преобразователя (барьера искрозащиты).
 - і) В диапазоне измерений от 0 % до 50 % НКПР.
 - 2) В лиапазоне измерений от 50 % до 100 % НКПР.

Примечания

І Указанные значения погрешностей рассчитаны для нижней границы диапазона измерений. Погрешности для других значений диапазона могут отличаться от указанных и рассчитываются по формуле

$$\delta_{\text{MK}} = \pm 1, 1 \sqrt{\left(\delta_{\Pi\Pi}\right)^2 + \left(\frac{\gamma_{B\Pi}}{I_{_{\text{M3M}}} - I_{_{\text{min}}}} \cdot (I_{_{\text{max}}} - I_{_{\text{min}}})\right)^2} ,$$

где δ_{mn}

- основная относительная погрешность первичного ИП ИК, %;

 $\delta_{\text{пп}}$ — основная относительная погрешность первичного ИП ИК, %; $\gamma_{\text{вп}}$ — основная приведенная погрешность вторичного ИП ИК, %; $I_{\text{изм}}$, I_{max} , I_{min} — измеряемое, максимальное и минимальное значения преобразования токового сигнала вторичного ИП, мА, соответствующие измеряемому, максимальному и минимальному значениям шкалы преобразования определяемого параметра,

- 2|t| измеренное значение температуры, °С.
- 3 Для расчета погрешности ИК в условиях эксплуатации:
- приводят форму представления основных и дополнительных погрешностей измерительных компонентов ИК к единому виду (приведенная, относительная, абсолютная);
- для каждого измерительного компонента ИК рассчитывают пределы допускаемых значений погрешности в условиях эксплуатации путем учета основной и дополнительных погрешностей от влияющих факторов.

Пределы допускаемых значений погрешности Δ_{CH} измерительного компонента ИК в условиях эксплуатации вычисляют по формуле

$$\Delta_{\text{CM}} = \pm \sqrt{\Delta_0^2 + \sum_{i=0}^n \Delta_i^2} ,$$

- пределы допускаемых значений основной погрешности измерительного компонента;

- пределы допускаемой дополнительной погрешности измерительного компонента от і-го влияющего фактора в условиях эксплуатации при общем числе п учитываемых влияющих факторов.

Для каждого ИК рассчитывают границы, в которых с вероятностью равной 0,95 должна находится его погрешность $\Delta_{\rm UK}$, в условиях эксплуатации по формуле

$$\Delta_{\text{MK}} = \pm 1, 1 \cdot \sqrt{\sum_{j=0}^{k} (\Delta_{\text{CMj}})^2} .$$