

Государственная система обеспечения единства измерений

ДЕЛИТЕЛЬ ИМПУЛЬСНОГО НАПРЯЖЕНИЯ ВЫСОКОВОЛЬТНЫЙ ДН

МЕТОДИКА ПОВЕРКИ МП 030.М12-16

N.p. 65338-16

Главный метролог ФГУП «ВИЙИОФИ»

С.Н. Негода

«<u>О</u>Т» <u>О</u> 6 <u>2</u>016 г.

1 ВВЕДЕНИЕ

- 1.1 Настоящая методика поверки распространяется на «Делитель импульсного напряжения высоковольтный ДН», зав. № 01022016 (далее по тексту делитель) производства Федерального государственного унитарного предприятия «Всероссийский научно-исследовательский институт оптико-физических измерений» (ФГУП «ВНИИОФИ»), Россия, и устанавливает методы и средства первичной и периодической поверок.
 - 1.2 Интервал между поверками 1 год.

2 ОПЕРАЦИИ ПОВЕРКИ

2.1 При проведении первичной и периодической поверок должны быть выполнены следующие операции, указанные в таблице 1.

Т	۔ ۔۔۔۔۔ ہے ۔ ۱	1
L	аблица	1

	Номер пункта методики поверки	Проведение операции при		
Наименование операции		первичной поверке	периодической поверке	
Внешний осмотр	8.1	Да	Да	
Опробование	8.2	Да	Да	
Определение метрологических характеристик	8.3			
Определение коэффициента преобра- зования	8.3.1	Да	Да	
Определение погрешности коэффициента преобразования	8.3.2	Да	Да	
Определение диапазона измеряемых значений амплитуды импульсного напряжения и максимального значения амплитуды измеряемого импульса силы тока	8.3.3	Да	Да	
Определение времени нарастания переходной характеристики	8.3.4	Да	Да	
Определение относительной погрешности измерений времени нарастания переходной характеристики	8.3.5	Да	Да	
Определение максимальной длительности измеряемого импульса на уровне 0,5 от амплитуды (при максимальной амплитуде напряжения)	8.3.6	Да	Да	

- 2.2 Метрологические характеристики делителя при проведении первичной и периодической поверок в соответствии с таблицей 1, определяются совместно с шунтом измерительным ШИ, зав.№01 из состава комплекта специализированных средств измерений импульсов тока, который используется в качестве нижнего (выходного) плеча делителя.
- 2.3 При получении отрицательных результатов при проведении любой операции поверка прекращается.
- 2.4 Поверку средств измерений осуществляют аккредитованные в установленном порядке в области обеспечения единства измерений юридические лица и индивидуальные предприниматели.
- 2.5 Метрологические характеристики по таблице 1 допускается определять не в полном объеме, при этом поверка проводится по сокращенной программе. Объем поверочных работ определяется совместным решением (или по договоренности) между заказчиком и исполнителем проведения работ.

3 СРЕДСТВА ПОВЕРКИ

3.1 При проведении первичной и периодической поверок должны быть использованы следующие средства, указанные в таблице 2.

7	Γ_{α}	ĸ	пит	2
	ιa	U	лина	LZ

Номер пункта мето-
дики поверки

Наименование и тип (условное обозначение) основного или вспомогательного средства поверки; обозначение нормативного документа, регламентирующего технические требования и (или) метрологические и основные технические характеристики средства поверки

8.3.1 - 8.3.5

1 Государственный первичный специальный эталон (ГПСЭ) единицы электрического напряжения стандартизованных грозовых и коммутационных импульсов в диапазоне от 1 до 1000 кВ ГЭТ 204-2012. ГОСТ Р 8.817-2013.

Основные метрологические характеристики Диапазон воспроизводимых амплитуд электрического напряжения стандартизованных грозовых и коммутационных импульсов составляет от 1 до 1000 кВ. СКО амплитуды стандартизованных грозовых импульсов составляет $1,4\cdot10^{-3}$, амплитуды стандартизованных коммутационных импульсов $0,90\cdot10^{-3}$, временных параметров стандартизованных грозовых импульсов составляет $5,0\cdot10^{-3}$, временных параметров стандартизованных коммутационных импульсов $5,0\cdot10^{-3}$. НСП амплитуды стандартизованных грозовых импульсов составляет $1,03\cdot10^{-3}$, амплитуды стандартизованных коммутационных импульсов $8,10\cdot10^{-4}$, временных параметров стандартизованных грозовых импульсов составляет $9,53\cdot10^{-4}$, временных параметров стандартизованных коммутационных импульсов $9,53\cdot10^{-3}$.

2 Государственный первичный специальный эталон единиц напряженностей импульсных электрического и магнитного полей с длительностью фронта импульсов в диапазоне 0,1 - 10,0 нс ГЭТ 148-2013. ГОСТ 8.540-2015

Основные метрологические характеристики импульсных электрического И напряженностей Диапазоны магнитного полей, воспроизводимых эталоном при импульсах экспоненциальной формы (первый режим) с длительностью фронта импульса не более 8 нс на уровне от 0,1 до 0,9 от установившегося значения напряженности и постоянной времени спада импульса на уровне 0,37 от установившегося значения напряженности не менее 150 мкс, составляют от 10 до 200 кВ/м и от 26 до 530 А/м. Диапазоны значений напряженностей импульсных электрического и магнитного полей, воспроизводимых эталоном при импульсах ступенчатой формы, во втором - седьмом режимах составляют 3 В/м до 300 кВ/м и от 0,008 до 800 А/м при длительностях фронта импульсов от 0,1 до 10,0 нс и длительности импульса на уровне 0,5 от установившегося значения напряженности от 1 нс до 1 с. Эталон обеспечивает импульсных воспроизведение напряженностей единиц электрического и магнитного полей с длительностью фронта импульсов в диапазоне от 0,1 до 10,0 нс со средним квадратическим отклонением результата измерений, не превышающим $0.4 \cdot 10^{-2}$ при формы при экспоненциальной и ступенчатой импульсах независимых наблюдениях.

Значения неисключенной систематической погрешности не превышают и относительной погрешности воспроизведения

длительности фронта импульсов: при импульсах экспоненциальной формы: 1 % - для электрического поля; 2 % - для магнитного поля; при импульсах ступенчатой формы от 3,0 до 8,5 % - для электрического поля в диапазоне от 3 В/м до 300 кВ/м и магнитного поля в диапазоне от 0,008 до 800 А/м.

Значения стандартной неопределенности в первом — седьмом режимах работы для электрического и магнитного полей, оцененной по типу A, составляют от 0,1 до 0,4 %, стандартной неопределенности, оцененной по типу B: от 0,4 до 3,4 %, суммарной стандартной неопределенности от 0,5 до 3,4 % и расширенной неопределенности при доверительной вероятности 0,99 и коэффициенте охвата 1,71 составляют от 0,9 до 5,7 %.

3 Осциллограф цифровой Tektronix TDS 784D, ГР СИ № 19296-00.

Основные метрологические характеристики:

- полоса пропускания: 1 ГГц;
- диапазон коэффициента отклонения: 1 мВ/дел 10 В/дел;
- диапазон коэффициента развертки: 200 пс/дел 10 с/дел;
- пределы допускаемой относительной погрешности коэффициента отклонения: ± 1 %;
- входное сопротивление: 50 Ом/1 МОм
- 3.2 Допускается применение других средств поверки, не приведенных в таблице 2, но обеспечивающих определение (контроль) метрологических характеристик поверяемых средств измерений с требуемой точностью.
- 3.3 Средства измерений, указанные в таблице 2, должны быть поверены и аттестованы в установленном порядке.

4 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

4.1 К работе с делителем допускаются лица, изучившие настоящую методику поверки и руководства по эксплуатации, имеющие удостоверение квалификационной группы на право работы с электроустановками напряжением свыше 1000 В в соответствии с правилами по охране труда и эксплуатации электроустановок, указанных в приложении к приказу Министерства труда и социальной защиты РФ от 24.07.13 № 328H.

5 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 5.1 Перед началом поверки необходимо изучить руководство по эксплуатации делителя и настоящую методику поверки.
- 5.2 При проведении поверки следует соблюдать требования, установленные правилами по охране труда и эксплуатации электроустановок, указанных в приложении к приказу Министерства труда и социальной защиты РФ от 24.07.13 № 328Н. Оборудование, применяемое при испытаниях, должно соответствовать требованиям ГОСТ 12.2.003-91. Воздух рабочей зоны должен соответствовать ГОСТ 12.1.005-88 при температуре помещения, соответствующей условиям испытаний для легких физических работ.
- 5.3 Система электрического питания приборов должна быть защищена от колебаний и пиков сетевого напряжения, искровые генераторы не должны устанавливаться вблизи приборов.
- 5.4 При выполнении измерений должны соблюдаться требования, указанные в «Правилах техники безопасности при эксплуатации электроустановок потребителей», утвержденных Госэнергонадзором, а также требования руководства по эксплуатации делителя.

5.5 Помещение, в котором проводится поверка, должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004-91 и иметь средства пожаротушения по ГОСТ 12.4.009-83.

6 УСЛОВИЯ ПОВЕРКИ

6.1 При проведении поверки соблюдают следующие условия:

температура окружающего воздуха, °С
от 15 до 25;
относительная влажность воздуха, %
от 50 до 80;
атмосферное давление, кПа
напряжение питания сети, В
частота сети, Гц
от 200 до 240;
от 49 до 51.

- 6.2 Помещение, где проводится поверка, должно быть чистым и сухим, свободным от пыли, паров кислот и щелочей.
- 6.3 В помещении, где проводится поверка, должны отсутствовать механические вибрации и посторонние источники излучения, а также мощные постоянные и переменные электрические и магнитные поля.

7 ПОДГОТОВКА К ПОВЕРКЕ

- 7.1 Проверьте наличие средств поверки по таблице 2, укомплектованность их документацией и необходимыми элементами соединений.
- 7.2 Используемые средства поверки разместите, заземлите и соедините в соответствии с требованиями их технической документации.
- 7.3 Подготовку, соединение, включение и прогрев поверяемого средства и средств поверки, регистрацию показаний и другие работы по поверке произведите в соответствии с документацией на указанные средства.

8 ПРОВЕДЕНИЕ ПОВЕРКИ

8.1 Внешний осмотр

8.1.1 Проверяют комплектность делителя в соответствии с его руководством по эксплуатации КВФШ.411136.003 РЭ.

Комплектность комплекта должна соответствовать таблице 3.

Таблица 3

Наименование	Количество, шт.
Делитель импульсного напряжения высоковольтный ДН, зав.№01022016	1
Паспорт КВФШ.411136.003 ПС.	1
Руководство по эксплуатации КВФШ.411136.003 РЭ.	1
Методика поверки МП 030.М12-16.	1

- 8.1.2 Проверяют делитель на отсутствие механических повреждений и ослаблений элементов конструкции, на соответствие расположения надписей и обозначений руководства по эксплуатации КВФШ.411136.003 РЭ.
- 8.1.3 Делитель признается прошедшим операцию поверки, если не обнаружены несоответствия комплектности, механические повреждения, ослабления элементов конструкции, неисправности разъемов.

8.2 Опробование

8.2.1 При опробовании делителя оценивают отклонение значения коэффициента преобразования от паспортного значения с целью выявления внутренних скрытых дефектов (нарушение целостности сборки), возникших при транспортировании или эксплуатации, препятствующих дальнейшей эксплуатации изделия.

8.2.2 Подключают высоковольтный выход генератора импульсов высокого напряжения экспоненциальной формы с источником питания Г-1 из состава ГПСЭ ГЭТ 148-2013 к входному верхнему резистивному элементу делителя (см. рисунок 1), а к нижнему выходному резистору подсоединяют низкоомную омическую нагрузку (или шунт измерительный ШИ, зав.№01 из состава комплекта специализированных средств измерений импульсов тока). Выход шунта с помощью 50-омного коаксиального радиочастотного кабеля длиной 1,8 м из его комплекта подключают к входу измерительного осциллографа Tektronix TDS 784D с установленным входным сопротивлением 50 Ом. Земляной электрод шунта ШИ располагают на плоскости заземления (металлическом листе) с размерами не менее 0,5×0,5 м.

Рисунок 1 – Схема определения метрологических характеристик делителя ДН

- 8.2.3 Устанавливают (с точностью \pm 10 %) амплитуду $U_{\text{ген.}\Gamma\text{-}1}$ импульсов напряжения на выходе генератора высоковольтных импульсов Γ -1 равной 20 кВ. Воспроизводят импульсы напряжения на выходе генератора Γ -1, регистрируют с помощью осциллографа Tektronix TDS 784D импульсы на выходе нагрузки (шунта ШИ) и определяют среднее значение амплитуды напряжения $U_{\text{ШИ.имп.ср.}}$
 - 8.2.4 По формуле (1) вычисляют значение коэффициента преобразования делителя:

$$K_{np,\mathcal{I}H} = U_{\text{zeh.}\Gamma-1} / U_{\mathcal{I}\mathcal{I}\mathcal{I}.\text{umn.cp.}} \tag{1}$$

8.2.5 Делитель признается прошедшим операцию поверки, если вычисленное значение коэффициента преобразования отличается от указанного в паспорте значения не более чем на \pm 10 %.

8.3 Определение метрологических характеристик

8.3.1 Определение коэффициента преобразования

8.3.1.1 Проводят работы по п.п. 8.2.2 - 8.2.3, воспроизводят импульсы напряжения на выходе генератора Γ -1 и обеспечивают регистрацию импульсов на выходе нагрузки (шунта ШИ).

По полученной осциллограмме при помощи маркеров осциллографа на вершине импульса измеряют две величины: $V_{\rm max}$ — соответствующую максимальному значению амплитуды и $V_{\rm min}$ — соответствующую минимальному значению амплитуды (см. рисунок 2).

Описанные измерения производят n=10 раз и по формулам (2) вычисляют средние арифметические значения \overline{V}_{\max} и \overline{V}_{\min} :

$$\overline{V}_{\max} = \frac{1}{n} \sum_{i=1}^{n} V_{\max_{i}}, \quad \overline{V}_{\min} = \frac{1}{n} \sum_{i=1}^{n} V_{\min_{i}},$$
 (2)

где $V_{\mathsf{max_i}}$ – i-е измерение напряжения $V_{\mathsf{max},}$

 $V_{\min_i} - i$ -е измерение напряжения V_{\min_i}

Значение коэффициента преобразования делителя определяют по формуле (3):

$$K_{np} = \frac{\overline{V}_{\text{max}} + \overline{V}_{\text{min}}}{2 \cdot U_{\text{cen} T-1}}.$$
 (3)

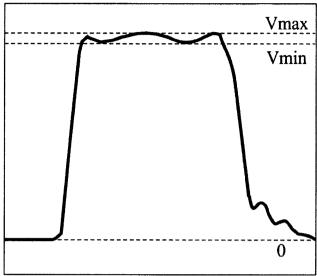


Рисунок 2 — Эпюра напряжения на выходе делителя (шунта ШИ) при определении коэффициента преобразования

Далее вычисляют средние квадратические отклонения (СКО) $S(\overline{V}_{\max})$ и $S(\overline{V}_{\min})$ измерений максимального V_{\max} и минимального V_{\min} значений напряжения на выходе шунта по формуле (4):

$$S(\overline{V}_{\text{max}}) = \frac{\sqrt{\sum_{i=1}^{n} (V_{\text{max}_{i}} - \overline{V}_{\text{max}})^{2}}}{n(n-1)}, \ S(\overline{V}_{\text{min}}) = \frac{\sqrt{\sum_{i=1}^{n} (V_{\text{min}_{i}} - \overline{V}_{\text{min}})^{2}}}{n(n-1)}.$$
(4)

Из полученных значений $\{S(\overline{V}_{max})$ и $S(\overline{V}_{min})\}$ выбирают максимальное и принимают это значение в качестве оценки СКО для $S(K_{np})$.

Доверительные границы случайной погрешности результата измерений коэффициента преобразования делителя (совместно с шунтом ШИ, без учета знака) при доверительной вероятности P = 0.95 и n = 10 находят по формуле (5):

$$\varepsilon_{Knp} = 2,262 \cdot S(K_{\Pi P}) \cdot \frac{100\%}{\overline{V}_{\text{max/min}}},$$
(5)

где $\overline{V}_{\text{max/min}}$ – соответствующее среднее значение, относящееся к выбранному в качестве максимальной величины $S(\overline{V}_{\text{max}})$ или $S(\overline{V}_{\text{min}})$.

8.3.1.2 Делитель признается прошедшим операцию поверки, если вычисленное значение коэффициента преобразования составляет: $6.3 \cdot 10^{-5} \pm 10$ % B/B.

8.3.2 Определение погрешности коэффициента преобразования

8.3.2.1 Доверительные границы случайной составляющей погрешности измерений коэффициента преобразования в предположении о нормальном распределении результатов измерений входящих величин при доверительной вероятности P=0,95 и числе измерений n = 10 принимают равными значению, полученному в п.8.3.1.

8.3.2.2 Доверительные границы неисключенной систематической составляющей погрешности измерений коэффициента преобразования при доверительной вероятности P=0.95 и поправочном коэффициенте k=1.1 определяют по формуле (6):

$$\Theta_{Knp} = 1, 1\sqrt{\Theta_{\Gamma-1}^2 + \Theta_{V\,\text{max}}^2 + \Theta_{V\,\text{min}}^2}, \qquad (6)$$

где $\Theta_{\Gamma-1} = 5,0$ % — относительная погрешность воспроизведения амплитуды импульсы напряжения на выходе генератора Γ -1 из состава Γ ЭТ 148-2013;

 $\Theta_{Vmax} = 1,0$ % — относительная погрешность осциллографа Tektronix TDS 784D при определении максимальной амплитуды V_{max} импульсов напряжения на выходе нагрузки (шунта ШИ);

 Θ_{Vmin} = 1,0 % — относительная погрешность осциллографа Tektronix TDS 784D при определении минимальной амплитуды V_{min} импульсов напряжения на выходе нагрузки (шунта ШИ);

8.3.2.3 Доверительные границы погрешности измерений коэффициента преобразования вычисляют по полученным значениям случайной и неисключенной систематической погрешности в соответствии с ГОСТ 8.736-2011 «ГСИ. Измерения прямые многократные. Методы обработки результатов наблюдений. Основные положения» по формуле (7):

$$\delta_{Knp} = K \cdot S_{\Sigma},\tag{7}$$

где K – коэффициент, зависящий от соотношения случайной составляющей погрешности и $HC\Pi$.

 S_{Σ} — суммарное среднее квадратическое отклонение измерения коэффициента преобразования, определяемое по формуле (8):

$$S_{\Sigma} = 1.1 \sqrt{S_{\Theta}^2 + S(K_{np})^2}$$
, (8)

где S_{Θ} - СКО НСП измерений коэффициента преобразования, вычисляемое по формуле (9):

$$S_{\Theta} = \frac{\Theta_{Knp}}{1,1\sqrt{3}} \,. \tag{9}$$

Коэффициент K вычисляют по формуле (10):

$$K = \frac{\varepsilon_{Knp} + \Theta_{Knp}}{S(K_{np}) + S_{\Theta}}.$$
 (10)

8.3.2.4 Делитель признается прошедшим операцию поверки, если полученное значение погрешности коэффициента преобразования не превышает ± 10 %.

8.3.3 Определение диапазона измеряемых значений амплитуды импульсного напряжения и максимального значения амплитуды измеряемого импульса силы тока

8.3.3.1 Проводят работы по п.8.2.2 и устанавливают (с точностью \pm 5 %) на выходе высоковольтного генератора импульсов высокого напряжения Γ -1 из состава Γ ПСЭ Γ ЭТ 148-2013 амплитуду $U_{\text{ген.мин}}$ импульсов напряжения равной 1 кВ, соответствующую нижней границе рабочего диапазона делителя. Десятикратно воспроизводят импульсы напряжения на выходе генератора Γ -1 с длительностью фронта между уровнями 0,1-0,9 от амплитуды по-

рядка 10 нс и постоянной времени спада импульсов по уровню 0,37 от амплитуды порядка 150 мкс и визуально контролируют наличие электрических пробоев по высоковольтным частям установки и пробоев на «землю». Проводят регистрацию импульсов напряжения с помощью осциллографа Tektronix TDS 784D на выходе нагрузки (шунта ШИ).

8.3.3.2 Подключают высоковольтный выход генератора однократных импульсов напряжения IP 55/1100 L из состава ГПСЭ ГЭТ 204-2012 к входному верхнему резистивному элементу делителя и далее проводят работы по п.8.2.2. Устанавливают (с точностью \pm 5 %) на выходе высоковольтного генератора импульсов IP 55/1100 L последовательно следующие значения амплитуд: $U_{\text{ген.макс.i}} = 300$, 430, 450, 460, 460 кВ, соответствующие верхней границе рабочего диапазона делителя. В каждой амплитудной точке последовательно три раза воспроизводят импульсы напряжения на выходе генератора IP 55/1100 L с длительностью фронта между уровнями 0,1-0,9 от амплитуды порядка 1 мкс и длительностью импульсов по уровню 0,5 от амплитуды порядка 50 мкс. Визуально контролируют наличие электрических пробоев по высоковольтным частям установки и пробоев на «землю». Проводят регистрацию импульсов напряжения с помощью осциллографа Tektronix TDS 784D на выходе нагрузки (шунта ШИ).

8.3.3.3 Максимальное значение амплитуды измеряемого импульса силы тока определяют по формуле (11):

$$I_{u_{3M.max,JH}} = U_{max,JH} / R_{eep.nn,JH}$$
(11)

где $U_{\text{max.ДH}} = 450 \text{ кВ}$ – верхняя граница рабочего диапазона делителя;

 $R_{\text{вер.пл.ДH}} = 0,5 \text{ кОм}$ — сопротивление верхнего плеча делителя (в соответствии с руководство по эксплуатации КВФШ.411136.003 РЭ).

8.3.3.4 Делитель признается прошедшим операцию поверки, если диапазон измеряемых значений амплитуды импульсного напряжения и максимальное значение амплитуды измеряемого импульса силы тока соответствуют таблице 4, и в процессе нагружения импульсами высокого напряжения, соответствующим нижней и верхней границам рабочего амплитудного диапазона не наблюдалось наличия электрических пробоев по высоковольтным частям установки и пробоев на «землю» и на зафиксированных осциллограммах не наблюдался срез воздействующих испытательных импульсов.

Таблица 4

Наименование характеристики	Значение характеристики
Диапазон измеряемых значений амплитуды импульсного напряжения, кВ	от 1 до 450
Максимальное значение амплитуды измеряемого импульса силы тока не менее, А	850

8.3.4 Определение времени нарастания переходной характеристики

- 8.3.4.1 Проводят работы по п.п. 8.2.2. 8.2.3. Последовательно воспроизводят 10 импульсов напряжения с амплитудой 20 кВ и регистрируют их с помощью осциллографа Tektronix TDS 784D. С помощью маркеров определяют длительность фронта T_{ϕ_i} зарегистрированных импульсов между уровнями 0,1 0,9 от установившегося значения напряжения на выходе нагрузки (шунта ІІІИ).
- 8.3.4.2 Время нарастания переходной характеристики делителя между уровнями 0,1 0,9 от установившегося значения вычисляют по формуле (12):

$$T_{n,\Pi X,\mathcal{Q}H,i} = \sqrt{T_{\phi_{-}i}^2 - T_{\phi p,\Gamma-1}^2 - T_{ocu}^2} , \qquad (12)$$

где $T_{\phi_{-}i}$ – i-ое зарегистрированное значение длительности фронта импульсов между уровнями 0,1 - 0,9 от установившегося значения;

 $T_{\phi p.\Gamma - l} = 8,4$ не — длительность фронта импульсов между уровнями 0,1-0,9 от амплитуды на выходе высоковольтного генератора импульсов высокого напряжения Γ -1 из состава $\Gamma\Pi$ СЭ Γ ЭТ 148-2013;

 T_{OCU} = 0,36 нс — время нарастания переходной характеристики осциллографа Tektronix TDS 784D.

$$\overline{T}_{n.\Pi X.JH} = \frac{1}{n} \sum_{i=1}^{n} T_{n.\Pi X.JH.i} , \qquad (13)$$

где $T_{_{H.\Pi X.JH.i}}$ - i – тый результат измерений,

n – количество измерений.

8.3.4.4 Делитель признается прошедшим операцию поверки, если полученное значение времени нарастания переходной характеристики между уровнями 0,1 - 0,9 от установившегося значения составляет не более 20 нс.

8.3.5 Определение относительной погрешности измерений времени нарастания переходной характеристики

8.3.5.1 Доверительные границы относительной погрешности измерений времени нарастания переходной характеристики при доверительной вероятности P=0,95 и поправочном коэффициенте k = 1,1 определяют по формуле (14).

$$\Theta_{TH,\Pi X,B,\Pi} = 1,1\sqrt{\Theta_{\phi p}^2 + \Theta_{\Gamma-1}^2}, \qquad (14)$$

где $\Theta_{\phi p} = 1,0 \%$ — относительная погрешность осциллографа Tektronix TDS 784D при определении длительности фронта импульсов между уровнями 0,1 - 0,9 от установившегося значения напряжения на выходе нагрузки (шунта ШИ);

 $\Theta_{\Gamma-1}=6.0~\%$ — относительная погрешность воспроизведения длительности фронта импульсов между уровнями 0.1 - 0.9 от установившегося значения напряжения на выходе высоковольтного генератора импульсов высокого напряжения Γ -1 из состава $\Gamma\Pi$ СЭ Γ ЭТ 148-2013.

8.3.5.2 Делитель признается прошедшим операцию поверки, если полученное значение доверительных границ относительной погрешности измерений времени нарастания переходной характеристики при доверительной вероятности P=0,95 составляет не более \pm 10 %.

8.3.6 Определение максимальной длительности измеряемого импульса на уровне 0,5 от амплитуды (при максимальной амплитуде напряжения)

- 8.3.6.1 Определение максимальной длительности измеряемого импульса на уровне 0,5 от амплитуды (при максимальной амплитуде напряжения) совмещают с проведением работ по n.8.3.3.2 при воздействии высоковольтных импульсов напряжения с длительностью фронта между уровнями 0,1-0,9 от амплитуды порядка 1 мкс и длительностью импульсов по уровню 0,5 от амплитуды порядка 50 мкс \pm 10 %..
- 8.3.6.2 Делитель признается прошедшим операцию поверки и максимальная длительность измеряемого импульса на уровне 0.5 от амплитуды (при максимальной амплитуде напряжения) принимается равной 50 мкс, если выполняется условие испытаний по 1.4.10.4 и длительность воздействующих импульсов составляет 50 мкс \pm 10 % (так как вследствие малого входного сопротивления делителя длительность воздействующих импульсов напряжения может незначительно изменяться).

9 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

9.1 Делитель прошедший поверку с положительным результатом, признается годным и допускается к применению. На него выдается протокол (в соответствии с приложением А) и свидетельство о поверке установленной формы с указанием полученных по п.п. 8.3.1 - 8.3.6 фактических значений метрологических характеристик делителя, наносят знак поверки (место нанесения указано в описании типа) согласно Приказу Министерства промышленности и торговли Российской Федерации №1815 от 02.07.2015 г. «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке», и комплекс допускают к эксплуатации.

9.2 При отрицательных результатах поверки делитель признается негодным, не допускается к применению и на него выдается «Извещение о непригодности» с указанием причин в соответствии с требованиями Приказа Министерства промышленности и торговли Российской Федерации №1815 от 02.07.2015 г. Свидетельство о предыдущей поверке и (или) знак поверки аннулируется.

Начальник отдела ФГУП «ВНИИОФИ»

Ведущий инженер ФГУП «ВНИИОФИ»

Ведущий научный сотрудник ФГУП «ВНИИОФИ»

Инженер ФГУП «ВНИИОФИ»

А.В. Иванов

А.Н. Шобина

О.В. Михеев

П.С. Мальцев

ПРИЛОЖЕНИЕ А (обязательное)

протокол

первичной	/ пер	иодической	пов	ерки
OT «	>>	20)1	года

Средство измерений: <u>Делитель импульсног</u> (Наименование СИ, тип (если в соста	о напряжения высс	оковольтный ДН
(Наименование СИ, тип (если в соста	в СИ входит несколько авто	номных блоков
то приводят их перечень (наименования)) и типы с разделением знако	ом «косая дробь» /)
Зав.№01022016_№		
	дские номера блоков	
Принадлежащее	иенование юридического лиг	ца, ИНН
Поверено в соответствии с методикой п		
ния высоковольтный ДН. Методика пове		
«ВНИИОФИ» « » 2016 г.	а поверку, кем утвержден (с	огласован) пата
	а поверку, кем утвержден (с	огласован), дата
С применением эталонов	ание, заводской номер, разря	яд, класс точности или погрешность)
При следующих значениях влияющих фан (приводят перечень и знач	сторов: ения влияющих факторов, н	ормированных в методике поверки)
 температура окружающего воздух 	ĸa, °C	
 относительная влажность воздуха 	, %, не более	
 атмосферное давление, кПа 		
напряжение питания сети, Вчастота сети, Гц		
частога сеги, г ц		
Получены результаты поверки мет	рологических хар	актеристик:
Характеристика	Результат	Требования методики поверки

Рекомендации		
·	я признать пригодным (или н	непригодным) для применения
Исполнители:		
		подписи, ФИО, должност