СОГЛАСОВАНО

Ŷ

7

Исполнительный директор ООО «ЕМТ»

УТВЕРЖДАЮ

Первый заместитель генерального директора – заместитель по научной работе ФГУП «ВНИИФТРИ»

А.Н. Щипунов « 04» OF 2016 г. М.п.

Инструкция

Модули измерительные KAD/ADC/136

Методика поверки 651-16-02 МП

n.p.65228-16

р.п. Менделеево 2016 г.

1 Основные положения

1.1 Настоящая методика поверки распространяется на модули измерительные KAD/ADC/136 (далее – модули), изготавливаемые фирмой «Curtiss-Wright Avionics & Electronics», Ирландия, и устанавливает порядок и средства их первичной и периодической поверок.

1.2 Интервал между поверками - 1 год.

2 Операции поверки

2.1 При проведении поверки должны проводиться операции поверки, указанные в таблице 1.

Таблица	1	Операции поверки
---------	---	------------------

		Проведение операции при		
Наименование операции	Номер пункта	первичной по-	периодической	
	методики поверки	верке	поверке	
1.D		(после ремонта)		
1 Внешний осмотр	7.1	да	да	
2 Опробование	7.2	да	да	
3 Идентификация программного обес-	72			
печения	7.5	да	да	
4 Определение метрологических ха-	7.4			
рактеристик	7.4	да	да	
5 Определение приведенной погреш-				
ности измерений напряжения посто-	7.4.1	да	ла	
янного тока			<u> </u>	
6 Определение абсолютной погрешно-				
сти измерений температуры при под-				
ключении термоэлектрических преоб-	7.4.2	да	да	
разователей (термопар типа К)				
7 Определение абсолютной погрешно-				
сти измерений температуры при под-				
ключении термопреобразователей со-	7.4.3	да	да	
противления (РТ100)				
8 Определение приведенной погреш-			······	
ности воспроизведения напряжения	744	па	що	
постоянного тока		да	Да	
9 Определение приведенной погреш-				
ности воспроизведения силы постоян-	745	па	70	
ного тока (тока возбужления)	/ 1.5	Да	Да	
10 Определение приведенной погреш-				
ности воспроизведения силы постоян-	746	па	ПО	
ного тока (тока балансировки)		да	Да	

2.2 Первичную поверку проводить в полном объеме для всех каналов модулей.

2.3 Периодическую поверку допускается проводить для тех каналов, и в тех режимах и диапазонах, которые используются при эксплуатации, по соответствующим пунктам насто-ящей методики.

При этом, соответствующая запись должна быть сделана в эксплуатационных документах и свидетельстве о поверке (при его наличии) на основании решения эксплуатанта.

3 Средства поверки

3.1 Рекомендуемые средства поверки приведены в таблице 2. Допускается применение других средств поверки других средств поверки, обеспечивающих определение метрологических характеристик поверяемых средств измерений с требуемой точностью.

3.2 Все средства поверки должны быть исправны, применяемые при поверке средства измерений и рабочие эталоны должны быть поверены и иметь свидетельства о поверке или оттиск поверительного клейма с неистекшим сроком действия.

T.6	5	
гаолица	- 2	

1	TY	
	Номер пункта	Наименование рабочих эталонов или вспомогательных средств поверки; но-
	методики	мер документа, регламентирующего технические требования к рабочим эта-
		лонам или вспомогательным средствам; разряд по государственной повероч-
		ной схеме и (или) метрологические и основные технические характеристики
		средств поверки
	7.2, 7.4.4,	Источник питания постоянного тока Б5-75, диапазон стабилизированного
1	7.4.5, 7.4.6	напряжения на выходе (0-50) В, пределы допускаемой относительной по-
		грешности напряжения на выходе ± 0,05 %
	7.4.1, 7.4.2	Калибратор универсальный 9100, диапазон воспроизведения напряжения пе-
		ременного тока от 0 до 3,2 В, диапазон частот от 10 до 10·10 ³ Гц, пределы до-
l		пускаемой абсолютной погрешности воспроизведения
ł		$\pm (0,0004 \cdot U_{sbix} + 256 \text{ мкB}),$ где U_{sbix} – воспроизводимое значение напряжения
		переменного тока, В; диапазон воспроизведения напряжения постоянного то-
		ка от 0 до 3,20 В, пределы допускаемой абсолютной погрешности воспроиз-
ļ		ведения $\pm (0,00006 \cdot U_{sbix} + 41,6 \text{ мкB})$, где U_{sbix} – воспроизводимое значение
L		напряжения постоянного тока, В
	7.4.3, 7.4.4,	Магазин сопротивления Р4831-М1, диапазон воспроизведения сопротивления
	7.4.5, 7.4.6	постоянному току от 0 до 99999,9 Ом, класс точности 0,1/5·10 ⁻⁶
	7.4.2, 7.4.3,	Мультиметр цифровой Fluke 8846А, пределы допускаемой абсолютной по-
	7.4.4, 7.4.5,	грешности измерений напряжения постоянного тока: ±(0,005 % от ИВ +
	7.4.6	+ 0,35 мВ) в поддиапазоне 100 мВ, ±(0,004 % от ИВ + 0,0007 В) в поддиапа-
		зоне 1 В, ±(0,0035 % от ИВ + 0,005 В) в поддиапазоне 10 В, ±(0,0045 % от ИВ
		+ 0,06 мВ) в поддиапазоне 100 В; пределы допускаемой абсолютной погреш-
	9	ности измерений силы постоянного тока: ±(0,05 % от ИВ + 0,5 мкА) в под-
		диапазоне 100 мкА, ±(0,05 % от ИВ + 0,005 мА) в поддиапазоне 1 мА.
		±(0,05 % от ИВ + 0,2 мА) в поддиапазоне 10 мА, ±(0,05 % от ИВ + 0,5 мА) в
		поддиапазоне 100 мА; пределы допускаемой абсолютной погрешности изме-
		рений сопротивления постоянному току: ±(0,01 % от ИВ + 0,4 Ом) в поллиа-
		пазоне 100 Ом, ±(0,01 % от ИВ + 0,001 кОм) в поддиапазоне 1 кОм. гле
		ИВ – измеряемая величина

4 Требования безопасности при поверке

4.1 При проведении поверки должны быть соблюдены меры безопасности, указанные в соответствующих разделах эксплуатационной документации средств измерений, используемых при поверке.

4.2 К проведению поверки модулей допускается инженерно-технический персонал со среднетехническим или высшим образованием, ознакомленный с руководством по эксплуатации (РЭ) и документацией по поверке, допущенный к работе с электроустановками и имеющие право на поверку (аттестованными в качестве поверителей).

5 Условия поверки

5.1 Поверку проводить при следующих условиях:

- температура окружающего воздуха, °С
- относительная влажность воздуха, %
- атмосферное давление, мм рт. ст.
- напряжение питания, В

- частота, Гц

6 Подготовка к поверке

6.1 Поверитель должен изучить РЭ поверяемого модуля и используемых средств поверки.

6.2 Поверяемый модуль должен быть выдержан в помещении, где проводится поверка, не менее 2-х часов.

7 Проведение поверки

7.1 Внешний осмотр

При проведении внешнего осмотра проверяется:

- отсутствие внешних механических повреждений;

- исправность и чистота коаксиальных разъёмов.

Результаты поверки считать положительными, если отсутствуют внешние механические повреждения; разъёмы исправны и отсутствует их загрязнение.

Модули, имеющие дефекты бракуются и направляются в ремонт.

7.2 Опробование

7.2.1 Подготовить модуль к работе:

- установить модуль в блок базовый;

- подключить блок базовый к источнику питания постоянного тока Б5-75;

- подключить блок базовый к ПЭВМ (требования к ПЭВМ приведены в таблице 3) при помощи двух кабелей, подключенных последовательно (CON/DEC/001/B/00 и ACC/ASY/022/00);

Таблица 3 – Требования к ПЭВМ

Операционная система	Windows 2000 SP4 или Windows XP SP3
Процессор	2.8GHz Intel Pentium 4
Доступная память жесткого диска, GB, не	80
менее	
Оперативная память, МВ, не менее	1024
Дополнительные устройства	клавиатура, мышь, монитор
Разрешение экрана, не менее	1024 x 768

- запустить приложение «kDiscover» из состава ПО KSM-500, при этом на экране монитора должно появиться окно, приведенное на рисунке 1;

20 ± 5; от 45 до 80; от 626 до 795; от 215 до 225; от 49,5 до 50,5.

eport File	C.\ACRA\kDiscover\Report.htm	Configuration Lir	k		
Naming Convention (* Long (* Short		C Ethernet IP Address			
	annannan ann a chuir a' ann an ann ann an ann ann an ann ann	Verbosity	High		
		CmdML File	C:\ACRA\kDiscover\CmdML\kDiscover		
		Display Next Time	All 🗸		

Рисунок 1 – Окно программы kDiscover из состава ПО KSM-500

- в строке Report File открывшегося окна указать имя генерируемого файла с отчетом. После имени файла указать расширение файла «.html». По завершении ввода информации нажать кнопку ОК;

- после окончания работы программы открыть составленный программой файл и произвести идентификацию подключенного модуля (файл «.html», в котором указаны все подключенные модули (серийный номер, наименование модуля, включающее в себя информацию о версии прошивки модуля) в системной установке КАМ-500);

- запустить приложение «kWorkbench» из состава ПО KSM-500;

7.2.2 Убедиться в возможности установки режимов работы модуля:

- используя приложение «kWorkbench» установить режим работы модуля в программе "kSetup". Открыть файл с настройками системы. Выбрать соответствующий модуль ADC/135 в структуре модулей. Открыть окно для настройки параметров измерительных каналов модуля: входной диапазон, частоту дискретизации АЦП, частоту среза фильтров и название параметра для каждого канала модуля (рисунок 2).

Chassi KAM/I	s CHS/	<u>'13U</u>	Slot 9	Mox KAI	luie D/ADC/13	5	Serial Nur	nber]				
Chan	nel	Parameter Name	Ma	«(V)	Min(V)	Filter Mode	Filter Cut Off	Excitation Mode	Excitation Amplitude	Balance Applied (A)	Half Bridge Completion Resistors	Packages	Comment
	•	× •		•	* •	*	v . v		▼ × ▼	· · · ·	× v	· •	× v
I		ADC135_0_J9_Ch0	2.5		-2.5	liR	Fs/4	Voltage(V)	0.5	0	Disabled	None	
		ADC135_0_J9_Ch1	25		-2.5	IIR	Fs/4	Voltage(V)	0.5	0	Disabled	None	
		ADC135_0_J9_Ch2	25		-2.5	IIR	Fs/4	Voltage(V)	0.5	0	Disabled	None	
		ADC135_0_J9_Ch3	2.5		-2.5	II R	Fs/4	Voltage(V)	0.5	æ	Disabled	None	
		ADC135_0_J9_Ch4	2.5		-2.5	IIR	Fs/4	Voltage(V)	0.5	0	Disabled	None	
		ADC135_0_J9_Ch5	2.5		-2.5	IIR	Fs/4	Voltage(V)	0.5	0	Disabled	None	
		ADC135_0_J9_Ch6	2.5		-2.5	IIR	Fs/4	Voltage(V)	05	0	Disabled	None	
		ADC135_0_J9_Ch7	2.5		-2.5	IIR	Fs/4	Voltage(V)	0.5	0	Disabled	None	
		ADC135_0_J9_Ch8	2.5		2.5	IIR	Fs/4	Voltage(V)	0.5	0	Disabled	None	
		ADC135_0_J9_Ch9	2.5		2.5	IIR	Fs/4	Voltage(V)	0.5	0	Disabled	None	
)		ADC135_0_J9_Ch10	2.5		2.5	IIR	F\$/4	Voltage[V]	0.5	0	Disabled	None	
		ADC135_0_J9_Ch11	2.5		2.5	lir	Fs/4	Voltage(V)	0.5	0	Disabled	None	

Внимание! При настройке параметров рекомендуется выбирать их наименования длиною не более 20 латинских символов, без пробелов, без выделения жирным шрифтом или курсивом, без следующих пяти символов ", /, >, <, \.

- настройка параметров измерительных каналов модуля производится в соответствии с таблицей 4;

.

Настраиваемые	Допустимые зна-	По умолчанию/	Примечания
параметры	чения	пример	1
Имя	ACRA	ACRA	Имя изготовителя
	CONTROL	CONTROL	
Настройки	-	-	-
Analog(11:0)	-	-	Настройка измерительных
			каналов и каналов воспроиз-
			ведения
«Filter Mode»	IIR (БИХ –	IIR	Режим работы фильтра. Спе-
	фильтр с беско-		циальный режим работы
	нечной импульс-		фильтра для специального ка-
	ной характери-		нала. БИХ – БИХ-фильтр Бат-
	стикой)		терворта 8го порядка, КИХ –
	FIR (КИХ фильтр		окно Кайзера 15-го порядка
	с конечной им-		
	пульсной харак-		
	теристикой)		
«FilterCutoff»	0,25	0,25	Частота среза фильтра. Ис-
	0,5		пользуется цифровой фильтр
	1		с полосой пропускания по
	2		уровню минус 6 дБ от 0,25 · fд
			до 16 fд, (fд – частота дискре-
1 -	0		тизации). В случае увеличе-
	0		ния частоты дискретизации
	16		более 0,25 fд уменьшается за-
			держка фильтра, но метроло-
			гические характеристики не
			гарантируются
«Excitation Mode»	Voltage	Voltage	Режим воспроизведения
	Current		напряжения/силы постоянно-
			го тока (тока возбуждения)
"Excitation	or 10 ro 5 1 V	101/	
Amplitude	011,0403,17	1,0 V	Установка воспроизводимого
Ampiltude»	010 <u>d</u> 0 30.10 A		значения напряжения/силы
			постоянного тока (тока воз-
			буждения). Возбуждение
			симметричное (5В на входе
"Rolongo Tymow	Common 4 Classica	0 (01)	соответствует 10В моста)
«Dalance. Type»	CurrentShunt	CurrentShunt	Гип балансировки
«Balance Applied»	от минус 100·10 ⁻⁶	0 A	Установка воспроизводимого
	до 100·10 ⁻⁰ А		значения силы постоянного
*			тока (тока балансировки)
«Max(v)»	ОТ МИНУС 2 5 ПО	25	Donyugg merere
	2 5	2,3	верхняя граница диапазона
«Min(v)»	от минус 2.5 по	MILLING 2.5	измерении напряжения
	2.5	Miriny C2,3	нижняя граница диапазона
			пэмерении напояжения

Таблица 4 – Настройка параметров измерительных каналов модуля

ń,

- установка коэффициента усиления производится путем установки диапазона измерений АЦП каждого измерительного канала в колонках Max(v) и Min(v) (рисунок 2) в соответствии с таблицей 5.

Max (v), B	Min (v), B	Коэффициент усиления (Gain)
2,5	-2,5	1
1,25	-1,25	2
0,625	-0,625	4
0,3125	-0,3125	8
0,15625	-0,15625	16
0,078125	-0,078125	32
0,0390625	-0,0390625	64
0,01953125	-0,01953125	128

Таблица 5

- используя приложение «kWorkbench» проверить правильность установки режимов работы (правильность конфигурации файла XidML), нажав кнопку "Program".

7.2.3 Результаты опробования считать положительными, если модуль идентифицирован программным обеспечением и после установки режимов работы модулей программным обеспечением не выявлено ошибок.

В противном случае – модули признаются непригодными к применению.

7.3 Идентификация программного обеспечения

7.3.1 Для проведения идентификации необходимо на ПЭВМ запустить программное обеспечение (ПО) в соответствии с РЭ на него, ознакомиться с отображением на дисплее.

7.3.2 Результаты поверки считать положительным, если:

- идентификационное название и версия ПО, отображаемые в главном окне программы соответствуют данным приведенным в таблице 6;

- ПО осуществляет функции, указанные в эксплуатационной документации.

Таблица 6

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	Программа управления и настройки KSM-500 (или DAS Studio 3)
Номер версии (идентификационный номер) ПО	KSM-500.1.14 и выше или DAS Studio 3
Цифровой идентификатор ПО (контрольная сумма ис- полняемого кода)	-

В противном случае – модули признаются непригодными к применению.

7.4 Определение метрологических характеристик

7.4.1 Определение приведенной погрешности измерений напряжения постоянного тока проводить в следующей последовательности:

- собрать схему, представленную на рисунке 3

1 – ПЭВМ;

2 – блок базовый КАМ/CHS с установленным управляющим модулем и установленным модулем КАD/ADC/136;

3 - коммутационная плата JIG/UNI/001/C/00/VA3005;

4 – калибратор универсальный 9100;

5 – источник питания постоянного тока Б5-75

Рисунок 3

- установить на калибраторе универсальном 9100 значение напряжения постоянного тока минус 10 В;

- рассчитать измеренные значения напряжения по формуле (1):

$$\mathbf{U}_{\mathbf{i}} = \frac{\mathbf{k}_{\mathbf{i}} \Delta \mathbf{U}}{\mathbf{65536}} - \frac{\Delta \mathbf{U}}{2}, \mathbf{B} \qquad , \qquad (1)$$

где $\Delta U = 20$ В;

k_i – цифровой код значения, измеренного *i*-м измерительным каналом;

 ΔU – диапазон измерений напряжения;

65536 – максимальное число отсчётов.

- определить значение приведенной погрешности измерений напряжения по формуле

(2):

$$\delta = \frac{U_{u_{3M}} - U_{\kappa a \pi u \delta p}}{20} \cdot 100\% \quad , \qquad (2)$$

где U_{изм} - значение напряжения постоянного тока, измеренное модулем (B).

U_{калибр}, - значения силы постоянного тока установленное на калибраторе (В). Данные измерений и расчетов занести в таблицу 7.

- последовательно подавая с калибратора напряжение постоянного тока в соответствии с таблицей 7 повторить предыдущие операции. Таблица 7

 Значение напряжения,, установленное на калибраторе, В
 Значение напряженияка, измеренная погрешность измерений напряжения, %

 минус 10
 измерений напряжения, %

 минус 5
 измерений напряжения, %

 плюс5
 плюс 10

Результаты поверки считать положительными, если значения приведенной погрешности измерений напряжения постоянного тока находятся в пределах ±0,08 %.

В противном случае модули признаются непригодными к применению.

7.4.2 Определение абсолютной погрешности измерений температуры при подключении термоэлектрических преобразователей (термопар типа К) проводить в следующей последовательности:

- собрать схему, представленную на рисунке 4. Установить на модуле диапазон выходного сигнала (0-20) мА, температуру холодного спая 0 °С;

Рисунок 4

- установить на модуле режим измерения температуры с помощью термоэлектрических преобразователей типа К;

- последовательно подавая с калибратора напряжение постоянного тока, соответствующее значениям температуры, в соответствии с таблицей 8 измерить силу тока l_{Bых} на выходе модуля с помощью мультиметра;

Таблица 8

Температура, ⁰ С	Значение напряжения постоянного тока на выходе калибратора, соответствующее термо-ЭДС при температуре холодного спая 0 °С. мВ
минус 200	минус 5,891
минус 100	минус 3,554
100	4,096
200	8,138
400	16,397
600	24,905
800	33,275
1000	41,276
1200	48.938
1372	54,886

- определить температуру соответствующею выходному сигнала модуля по формуле (3):

$$t_{u_{3M}} = -200 + \frac{I_{Box}}{20} \cdot 1572 \tag{3}$$

- определить значение абсолютной погрешности измерения по формуле (4):

$$\mathbf{A} = t_{u_{3M}} - t_{Mepbi} \tag{4}$$

где t_{изм} - значение температуры, измеренное модулем (°С). t_{меры},-значения температуры, эквивалентное напряжению постоянного тока (°С).

Результаты поверки считать положительными, если значения абсолютной погрешности измерений температуры при подключении термоэлектрических преобразователей (термопар типа К) в диапазоне от минус 50 до 150 °C не более 6 °C и в диапазоне от минус 200 до 1372 °C не более 7 °C.

В противном случае – модули признаются непригодными к применению.

9

7.4.3 Определение абсолютной погрешности измерений температуры при подключении термопреобразователей сопротивления (РТ100) проводить в следующей последовательности:

- собрать схему, представленную на рисунке 5

- установить на модуле режим измерения температуры с помощью термопреобразователей сопротивления Pt100 и диапазон выходного сигнала модуля (0-20) мА;

- сформировать, при помощи магазина сопротивления на входе измерительного модуля сопротивление постоянному току величиной 18,52 Ом, соответствующее температуре минус 200 °C;

- измерить силу тока на выходе модуля с помощью мультиметра. Определить температуру, соответствующую выходному сигналу модуля по формуле (5):

$$t_{u_{3M}} = -200 + \frac{I_{Bolx}}{20} \cdot 860 \quad , \quad (5)$$

- определить значение абсолютной погрешности измерения по формуле (6):

$$\Delta = t_{u_{3M}} - t_{Mepbi} , \qquad (6)$$

где t_{изм} - значение температуры, измеренное модулем (°C).

t_{меры} - значения температуры, эквивалентное сопротивлению, установленному на магазине сопротивлений (°С);

- последовательно устанавливая сопротивление магазина в соответствии с таблицей 9, повторить измерения и определить значения абсолютной погрешности;

Температура, ⁰ С	Эквивалентное сопротивление, Ом
минус 200	18,52
минус 100	60,26
0	100
100	138,51
200	175,86
400	247,09
600	313,71

Таблица 9

Результаты поверки считать положительными, если значения абсолютной погрешности измерений температуры, при подключении термопреобразователей сопротивления (PT100) в диапазоне от минус 200 до 660 °C не более 12 °C и в диапазоне от 0 до 200 °C не более 5 °C.

В противном случае – модули признаются непригодными к применению.

7.4.4 Определение приведённой погрешности воспроизведения напряжения постоянного тока проводить в следующей последовательности:

- собрать схему, представленную на рисунке 6

 $1 - \Pi \Im BM;$

2 – блок базовый КАМ/CHS с установленным управляющим модулем и установленным модулем КАD/ADC/136;

3 - магазин сопротивления Р4831-М1;

4 – источник питания постоянного тока Б5-75;

5 – мультиметр цифровой Fluke 8846А.

Рисунок 6 – Схема определения воспроизводимых значений напряжения/силы постоянного тока

- установить режим воспроизведения напряжения постоянного тока «Voltage» для каждого канала, используя настройки параметров каналов модуля согласно процедуре приведенной в п. 7.2;

- установить значение напряжения возбуждения 5,1 В (воспроизводимое напряжение 10,2 В) используя настройки параметров каналов модуля согласно процедуре, приведенной в п. 7.2.2;

- установить на мультиметре цифровом Fluke 8846А режим измерений напряжения постоянного тока;

- установить на магазине сопротивления P4831-M1 значение сопротивления нагрузки 350 Ом;

- провести измерения воспроизводимых значений напряжения постоянного тока канала воспроизведения напряжения постоянного тока между клеммами «EXCITATION(0)+» и «EXCITATION(0)-», в соответствии с разводкой выводов разъема каналов воспроизведения напряжения постоянного тока;

- повторить измерения для каналов 1-7, подключая их поочередно в соответствии с разводкой выводов разъема каналов воспроизведения напряжения постоянного тока;

- рассчитать приведенную погрешность воспроизведения напряжения постоянного тока для каждого канала по формуле (7), за нормирующее значение принять диапазон воспро-изводимых значений напряжения:

$$\delta = \frac{U_{\text{HOM}} - U_{\text{мультиметр}}}{10,2} \cdot 100\% \quad , \quad (7)$$

где U_{ном} - значение напряжения постоянного тока, воспроизводимое модулем (B).

U_{мультиметр} - значения напряжения постоянного тока, измеренное с помощью мультиметра (В).

- повторить измерения при значениях напряжения возбуждения каждого канала 2,5 В (воспроизведение напряжения 5 В) и 0,5 В (воспроизведение напряжения 1 В).

Результаты поверки считать положительными, если значения приведенной погрешности воспроизведения напряжения постоянного тока находятся в пределах ± 0,2 %.

В противном случае – модули признаются непригодными к применению.

7.4.5 Определение приведённой погрешности воспроизведения силы постоянного тока (тока возбуждения) проводить в следующей последовательности:

- установить режим воспроизведения напряжения постоянного тока «Current» для каждого канала, используя настройки параметров каналов модуля;

- установить воспроизводимое значение силы постоянного тока (тока возбуждения) каждого канала модуля равное 30 мА, используя настройки параметров каналов модуля;

- собрать схему, представленную на рисунке 6;

- установить на мультиметре цифровом Fluke 8846А режим измерений силы постоянного тока;

- установить на магазине сопротивления Р4831-М1 значение сопротивления 350 Ом;

- с помощью мультиметра цифрового Fluke 8846А провести измерения воспроизводимого значения силы постоянного тока между клеммами «EXCITATION(0)+» и «EXCITATION(0)-» каждого канала, в соответствии с разводкой выводов разъема каналов воспроизведения силы постоянного тока;

- повторить измерения для каналов 1-7, подключая их поочередно в соответствии с разводкой выводов разъема каналов воспроизведения силы постоянного тока (тока возбуждения);

- рассчитать приведенную погрешность воспроизведения силы постоянного тока (тока возбуждения) для каждого канала по формуле (8), за нормирующее значение принять диапазон воспроизводимых значений силы постоянного тока (тока возбуждения);

$$\gamma = \frac{I_{HOM} - I_{MYJDE MUMEMP}}{I_{HOPM}} \cdot 100\% \quad , \quad (8)$$

где 1_{ном} - значение силы постоянного тока, воспроизводимое модулем (B);

I_{мультиметр} - значения силы постоянного тока, измеренное с помощью мультиметра (В);

1_{норм} – нормированное значение силы постоянного тока.

- повторить измерения при значениях силы постоянного тока (тока возбуждения) модуля 2 мА и 0,5 мА.

Результаты поверки считать положительными, если значения приведенной погрешности воспроизведения силы постоянного тока (тока возбуждения), при значениях сопротивления нагрузки 350 Ом, находятся в пределах ±0,2 %.

В противном случае – модули признаются непригодными к применению.

7.4.6 Определение приведённой погрешности воспроизведения силы постоянного тока (тока балансировки) проводить в следующей последовательности:

- установить воспроизводимое значение силы постоянного тока (тока балансировки) в разделе «Balance Applied» каждого канала модуля равное 100 мкА, используя настройки параметров каналов модуля;

- собрать схему, представленную на рисунке 6;

- установить на мультиметре цифровом Fluke 8846А режим измерений силы постоянного тока;

- установить на магазине сопротивления Р4831-М1 значение сопротивления 175 Ом;

- с помощью мультиметра цифрового Fluke 8846А провести измерения воспроизводимого значения силы постоянного тока между клеммами «ANALOG(0)+» и «GND» каждого канала, в соответствии с разводкой выводов разъема каналов воспроизведения силы постоянного тока (тока балансировки);

- повторить измерения для каналов 1-7, подключая их поочередно в соответствии с разводкой выводов разъема каналов воспроизведения силы постоянного тока (тока балансировки);

- рассчитать приведенную погрешность воспроизведения силы постоянного тока (тока балансировки) для каждого канала по формуле (8), за нормирующее значение принять диапазон воспроизводимых значений силы постоянного тока (тока балансировки);

- повторить измерения при значениях силы постоянного тока (тока балансировки) 0 и минус 100 мкА.

Результаты поверки считать положительными, если значения приведенной погрешности воспроизведения силы постоянного тока (тока балансировки), при значении сопротивления нагрузки 175 Ом, находятся в пределах ±0,3 %.

В противном случае - модули признаются непригодными к применению.

8 Оформление результатов поверки

8.1 Положительные результаты поверки оформить установленным порядком.

8.2 При поверке модуля результаты измерений и расчетов заносятся в протокол произвольной формы на бумажном носителе.

8.3 В случае отрицательных результатов поверки модуля к дальнейшему применению не допускается. На него выдается извещение об его непригодности к дальнейшей эксплуатации с указанием причин непригодности.

8.4 Информация, обязательная к занесению в протокол измерений: данные об атмосферном давлении, влажности и температуре воздуха в помещении в момент проведения измерений, дата и время проведения измерений.

Инженер НИО-6 ФГУП «ВНИИФТРИ»

Н.М. Юстус

Jeany -