Федеральное государственное унитарное предприятие Всероссийский научно-исследовательский институт метрологической службы (ФГУП «ВНИИМС»)

УТВЕРЖДАЮ

Зам. директора по качеству ФГУП «ВНИИМС»

Н.В. Иванникова

06" 07

2016 г.

Система измерительная автоматизированная диспетчерского контроля и управления АСДКУ ВСВ - расход воды. Методика поверки

BCB.001.1.2016 MΠ

1.p.65193-16

СОДЕРЖАНИЕ

1 ОБЩИЕ ПОЛОЖЕНИЯ И ОБЛАСТЬ РАСПРОСТРАНЕНИЯ	3
2 ОПЕРАЦИИ ПОВЕРКИ	3
3 СРЕДСТВА ПОВЕРКИ	4
4 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ	4
5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ	4
6 УСЛОВИЯ ПОВЕРКИ И ПОДГОТОВКА К НЕЙ	4
7 ПРОВЕДЕНИЕ ПОВЕРКИ	5
7.1 Внешний осмотр	5
7.2 Опробование	5
7.3 Проверка основной погрешности ИК системы	5
7.4 Подтверждение соответствия программного обеспечения системы	5
8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ	6
ПРИЛОЖЕНИЕ А Метрологические характеристики ИК системы	7

1 ОБШИЕ ПОЛОЖЕНИЯ И ОБЛАСТЬ РАСПРОСТРАНЕНИЯ

Настоящий документ распространяется на измерительные каналы (далее - ИК) Система измерительная автоматизированная диспетчерского контроля и управления АСДКУ — расход воды Восточной станции водоподготовки (ВСВ) АО «Мосводоканал», и устанавливает требования к методике их первичной и периодической поверок (для ИК, используемых в сферах государственного регулирования обеспечения единства измерений).

Система измерительная автоматизированная диспетчерского контроля и управления АСДКУ — расход воды Восточной станции водоподготовки (ВСВ) АО «Мосводоканал» (далее АСДКУ ВСВ) предназначена для непрерывного измерения и контроля расхода воды и накопленного объема воды по водоводам 1 и 2 подъемов Восточной станции водоподготовки и на водопроводных вводах на поселок Восточный.

Допускается проводить поверку отдельных ИК системы на основании письменного заявления владельца системы, составленного в произвольной форме, в адрес аккредитованного юридического лица или индивидуального предпринимателя, с обязательным указанием в свидетельстве о поверке информации об объеме проведенной поверки.

Интервал между поверками – 4 года.

АСДКУ ВСВ представляет собой многоуровневую систему:

- 1-й уровень измерительный компонент ИК: первичные измерительные преобразователи (датчики) технологических параметров, преобразующие измеряемую физическую величину в цифровой сигнал;
- 2-й уровень шкафы учета расхода воды, осуществляющие прием и конвертирование сигналов с расходомеров,
- 3-й уровень комплексный компонент ИК: SCADA-сервер, осуществляющий опрос расходомеров и передачу информации в SQL-сервер для архивирования и хранения, а также автоматизированное рабочее место (APM) оператора, включающее персональный компьютер (ПК) для визуализации технологических параметров, выполнения расчетов, ведения протоколов, архивации данных, обработки измерительной информации.

2 ОПЕРАЦИИ ПОВЕРКИ

Перечень операций, которые выполняют при поверке ИК, приведен в таблице 1.

Таблица 1

Наименование операции	Обязательность проведения при поверке		настоящей	
	первичной	периодической	рекомендации	
1 Внешний осмотр	Да	Да	7.1	
2 Опробование	Да	Да	7.2	
3 Проверка основной погрешности ИК системы	Да	Да	7.3	
4 Подтверждение соответствия программного обеспечения системы	Да	Да	7.4	

3 СРЕДСТВА ПОВЕРКИ

3.1 Средства поверки расходомеров-счетчиков УРС 002В приведены в документе «ГСИ. Расходомеры - счетчики УРС 002В. Методика поверки. АРМИ 002 003.00 МП»;

4 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

4.1 К поверке ИК допускают лиц, освоивших работу с системой и используемыми эталонами, изучивших настоящую рекомендацию, аттестованных в соответствии действующими нормативными документами.

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

При проведении поверки необходимо соблюдать требования безопасности, предусмотренные «Правилами технической эксплуатации электроустановок потребителей и правилами техники безопасности при эксплуатации электроустановок потребителей» (изд. 3), ГОСТ 12.2.007.0-75, ГОСТ 12.1.019-80, ГОСТ 22261-94, указаниями по безопасности, изложенными в руководстве по эксплуатации на систему, применяемые эталоны и вспомогательное оборудование.

6 УСЛОВИЯ ПОВЕРКИ И ПОДГОТОВКА К НЕЙ

- 6.1 Перед началом поверки поверитель должен изучить руководство по эксплуатации поверяемой системы, эталонов и других технических средств, используемых при поверке, настоящую методику поверки, правила техники безопасности и строго их соблюдать.
- 6.2 Перед экспериментальной проверкой погрешности ИК все измерительные компоненты, используемые эталоны и вспомогательные технические средства должны быть подготовлены к работе в соответствии с указаниями эксплуатационной документации на эти средства измерений.
- 6.3 При поверке в рабочих условиях ИК значения влияющих величин, оказывающих существенное влияние на погрешность измерительных компонентов систем подлежат экспериментальному определению непосредственно перед проверкой погрешности ИК. Эти значения заносят в протокол и используют для расчета пределов допускаемых значений погрешности ИК в условиях поверки (п. 6.6), служащих критерием пригодности ИК.
- 6.4 Условия окружающей среды, сложившиеся на момент поверки ИК каждого измерительного компонента на месте эксплуатации не должны выходить за пределы рабочих условий применения, указанных в НД на соответствующие измерительные компоненты.
- 6.5 Обследование условий работы ИК системы и их измерительных компонентов проводится:
- при проведении первичной поверки на месте эксплуатации системы после монтажа и опытной эксплуатации,
- при периодической поверке, если условия поверки отдельных измерительных компонентов из состава ИК изменились настолько по сравнению с предыдущей поверкой, что эти изменения могут вызывать существенное изменение погрешности ИК (более чем на 20 %) по сравнению со значением, подтвержденным при предыдущей либо первичной поверке.

Проводится обследование климатических условий и сети питания в помещениях, где размещены измерительные компоненты ИК системы.

6.6 Если условия поверки не претерпели существенных изменений, в качестве предельно допускаемого значения погрешности ИК допускается использовать значение, рассчитанное при предыдущей поверке либо при первичной поверке.

При обнаружении заметных изменений условий эксплуатации измерительных

компонентов ИК по сравнению с первичной или предыдущей поверкой проводят уточняющее обследование условий работы измерительных компонентов ИК системы по п.6.5 и оценивают границу допускаемых значений погрешности канала в этих условиях.

Для каждого измерительного компонента ИК рассчитывают предел допускаемых значений погрешности в реальных условиях поверки (см. РД 50-453-84) путем учета основной и дополнительных погрешностей от влияющих факторов на момент поверки, оцененными в соответствии с п.6.3.

Предел допускаемых значений погрешности Δ_{cu} измерительного компонента в реальных условиях поверки вычисляют по формуле:

$$\Delta_{cu} = \Delta_o + \sum_{i=1...n} \Delta_i \tag{1}$$

где Δ_o - предел допускаемых значений основной погрешности измерительного компонента;

 Δ_i - предел допускаемой дополнительной погрешности измерительного компонента от i-го влияющего фактора в реальных условиях поверки при общем числе n учитываемых влияющих факторов.

6.7 Проверяют наличие следующих документов:

- перечня ИК, входящих в состав системы, подлежащих поверке, с указанием заводских номеров комплектующих их измерительных компонентов;
- эксплуатационной документация на измерительные компоненты в составе ИК и, при наличии, на систему в целом;
 - протоколов предыдущей поверки (при периодической поверке);
- протоколов измерений фактических значений, и границ их изменения, температуры, влажности воздуха, напряжения питания в помещениях, в которых размещены измерительные компоненты каналов;
 - свидетельства о поверке датчиков.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Внешний осмотр

При проведении внешнего осмотра должно быть установлено:

- комплектность системы,
- отсутствие механических повреждений, коррозии, нарушения покрытий, надписей, отсутствие других дефектов.

7.2 Опробование

При опробовании ИК системы проверяется:

- работоспособность каналов связи, комплексного компонента ИК, путем проверки количества отправленных и полученных пакетов данных в следующем формате: «Пакетов: **отправлено** = 4, **получено** = 4, **потеряно** = 0» с помощью утилиты **MB**E I/O Driver.
 - работоспособность программного обеспечения.

Опробование осуществляется путем вывода информации о расходах воды за заданный период по запросу на APM оператора с помощью специализированного ПО «Таблицы и графики».

Результаты опробования считаются положительными, если ИК системы функционируют в соответствии с эксплуатационной документацией.

7.3 Проверка основной погрешности ИК системы

Поверку ИК системы проводят расчетно-экспериментальным методом: условно делят канал на первичную (датчик) и вторичную (от «точки» подключения датчика до места

отображения информации о значении измеряемого физического параметра) части.

Первичные преобразователи (датчики), используемые в системе, внесены в Госреестр средств измерений и имеют методики поверки, по которым они могут быть поверены в установленном порядке в нормальных условиях применения.

Проверка вторичной части считается положительной, если результаты опробования по п.7.2 настоящей методики поверки, положительные.

7.4 Подтверждение соответствия программного обеспечения

Проводят проверку идентификационных данных программного обеспечения на соответствие таблице 2, путем вызова окна «справка».

Таблица 2 – Идентификационные данные ПО АСДКУ

Наименование ПО	Идентификационное наименование ПО	Номер версии
SCADA	iFIX	7.0
ПО	«Таблицы и графики»	Не ниже 2.3

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

8.1 При положительных результатах поверки оформляют свидетельство о поверке системы согласно требованиям Приказа Министерства промышленности и торговли РФ № 1815 от 02.07.2015 г. с указанием ИК, прошедших поверку с положительным результатом.

8.2 Если результаты поверки какого-либо ИК отрицательны, на этот (эти) канал (-ы) выписывается свидетельство о непригодности и его (их) применение в сферах государственного регулирования обеспечения единства измерений, запрещается.

Зам. нач. отдела ФГУП «ВНИИМС»

Вед. инженер ФГУП «ВНИИМС»

И.Г. Средина

и.Каширкина

приложение а

Метрологические характеристики ИК системы

Диапазоны измерений расхода воды, м3/ч: от 200 до 10000 (для Ду=1200 мм); от 250 до 16000 (для Ду=1400 мм); от 6,0 до 600 (для Ду=200 мм, Ду=300 мм); Пределы допускаемой относительной погрешности ИК $\pm 1,5$ %.

Примечания:

Ду – диаметр условного прохода измерительного участка трубопровода, по которому протекает вода

погрешность ИК определяется погрешностью измерительного компонента ИК.