# ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УНИТАРНОЕ ПРЕДПРИЯТИЕ УРАЛЬСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МЕТРОЛОГИИ (ФГУП «УНИИМ»)

СОГЛАСОВАНО

Руководитель Инженерного центра

ООО НПП «Уралтехнология»

АГ. Троицкий

2016 г.

**УТВЕРЖДАЮ** 

Директор ФГУП «УНИИМ»

С.В. Медведевских

9» 2016 r.

Государственная система обеспечения единства измерений

Комплексы измерительные КАРАТ

Методика поверки

МП 23-221-2016

п.р65268-16

Разработана: Федеральным государственным унитарным предприятием Уральский научно — исследовательский институт метрологии (ФГУП «УНИИМ») ООО Научно — производственным предприятием «Уралтехнология» Исполнители: Клевакин Е.А. ведущий инженер ФГУП «УНИИМ»; Зенков В.В., главный специалист ООО НПП «Уралтехнология».

## СОДЕРЖАНИЕ

| 1 ОБЛАСТЬ ПРИМЕНЕНИЯ                 | 4  |
|--------------------------------------|----|
| 2 НОРМАТИВНЫЕ ССЫЛКИ                 |    |
| 3 ОПЕРАЦИИ ПОВЕРКИ                   | 5  |
| 4 СРЕДСТВА ПОВЕРКИ                   | 5  |
| 5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ            | 6  |
| 6 УСЛОВИЯ ПОВЕРКИ                    | 6  |
| 7 ПОДГОТОВКА К ПОВЕРКЕ               | 6  |
| 8 ПРОВЕДЕНИЕ ПОВЕРКИ                 | 6  |
| 9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ     | 10 |
| Приложение А ФОРМА ПРОТОКОЛА ПОВЕРКИ | 11 |

## Государственная система обеспечения единства измерений Комплексы измерительные КАРАТ

Методика поверки

МП 23-221-2016

#### 1 ОБЛАСТЬ ПРИМЕНЕНИЯ

- 1.1 Настоящий документ распространяется на комплексы измерительные КАРАТ(далее комплексы), изготавливаемые по ТУ 4218-023-32277111-2015 и устанавливает порядок их первичной и периодической поверок.
- 1.2 Комплексы представляют собой составные многофункциональные измерительные системы, состоящие из:
- вычислителей КАРАТ-306, КАРАТ-307, КАРАТ-308, выпускаемых по ТУ 4217-009-32277111-2015;
  - измерительных преобразователей расхода воды и счетчиков воды (ИПРВ и ВС);
  - платиновых термопреобразователей сопротивления по ГОСТ Р 6651 (ИПТ);
- комплектов измерительных преобразователей температуры (КИПТ), состоящих из платиновых термопреобразователей сопротивления по ГОСТ 6651;
  - измерительных преобразователей давления (ИПД);
  - измерительных преобразователей разности давления (ИПРД);
  - счётчиков электрической энергии (СВЧ);
  - измерительных преобразователей расхода природного газа и счетчиков газа (ИПРГ)
  - измерительных преобразователей расхода пара (ИПРП).
- 1.3 Для комплексов измерительных KAPAT устанавливается поэлементный метод поверки. СИ, входящие в состав комплексов, поверяют с периодичностью, установленной в методиках поверки на эти СИ.
- 1.4 Допускается проводить замену неисправных измерительных преобразователей поверенными однотипными без проведения поверки комплексов. После замены делается отметка в эксплуатационной документации.

Интервал между поверками – 4 года.

#### 2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящей методике использованы ссылки на документы, приведенные в таблице 1.

#### Таблица 1

| ГОСТ 6651-2009          | ГСИ. Термопреобразователи сопротивления из платины, меди и     |
|-------------------------|----------------------------------------------------------------|
|                         | никеля. Общие технические требования и методы испытаний        |
| Приказ Минпромторга     | Об утверждении Порядка проведения поверки средств измерений,   |
| № 1815 от 02.07.2015 г. | требования к знаку поверки и содержанию свидетельства о повер- |
|                         | ке                                                             |

#### 3 ОПЕРАЦИИ ПОВЕРКИ

3.1 При проведении поверки комплекса выполняют операции, указанные в таблице 2. Таблица 2

| П                                                    | операг<br>рвичной<br>оверке<br>+<br>+ <sup>1)</sup> | ции при<br>периодической<br>поверке<br>+ |
|------------------------------------------------------|-----------------------------------------------------|------------------------------------------|
| П                                                    | оверке<br>+                                         | поверке                                  |
|                                                      | +                                                   |                                          |
| Внешний осмотр 8.1                                   |                                                     | T                                        |
|                                                      | <del>T</del> ′                                      | + 2)                                     |
|                                                      |                                                     |                                          |
| Опробование 8.3                                      | +                                                   | +                                        |
| Определение метрологических характеристик 8.4        | +                                                   | +                                        |
| Проверка диапазона измерений и определение аб- 8.4.1 | +                                                   | +                                        |
| солютной погрешности при измерении температу-        |                                                     |                                          |
| ры                                                   |                                                     |                                          |
| Проверка диапазона измерений и определение аб- 8.4.2 | +                                                   | +                                        |
| солютной погрешности при измерении разности          |                                                     |                                          |
| температуры                                          |                                                     |                                          |
| Проверка диапазона измерений и определение 8.4.3     | +                                                   | +                                        |
| приведённой погрешности при измерении давле-         |                                                     |                                          |
| ния и разности давления                              |                                                     |                                          |
| Проверка диапазона измерений и определение от- 8.4.4 | +                                                   | +                                        |
| носительной погрешности при измерении объёма и       |                                                     |                                          |
| объёмного расхода воды (пара)                        |                                                     |                                          |
| Определение относительной погрешности при из- 8.4.5  | +                                                   | +                                        |
| мерении электрической энергии                        |                                                     |                                          |
| Проверка диапазона измерений и определение от- 8.4.6 | +                                                   | +                                        |
| носительной погрешности при измерении массы          |                                                     |                                          |
| воды и пара                                          |                                                     |                                          |
| Проверка диапазона измерений и определение от- 8.4.7 | +                                                   | +                                        |
| носительной погрешности при измерении объёма и       |                                                     |                                          |
| объёмного расхода природного газа в рабочих и        |                                                     |                                          |
| приведённым к стандартным условиях                   |                                                     |                                          |
| Определение относительной погрешности при из- 8.4.8  | +                                                   | +                                        |
| мерении тепловой энергии                             |                                                     |                                          |
| Проверка суточного хода часов 8.4.9                  | +                                                   | +                                        |

- 1) Поверку СИ из состава комплекса проводят при:
  - вводе СИ в эксплуатацию после длительного хранения (более одного интервала между поверками);
  - повреждении знака поверки или утрате свидетельства о поверке;
  - проведении повторной юстировки или настройки СИ, известном или предполагаемом ударном воздействии на СИ, неудовлетворительной работе СИ.
- 2) Проводят в объеме и с периодичностью, установленными нормативными документами на это СИ.

Примечание. Знак «+» обозначает, что соответствующую операцию поверки проводят, а знак «-» обозначает, что эту операцию не проводят.

3.2 При получении отрицательных результатов на любой из операций поверки комплекс признают непригодным к эксплуатации.

#### 4 СРЕДСТВА ПОВЕРКИ

- 4.1 При проведении поверки СИ из состава комплекса применяют эталоны и средства поверки, указанные в методиках поверки этих СИ.
- 4.2 Все средства поверки на момент проведения поверки комплекса должны иметь действующие знаки поверки или свидетельства о поверке.

#### 5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

К поверке комплекса допускаются лица, изучившие настоящий документ, эксплуатационную документацию на средства измерений, входящие в состав комплекса и на средства поверки, имеющие группу по электробезопасности не ниже 2 и прошедшие обучение в качестве поверителей средств измерений, работающие в организации, аккредитованной на право поверки.

#### 6 УСЛОВИЯ ПОВЕРКИ

При проведении поверки комплексов соблюдают условия, указанные в методиках поверки его составных частей.

#### 7 ПОДГОТОВКА К ПОВЕРКЕ

Комплексы подготавливают к поверке в соответствии с указаниями руководства по эксплуатации и эксплуатационной документации на СИ, входящие в состав комплекса.

#### 8 ПРОВЕДЕНИЕ ПОВЕРКИ

#### 8.1 Внешний осмотр

При внешнем осмотре комплекса определяют:

- соответствие комплектности комплекса паспорту СМАФ.421451.802 ПС;
- наличие действующих свидетельств о поверке или других документов, подтверждаюших проведение поверки каждого СИ из состава комплекса;
  - наличие и целостность пломб изготовителя.
  - 8.2 Поверка СИ из состава комплекса

Поверку СИ из состава комплекса выполняют в объеме и последовательности, определяемом методиками поверки на эти СИ.

#### 8.3 Опробование

- 8.3.1 При опробовании проверяют исправность органов управления и индикации вычислителя, входящего в состав комплекса, а также возможность вывода на ЖК-экран вычислителя всех запрограммированных параметров учета. Кроме того, проверяют соответствие пределов измерений СИ, используемых в составе комплекса, значениям, указанным в таблицах настройки вычислителя.
- 8.3.2 Проверка идентификационных данных программного обеспечения комплексов проводится сравнением идентификационных данных встроенного программного обеспечения вычислителя из состава комплекса с идентификационными данными из таблицы 3.
- 8.3.3 Опробование считают успешным, если пределы измерений СИ из состава комплекса соответствуют таблице настройки вычислителя, отсутствует индикация ошибок программирования и нештатных ситуаций на ЖК-экране вычислителя, идентификационные данные программного обеспечения вычислителей (номер версии ПО и контрольная сумма ПО), входящих в состав комплексов, соответствуют приведенным в таблице 3.

Таблица 3 – Идентификационные данные программного обеспечения

| Идентификационные данные (признаки)             |           | Значение  |           |
|-------------------------------------------------|-----------|-----------|-----------|
| Идентификационное наименование ПО               | Карат-306 | Карат-307 | Карат-308 |
| Номер версии (идентификационный номер) ПО       | 6.1       | 7.2       | 8.2       |
| Цифровой идентификатор ПО                       | 0x6BD1    | 0x85AC    | 0x12C8    |
| Алгоритм вычисления цифрового идентификатора ПО | CRC16     | CRC16     | CRC16     |

- 8.4 Определение метрологических характеристик
- 8.4.1 Проверка диапазона измерений и определение абсолютной погрешности при измерении температуры

Абсолютную погрешность при измерении температуры  $\Delta(t)$  определяют в 5 точках диапазона измерений: (минус 50, 0, 50, 100, 150) °C для КАРАТ-306, КАРАТ-307; (минус 50, 50, 150, 300, 600) °C для КАРАТ-308 и вычисляют по формуле

$$\Delta(t) = \pm \sqrt{\Delta(t_{un})^2 + \Delta(t_B)^2}, \qquad (1)$$

где  $\Delta(t_B)$  – предел допускаемой абсолютной погрешности вычислителя при измерении сопротивлений ИП температуры и преобразовании в температуру, °C;

 $\Delta(t_{un})$  – предел допускаемой абсолютной погрешности ИПТ, входящего в состав комплекса, °C:

- для ИПТ класса A: 0,15+0,002·t, °C;
- для ИПТ класса В: 0,3+0,005·t, °С.

t – значение температуры в поверяемой точке, °С;

Результаты считают положительными, если абсолютная погрешность при измерении температуры находится в интервале, °C:

- при использовании ИПТ класса A:  $\pm (0,4+0,002 \cdot t)$ , °C;
- при использовании ИПТ класса B:  $\pm$  (0,6+0,004·t), °C.
- 8.4.2 Проверка диапазона измерений и определение абсолютной погрешности при измерении разности температуры

Абсолютную погрешность при измерении разности температуры  $\Delta(\Delta t)$  вычисляют по формуле

$$\Delta(\Delta t) = \pm \sqrt{\Delta(\Delta t_{un})^2 + \Delta(\Delta t_B)^2},$$
(2)

где  $\Delta(\Delta t_B)$  — предел допускаемой абсолютной погрешности вычислителя при измерении разности сопротивления комплекта ИП температуры и преобразовании в разность температуры, °С;

 $\Delta(\Delta t_{un})$  – предел допускаемой абсолютной погрешности КИПТ, входящего в состав комплекса, °C:

- при использовании КИПТ класса 1:  $\Delta(\Delta t_{un}) = 0.05 + 0.001 \cdot \Delta t$ , °C;
- при использовании КИПТ класса 2:  $\Delta(\Delta t_{un})$  = 0,1 + 0,002· $\Delta$ t, °C.

где  $\Delta t$  – разность температуры (3, 10, 20, 147) °C.

Результаты считают положительными, если абсолютная погрешность при измерении разности температуры находится в интервале:

- для комплексов класса 1:  $\pm (0.06+0.005 \cdot \Delta t)$ , °C;
- для комплексов класса 2:  $\pm$ (0,11+0,006· $\Delta$ t), °C.
- 8.4.3 Проверка диапазона измерений и определение приведённой погрешности при измерении давления и разности давления

Для комплексов, не имеющих в составе измерительных преобразователей давления (ИПД) и измерительных преобразователей разности давления (ИПРД), операцию не проводят.

Приведённую погрешность при измерении давления  $\gamma P$  и разности давления  $\gamma \Delta P$  вычисляют по формулам:

$$\gamma P = \pm \sqrt{\left(\gamma P_{un}\right)^2 + \left(\gamma P_B\right)^2},\tag{3}$$

$$\gamma \Delta P = \pm \sqrt{\left(\gamma \Delta P_{un}\right)^2 + \left(\gamma P_B\right)^2},\tag{4}$$

где  $\gamma P_{un}$  – предел допускаемой приведённой погрешности ИПД, %;

 $\gamma P_B$  — предел допускаемой приведенной погрешности вычислителя при измерении силы тока и преобразовании в давление, %.

 $\gamma \Delta P_{un}$  — предел допускаемой приведённой погрешности ИПРД, %.

Результаты считают положительными, если приведённая погрешность находится в интервале:  $\pm 2$  % при измерении давления и разности давления воды и газа; в интервале  $\pm 1$  % при измерении давления и разности давления пара.

8.4.4 Проверка диапазона измерений и определение относительной погрешности при измерении объёма и объёмного расхода воды (пара)

Относительную погрешность при измерении объёма  $\delta V$  и объёмного расхода  $\delta G$  вычисляют по формулам:

$$\delta V = \pm \sqrt{\left(\delta V_{un}\right)^2 + \left(\delta V_B\right)^2},\tag{5}$$

$$\delta G = \pm \sqrt{\left(\delta G_{un}\right)^2 + \left(\delta G_B\right)^2},\tag{6}$$

где  $\delta V_B$  – предел допускаемой относительной погрешности вычислителя при измерении и преобразовании количества импульсов в объём воды (пара), %;

 $\delta G_B$  — предел допускаемой относительной погрешности вычислителя при измерении и преобразовании частоты входных сигналов в объёмный расход воды (пара), %;

 $\delta V_{un}$ ,  $\delta G_{un}$  — предел допускаемой относительной погрешности ИПРВ при измерении объёма (объёмного расхода), %

Результаты считают положительными, если относительная погрешность находится в интервалах:

- при измерении объёма и объёмного расхода воды:
  - комплексы класса 1:  $\pm (1+0.01 \cdot G_B/G)$ , но не более  $\pm 3.5 \%$ ;
  - комплексы класса 2  $\pm (2+0,02 \cdot G_B/G)$ , но не более  $\pm 5 \%$

где G и  $G_B$  – значение расхода теплоносителя и наибольшее значение расхода,  $M^3/4$ .

- при измерении объёма и объёмного расхода пара в диапазоне расхода пара  $(10-100)\%:\pm3\%$ .
- 8.4.5 Определение относительной погрешности при измерении электрической энергии Относительную погрешность при измерении электрической энергии  $\delta E$  вычисляют по формуле

$$\delta E = \pm \sqrt{\left(\delta E_{un}\right)^2 + \left(\delta E_{B}\right)^2},\tag{7}$$

где  $\delta E_B$  — предел допускаемой относительной погрешности вычислителя при измерении и преобразовании количества импульсов в электрическую энергию, %;

 $\delta E_{un}$  — предел допускаемой относительной погрешности СВЧ при измерении электрической энергии, %.

Результаты считают положительными, если относительная погрешность при измерении электрической энергии находятся в интервале ±2 %.

8.4.6 Проверка диапазона измерений и определение относительной погрешности при измерении массы воды и пара

Относительную погрешность при измерении массы воды  $\delta m_e$  и массы пара  $\delta m_\Pi$  вычисляют по формулам:

$$\delta m_{\theta} = \pm \sqrt{\left(\delta V_{un}\right)^2 + \left(\delta m_B\right)^2},\tag{8}$$

$$\delta m_{\Pi} = \pm \sqrt{\left(\delta V_{un\Pi}\right)^2 + \left(\delta V_{\Pi B}\right)^2 + \left(\delta m_{\Pi B}\right)^2},\tag{9}$$

где  $\delta V_{un}$  – предел допускаемой относительной погрешности ИПРВ при измерении объёма воды, %;

 $\delta V_{\it unII}$ — предел допускаемой относительной погрешности ИПРП при измерении объёма пара, %;

 $\delta m_B$  – предел допускаемой относительной погрешности вычислителя при расчёте массы воды по измеренным сигналам ИП, %;

 $\delta V_{\Pi B}$  — предел допускаемой относительной погрешности вычислителя при измерении и преобразовании количества импульсов в объём пара, %;

 $\delta m_{\Pi B}$  – предел допускаемой относительной погрешности вычислителя при расчёте массы пара, %.

Результаты считают положительными, если относительная погрешность находится в интервале:

- при измерении массы воды:
  - комплексы класса 1:  $\pm (1+0.01 \cdot G_B/G)$ , но не более  $\pm 3.5 \%$ ;
  - комплексы класса 2  $\pm (2+0.02 \cdot G_B/G)$ , но не более  $\pm 5 \%$
- при измерении массы пара в диапазоне расхода пара (10 100) %:  $\pm 3$  %.
- 8.4.7 Проверка диапазона измерений и определение относительной погрешности при измерении объёма и объёмного расхода природного газа в рабочих и приведённых к стандартным условиям
- 8.4.7.1 Относительную погрешность при измерении объёма  $\delta V_{\Gamma}$  и объёмного расхода  $\delta G_{\Gamma}$  природного газа в рабочих условиях вычисляют по формулам:

$$\delta V_{\Gamma} = \pm \sqrt{\delta V_{\Gamma B}^2 + \delta V_{un}^2}, \tag{10}$$

$$\delta G_{\Gamma} = \pm \sqrt{\delta G_{\Gamma B}^2 + \delta G_{un}^2}, \tag{11}$$

где  $\delta V_{\Gamma B}$  — предел допускаемой относительной погрешности вычислителя при измерении и преобразовании количества импульсов в объём природного газа, %;

 $\delta G_{\Gamma B}$  — предел допускаемой относительной погрешности вычислителя при измерении частоты входных сигналов и преобразовании в расход природного газа, %;

 $\delta V_{un}$  — предел допускаемой относительной погрешности ИПРГ при измерении объёма природного газа, %.

 $\delta G_{un}$  — предел допускаемой относительной погрешности ИПРГ при измерении расхода природного газа, %.

8.4.7.2 Относительную погрешность при измерении объёма (объёмного расхода) природного газа приведённого к стандартным условиям вычисляют по формуле

$$\delta V_{\Gamma cm} = \pm \sqrt{\left(\delta V_{\Gamma}\right)^{2} + \left(\frac{100 \cdot \Delta(t)}{273,15 + t}\right)^{2} + \left(\frac{\gamma P_{u} \cdot P_{u} + \gamma P_{6} \cdot P_{6}}{P_{u}^{\max} + P_{6}^{\max}}\right)^{2}},\tag{12}$$

где  $\Delta(t)$  – допускаемая абсолютная погрешность комплекса при измерении температуры, °C; t – заданное значение температуры природного газа (-22, 10, 66) °C;

 $\gamma P_u$  — допускаемой приведённая погрешность комплекса при измерении избыточного давления, %;

 $\gamma P_{\delta}$  — допускаемая приведённая погрешность комплекса при измерении атмосферного давления, %;

 $P_u^{Max}$  – верхний предел диапазона измерения ИПД избыточного давления, МПа;

 $P_6^{\text{Max}}$  – верхний предел диапазона измерения ИПД атмосферного давления, МПа;

 $P_{u}$  – заданное значение избыточного давления, МПа;

 $P_6$  – заданное значение атмосферного давления, МПа;

Результаты считают положительными, если относительная погрешность при измерении объёма и объёмного расхода газа находится в интервалах, указанных в таблице 4.

Таблица 4

| Условия измерений         | Пределы допускаемой относительной погрешности, % (в зависимости от класса точности) |       |      |      |
|---------------------------|-------------------------------------------------------------------------------------|-------|------|------|
|                           | А Б В Г                                                                             |       |      |      |
| Рабочие условия           | ±0,5                                                                                | ±0,75 | ±1,0 | ±2,0 |
| Приведённые к стандартным | ±0,75                                                                               | ±1,0  | ±1,5 | ±2,5 |

- 8.4.8 Определение относительной погрешности при измерении тепловой энергии
- 8.4.8.1 Относительную погрешность при измерении тепловой энергии в водяной закрытой системе теплоснабжения (и одиночном трубопроводе)  $\delta Q$  рассчитывают по формуле

$$\delta Q = \pm \sqrt{\left(\delta Q_B\right)^2 + \left(\frac{100 \cdot \Delta \left(\Delta t_{un}\right)}{\Delta t}\right)^2 + \delta m_e^2},\tag{13}$$

где  $\delta Q_B$  – предел допускаемой относительной погрешности расчёта тепловой энергии вычислителем по измеренным сигналам ИП, %.

8.4.8.2 Относительную погрешность при измерении тепловой энергии в паровых системах теплоснабжения  $\delta Q_{\Pi C}$  определяют по формуле

$$\delta Q_{\Pi C} = \pm \sqrt{\delta Q_B^2 + \delta m_{\Pi}^2}, \tag{14}$$

- 8.4.8.3 Результаты считают положительными, если относительная погрешность при измерении:
  - тепловой энергии в водяной закрытой системе теплоснабжения находится в интервале:
    - для комплексов класса 1:  $\pm (2+12/\Delta t + 0,01 \cdot G_B/G)$ ;
    - для комплексов класса 2:  $\pm (3+12/\Delta t+0,02\cdot G_B/G)$ ;
  - тепловой энергии в паровых системах теплоснабжения находится в интервале:
    - в диапазоне расхода пара (10 30) %: ±5 %;
    - в диапазоне расхода пара (30 100) %: ±4 %.
  - 8.4.9 Проверка суточного хода часов

Проверку суточного хода часов проводят при поверке вычислителя.

#### 9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 9.1 Результаты поверки заносят в протокол в соответствии с формой, представленной в приложении А.
- 9.2 Положительные результаты поверки оформляют свидетельством о поверке в соответствии с Приказом Минпромторга № 1815 от 02.07.2015 г.
- 9.3 При отрицательных результатах поверки, свидетельство о поверке аннулируют, оформляют извещение о непригодности с указанием причин в соответствии с Приказом Мин-промторга № 1815 от 02.07.2015 г.

Ведущий инженер ФГУП "УНИИМ"

Mont

Е.А. Клевакин

Главный специалист по метрологии ООО НПП «Уралтехнология»



В.В. Зенков

### Приложение А

(рекомендуемое)

#### ФОРМА ПРОТОКОЛА ПОВЕРКИ

в соответствии с документом «Комплексы измерительные КАРАТ. Методика поверки МП 23-221-2016»

|                     |                   | 14111 43-44 | 1-2010//   |                 |            |
|---------------------|-------------------|-------------|------------|-----------------|------------|
|                     | ПРОТОК            | ОЛ ПОВЕРКИ  | И № от     |                 |            |
| 1 Комплекс измер    | оительный КАРАТ _ | , заводско  | ой номер   | , дата выпуска  |            |
| Заводской номер:    |                   |             |            |                 |            |
| Принадлежит:        |                   |             |            |                 |            |
| Дата изготовления:  |                   |             |            |                 |            |
| Документ на поверн  | cy:               |             |            |                 |            |
| Средства поверки:   |                   |             |            |                 |            |
| Условия поверки:    |                   |             |            |                 |            |
| 1. Результаты внеш  | него осмотра:     |             |            |                 |            |
| Конструкторская д   | окументация:      |             |            |                 |            |
| Маркировка:         |                   |             |            |                 |            |
| Упаковка:           |                   |             |            |                 |            |
| 2. Результаты опроб | ования:           | -           |            |                 |            |
| Комплектность:      |                   |             |            |                 |            |
| Вид                 | Тип               | Заводской   | Попапаціно | Класс точности, | Примечания |
| преобразователя     | преобразователя   | номер       | Поверен до | погрешность     | Примечания |
| Вычислитель         |                   |             |            |                 |            |
| ИПРВ                |                   |             |            |                 |            |
| ИПРГ                |                   |             |            |                 |            |
| ИПРП                |                   |             |            |                 |            |
| ИПТ                 |                   |             |            |                 |            |
| КИПТ                |                   |             |            |                 |            |

#### 3. Определение метрологических характеристик:

ИПД ИПРД СВЧ

Таблица A.1 – Проверка диапазона измерений и определение абсолютной погрешности при измерении температуры  $\Delta(t)$ 

| Температура t, | Предел допускаемой              |                             | Абсолютная по-          | Пределы допускаемой              |
|----------------|---------------------------------|-----------------------------|-------------------------|----------------------------------|
| °C             | абсолютной погреш-              | мой абсолютной              | грешность при           | абсолютной погреш-               |
|                | ности ИПТ $\Delta(t_{un})$ , °C | погрешности вы-             | измерении темпе-        | ности при измерении              |
|                | ì                               | числителя $\Delta(t_B)$ , % | ратуры $\Delta(t)$ , °C | температуры $\Delta(t)_{A}$ , °C |
|                |                                 |                             |                         |                                  |
|                |                                 |                             |                         |                                  |
|                |                                 |                             |                         |                                  |
|                |                                 |                             |                         |                                  |
|                |                                 |                             |                         |                                  |

Таблица A.2 — Проверка диапазона измерений и определение абсолютной погрешности при измерении разности температуры  $\Delta(\Delta t)$ 

| Разность тем-<br>пературы $\Delta t$ , $^{\circ}$ С | Предел допускае-<br>мой абсолютной<br>погрешности | Предел допускае-<br>мой абсолютной<br>погрешности вы- | Абсолютная погрешность при измерении раз- | Пределы допускаемой абсолютной погрешно-<br>сти при измерении |
|-----------------------------------------------------|---------------------------------------------------|-------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------|
|                                                     | $KИПТ$ $\Delta(\Delta t_{un}), ^{\circ}C$         | числителя $\Delta(\Delta t_B)$ , °C                   | ности температуры $\Delta(\Delta t)$ , °C | разности температуры $\Delta(\Delta t)_n$ , °C                |
| 3                                                   |                                                   |                                                       |                                           |                                                               |
| 10                                                  |                                                   |                                                       |                                           |                                                               |
| 20                                                  |                                                   |                                                       |                                           |                                                               |
| 147                                                 |                                                   |                                                       |                                           |                                                               |

Таблица A.3 — Проверка диапазона измерений и определение приведённой погрешности при измерении давления  $\gamma P$  воды, пара и газа

| Давление, | Давление, | Предел допускае-    | Предел допускае-           | Приведённая    | Пределы до-                                  |
|-----------|-----------|---------------------|----------------------------|----------------|----------------------------------------------|
| МПа       | МПа       | мой приведённой     | мой приведенной            | погрешность    | пускаемой при-                               |
| (НПИ)     | (ВПИ)     | погрешности ИПД     | погрешности вы-            | при измерении  | ведённой по-                                 |
|           |           | $\gamma P_{un}$ , % | числителя при из-          | давления уР, % | грешности при                                |
|           |           | ·                   | мерении силы тока          | ·              | измерении дав-                               |
|           |           |                     | и преобразовании в         |                | ления $\gamma P_{\scriptscriptstyle  m I}$ % |
|           |           |                     | давление, $\gamma P_B$ , % |                |                                              |
|           |           |                     |                            |                |                                              |

# Таблица A.4 — Проверка диапазона измерений и определение приведённой погрешности при измерении разности давления $\gamma \Delta P$ воды, пара и газа

| Давление, | Давление, | Предел допускае-                | Предел допускае-           | Приведённая                 | Пределы до-                       |
|-----------|-----------|---------------------------------|----------------------------|-----------------------------|-----------------------------------|
| МПа       | МПа       | мой приведённой                 | мой приведенной            | погрешность                 | пускаемой при-                    |
| (НПИ)     | (ВПИ)     | погрешности                     | погрешности вы-            | при измерении               | ведённой по-                      |
|           |           | ИПРД $\gamma \Delta P_{un}$ , % | числителя при из-          | разности дав-               | грешности при                     |
|           |           |                                 | мерении силы тока          | ления $\gamma \Delta P$ , % | измерении раз-                    |
|           |           |                                 | и преобразовании в         |                             | ности давления                    |
|           |           |                                 | давление, $\gamma P_B$ , % |                             | $\gamma \Delta P_{_{ m I\! I}}$ % |
|           |           |                                 |                            |                             |                                   |

## Таблица A.5 – Проверка диапазона измерений и определение относительной погрешности при измерении объёма воды $\delta V$

| Предел допускаемой  | Предел допускаемой относи-   | Относительная по-  | Пределы допускае-             |
|---------------------|------------------------------|--------------------|-------------------------------|
| относительной по-   | тельной погрешности при из-  | грешность при из-  | мой относительной             |
| грешности ИПРВ при  | мерении и преобразовании ко- | мерении объёма во- | погрешности при               |
| измерении объёма    | личества импульсов в объём   | ды $\delta V$ , %  | измерении объёма              |
| $\delta V_{un}$ , % | воды $\delta V_B$ , %        |                    | воды $\delta V_{_{ m I}}, \%$ |
|                     |                              |                    |                               |

# Таблица A.6 – Проверка диапазона измерений и определение относительной погрешности при измерении объёмного расхода воды $\delta G$

| Предел допускаемой          | Предел допускаемой относи-       | Относительная по-           | Пределы допускае-                      |
|-----------------------------|----------------------------------|-----------------------------|----------------------------------------|
| относительной по-           | тельной погрешности при из-      | грешность при из-           | мой погрешности                        |
| грешности ИПРВ при          | мерении и преобразовании         | мерении объёмного           | при измерении объ-                     |
| измерении объёмного         | частоты входных сигналов в       | расхода воды $\delta G$ , % | ёмного расхода $\delta G_{\text{д}}$ , |
| расхода $\delta G_{un}$ , % | объёмный расход $\delta G_B$ , % |                             | %                                      |
|                             |                                  |                             |                                        |

## Таблица A.7 – Определение относительной погрешности при измерении электрической энергии $\delta E$

| Предел допускаемой относительной погрешности СВЧ при измерении электрической энергии $\delta E_{un}$ , % | Предел допускаемой относи-<br>тельной погрешности вычис-<br>лителя при измерении и пре-<br>образовании количества им-<br>пульсов в электрическую энер- | Относительная погрешность при измерении электрической энергии $\delta E$ , % | Пределы допускае- мой относительной погрешности при измерении электри- ческой энергии $\delta E_{\rm p}$ , |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| ans                                                                                                      | гию $\delta E_B$ , %                                                                                                                                   |                                                                              | %<br>±2                                                                                                    |

# Таблица A.8 – Проверка диапазона измерений и определение относительной погрешности при измерении массы воды $\delta m_{\rm g}$

| Предел допускаемой относительной погрешности ИПРВ при измерении объёма воды $\delta V_{un}$ , % | Предел допускаемой относительной погрешности вычислителя при расчёте массы воды по измеренным сигналам $И\Pi \ \delta m_B, \%$ | Относительная погрешность при измерении массы воды $\delta m_s$ , % | Пределы допускае- мой относительной погрешности при измерении массы воды $\delta m_{e \pi}$ , % |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
|                                                                                                 |                                                                                                                                |                                                                     |                                                                                                 |

Таблица А.9 – Проверка диапазона измерений и определение относительной погрешности при измерении массы пара  $\delta m_\Pi$ 

| Предел допускае-           | Предел допускаемой       | Предел допускае-          | Относитель-                | Пределы допус-         |
|----------------------------|--------------------------|---------------------------|----------------------------|------------------------|
| мой относитель-            | относительной погреш-    | мой относитель-           | ная погреш-                | каемой относи-         |
| ной погрешности            | ности вычислителя при    | ной погрешности           | ность при из-              | тельной погреш-        |
| ИПРП при изме-             | измерении и преобразо-   | вычислителя при           | мерении мас-               | ности при измере-      |
| рении объёма па-           | вании импульсов в объ-   | расчёта массы па-         | сы пара $\delta m_{\Pi}$ , | нии массы пара         |
| pa $\delta V_{\Pi un}$ , % | ём пара $\delta V_B$ , % | pa $\delta m_{\Pi B}$ , % | %                          | $\delta m_{\Pi_A}$ , % |
|                            |                          |                           |                            |                        |

Таблица А.10 — Проверка диапазона измерений и определение относительной погрешности при измерении объёма природного газа в рабочих условиях  $\delta V_{\Gamma}$ 

| Предел допускаемой относи-             | Предел допускаемой                          | Относительная по-                      | Пределы допускае-                 |
|----------------------------------------|---------------------------------------------|----------------------------------------|-----------------------------------|
| тельной погрешности вычис-             | относительной погреш-                       | грешность при изме-                    | мой погрешности                   |
| лителя при измерении и пре-            | ности ИПРГ при изме-                        | рении объёма при-                      | при измерении                     |
| образовании количества им-             | рении объёма природ-                        | родного газа $\delta V_{\Gamma p}$ , % | объёма природного                 |
| пульсов в объём природного             | ного газа $\delta V_{\mathit{\Gammaun}},\%$ | -                                      | газа $\delta V_{\Gamma_{P}}$ д, % |
| газа $\delta V_{\mathit{\Gamma}B}$ , % |                                             |                                        |                                   |
|                                        |                                             |                                        |                                   |

Таблица А.11 – Проверка диапазона измерений и определение относительной погрешности при измерении объёмного расхода природного газа в рабочих условиях  $\delta G_{\Gamma}$ 

| Предел допускаемой относи-<br>тельной погрешности вычис-<br>лителя при измерении часто- | Предел допускаемой относительной погрешности ИПРГ, входящего | Относительная по-<br>грешность при изме-<br>рении объёмного | Пределы допускае-<br>мой погрешности<br>при измерении |
|-----------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------|
| ты входных сигналов и пре-                                                              | в состав комплекса, при                                      | расхода природного                                          | объёмного расхода                                     |
| образовании в расход природного газа $\delta G_{\Gamma B}$ , %                          | измерении расхода природного газа $\delta G_{\Gamma un}$ , % | газа $\delta\!G_{arGamma}$ , %                              | природного газа                                       |
| родного газа острв, 76                                                                  | родного газа оо Гип, 76                                      |                                                             | $\delta G_{\Gamma_{ m A}}, \%$                        |

Таблица A.12 – Проверка диапазона измерений и определение относительной погрешности при измерении объёма (объёмного расхода) расхода природного газа приведённого к стандартным условиям  $\delta V_{\Gamma cm}$ 

| Допус-                     | Абсо-         | Значе-         | Допус-             | Допускае-            | Задан   | Задан   | Верх-         | Верхний       | Относи-                    | Пределы                         |
|----------------------------|---------------|----------------|--------------------|----------------------|---------|---------|---------------|---------------|----------------------------|---------------------------------|
| каемая                     | лют-          | ние            | каемая             | мая приве-           | ное     | ное     | ний           | предел        | тельная                    | допускае-                       |
| относи-                    | ная           | темпе-         | приве-             | дённая               | зна-    | зна-    | предел        | диапазо-      | погреш-                    | мой отно-                       |
| тельная                    | по-           | ратуры         | дённая             | погреш-              | чение   | чение   | диапа-        | на изме-      | ность при                  | сительной                       |
| погреш-                    | греш-         | при-           | погреш-            | ность ком-           | избы-   | атмо-   | зона          | рения         | измерении                  | погреш-                         |
| ность при                  | ность         | род-           | ность              | плекса при           | точ-    | сфер-   | изме-         | ипд           | объёма                     | ности при                       |
| измере-                    | при           | ного           | комплек-           | измерении            | ного    | ного    | рения         | атмо-         | (объёмно-                  | измерении                       |
| нии объ-                   | изме-         | газа, <i>t</i> | са при             | атмосфер-            | дав-    | давле   | ипд           | сферного      | го расхо-                  | объёма                          |
| ёма газа в                 | рении         | °C             | измере-            | ного дав-            | ления   | ния,    | избы-         | давле-        | да) при-                   | (объёмного                      |
| рабочих                    | темпе-        |                | нии из-            | ления $\gamma P_a$ , | $P_u$ , | $P_{a}$ | точного       | ния,          | родного                    | расхода)                        |
| условиях                   | рату-         |                | быточно-           | %                    | МПа     | МПа     | давле-        | $P_a^{max}$ , | газа при-                  | природного                      |
| δ <i>V<sub>Γp</sub>,</i> % | ры            |                | го давле-          |                      |         |         | ния           | МПа           | ведённого                  | газа приве-                     |
|                            | $\Delta(t)$ , |                | ния $\gamma P_u$ , |                      |         |         | $P_u^{max}$ , |               | к стан-                    | дённого к                       |
|                            | °C            |                | %                  |                      |         |         | МПа           |               | дартным                    | стан-                           |
|                            |               |                |                    |                      |         |         |               |               | условиям                   | дартным                         |
| ,                          |               |                |                    |                      |         |         |               |               | $\delta V_{\Gamma cm}$ , % | условиям                        |
|                            |               |                |                    |                      |         |         |               |               |                            | $\delta V_{\Gamma cm  \mu}$ , % |
|                            |               | -22            |                    |                      |         |         |               |               |                            | ±2                              |
|                            |               | 10             |                    |                      |         | ·       |               |               |                            |                                 |
| -                          | -             | 66             |                    |                      |         |         |               |               |                            |                                 |

Таблица A.13 – Определение относительной погрешности при измерении тепловой энергии  $\delta Q$ 

| Предел допус-        | Предел допускае-     |           | Разность           | Предел до-       | Относи-             | Преде      | лы до-                                                                                                          |
|----------------------|----------------------|-----------|--------------------|------------------|---------------------|------------|-----------------------------------------------------------------------------------------------------------------|
| каемой относи-       | мой абс              | олютной   | температу-         | пускаемой        | тельная по-         | пускаемо   | й относи-                                                                                                       |
| тельной по-          | погрешн              | ости при  | ры ∆ <i>t</i> , °C | относитель-      | грешность           | тельной по | грешности                                                                                                       |
| грешности            | измерени             | ии разно- |                    | ной по-          | при изме-           | при измер  | ении теп-                                                                                                       |
| вычислителя          | сти темп             | ературы   |                    | грешности        | рении теп-          | ловой энер | гии $\delta\!Q_{\scriptscriptstyle	exttt{A}}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |
| при измерении        | $\Delta(\Delta t_u)$ | "), °C    |                    | при изме-        | ловой энер-         |            |                                                                                                                 |
| тепловой энер-       |                      |           |                    | рении мас-       | гии $\delta\!Q$ , % |            |                                                                                                                 |
| гии $\delta Q_B$ , % | 76 1                 | TC 0      |                    | сы воды          |                     |            |                                                                                                                 |
|                      | Класс 1              | Класс 2   |                    | $\delta m_e$ , % |                     | Класс 1    | Класс 2                                                                                                         |
|                      |                      |           | 3                  |                  |                     | ±6,3       | ±7,5                                                                                                            |
|                      |                      |           | 10                 |                  |                     | ±3,5       | ±4,7                                                                                                            |
|                      |                      |           | 20                 |                  |                     | ±2,9       | ±4,1                                                                                                            |
|                      |                      |           | 147                |                  |                     | ±2,3       | ±3,6                                                                                                            |

Таблица А.13 — Определение относительной погрешности при измерении тепловой энергии паровых систем теплоснабжения  $\delta Q_{IIC}$ 

| Предел допускаемой       | Относительная по-                   | Относительная по-    | Пределы допускаемой                    |
|--------------------------|-------------------------------------|----------------------|----------------------------------------|
| относительной погреш-    | грешность при измере-               | грешность при изме-  | погрешности при изме-                  |
| ности вычислителя при    | нии массы пара $\delta m_{\Pi}$ , % | рении при измерении  | рении при измерении                    |
| измерении тепловой       | -                                   | тепловой энергии     | тепловой энергии $\delta Q_{\Pi C}$ ", |
| энергии $\delta Q_B$ , % |                                     | $\delta Q_{IIC}$ , % | %                                      |
|                          |                                     |                      |                                        |

| Заключение по результатам поверки: |                                                 |
|------------------------------------|-------------------------------------------------|
| На основании положительных резуль- | гатов поверки признан пригодным к эксплуатации  |
| На основании отрицательных результ | атов поверки признан непригодным к эксплуатации |
| Дата поверки                       | Подпись поверителя                              |
| Организация, проводившая поверку   |                                                 |