

Тахеометры электронные CX-100LN

МЕТОДИКА ПОВЕРКИ

МП АПМ 35-16

Настоящая методика поверки распространяется на тахеометры электронные CX-100LN (далее – тахеометры), производства «TOPCON CORPORATION», Япония, и устанавливает методику их первичной и периодической поверки.

Интервал между поверками - 1 год.

1. Операции поверки

При проведении поверки должны выполняться операции, указанные в таблице 1.

Таблица 1

		№ пункта	Проведение операций при		
No	Наименование операции	документа	первичной	периодической	
п/п		по поверке	поверке	поверке	
1	Внешний осмотр	7.1	Да	Да	
2	Опробование, проверка работоспособно-	7.2	Да	Да	
	сти функциональных режимов, идентифи-				
	кация программного обеспечения				
3	Определение метрологических характери-	7.3			
	стик				
3.1	Определение абсолютной погрешности и	7.3.1	Да	Да	
	СКП измерений расстояний				
3.2	Определение абсолютной погрешности и	7.3.2	Да	Да	
	СКП измерений угла				

2. Средства поверки

При проведении поверки должны применяться эталоны и вспомогательные средства поверки, приведенные в таблице 2

Таблица 2

№ пункта документа по	Наименование эталонов, вспомогательных средств поверки и их ос-			
поверке	новные метрологические и технические характеристики			
7.3.1	Тахеометр электронный 1-го разряда по ГОСТ Р 8.750-2011			
7.3.2	Стенд универсальный коллиматорный ВЕГА УКС (рег. № 44753-16)			

Допускается применять другие средства поверки, обеспечивающие определение метрологических характеристик с точностью, удовлетворяющей требованиям настоящей методики.

3. Требования к квалификации поверителей

К проведению поверки допускаются лица, изучившие эксплуатационные документы, имеющие достаточные знания и опыт работы с тахеометрами.

4. Требования безопасности

При проведении поверки, меры безопасности должны соответствовать требованиям по технике безопасности согласно эксплуатационной документации, правилам по технике безопасности, действующие на месте проведения поверки и требованиям МЭК-825 «Радиационная безопасность лазерной продукции, классификация оборудования, требования и руководство для потребителей», а также правилам по технике безопасности при производстве топографогеодезических работ ПТБ-88.

5. Условия поверки

5.1. Поверка тахеометров может быть проведена в полевых или лабораторных условиях.

При проведении поверки в лабораторных условиях должны соблюдаться, следующие нормальные условия измерений:

- относительная влажность воздуха, %, не более

- атмосферное давление, мм рт. ст. (кПа)

80 630...800

(84,0...106,7)

- изменение температуры окружающей среды во время поверки, °С/ч, не более 2

Полевые измерения (измерения на открытом воздухе) должны проводиться при отсутствии осадков, порывов ветра и при температуре окружающей среды от минус 20 до плюс 50 $^{\circ}$ C

6. Подготовка к поверке

Перед проведением поверки должны быть выполнены следующие подготовительные работы:

- проверить наличие действующих свидетельств о поверке на средства измерений;
- тахеометр и средства поверки привести в рабочее состояние в соответствии с их эксплуатационной документацией;
- тахеометр и средства поверки должны быть выдержаны при нормальных условиях не менее 1 ч.

7. Проведение поверки

7.1. Внешний осмотр

При внешнем осмотре должно быть установлено соответствие тахеометра следующим требованиям:

- отсутствие коррозии, механических повреждений и других дефектов, влияющих на эксплуатационные и метрологические характеристики тахеометра;
- наличие маркировки и комплектности согласно требованиям эксплуатационной документации на тахеометр;
 - оптические системы должны иметь чистое и равномерно освещенное поле зрения.

Если перечисленные требования не выполняются, тахеометр признают негодным к применению, дальнейшие операции поверки не производят.

7.2. Опробование, проверка работоспособности функциональных режимов, идентификация программного обеспечения

- 7.2.1. При опробовании должно быть установлено соответствие тахеометра следующим требованиям:
 - отсутствие качки и смещений неподвижно соединенных деталей и элементов;
 - плавность и равномерность движения подвижных частей;
 - правильность взаимодействия с комплектом принадлежностей;
 - работоспособность всех функциональных режимов и узлов;
- дискретность отсчета измерения углов и расстояний должны соответствовать эксплуатационной документации.
- 7.2.2. Проверку идентификационных данных программного обеспечения проводить следующим образом:

Идентификация программного обеспечения (далее – ΠO) «DCPU» осуществляется следующим образом:

- 1. Включить поверяемый тахеометр
- 2. Через интерфейс пользователя войти в режим измерений
- 3. Нажать на кнопочной панели управления клавишу «esc»

В появившемся диалоговом окне будет отображен номер версии ПО.

Данные, полученные по результатам идентификации ПО, должны соответствовать таблице 3.

Таблица 3

Номер версии (идентификационный номер ПО), не ниже	1-7.01E1 02	

Если перечисленные требования не выполняются, тахеометр признают негодным к применению, дальнейшие операции поверки не производят.

7.3. Определение метрологических характеристик

7.3.1. Определение абсолютной погрешности и СКП измерений расстояний

Абсолютная погрешность измерений и СКП измерений расстояний определяется путем сличения с эталонным тахеометром 1-го разряда по ГОСТ Р 8.750-2011.

Необходимо провести многократно, не менее 10 раз, измерения не менее 3 значений расстояний, действительные длины которых расположены в заявляемом диапазоне измерений расстояний поверяемого тахеометра и определены с помощью эталонного тахеометра 1-го разряда по ГОСТ Р 8.750-2011.

Абсолютная погрешность измерений (при доверительной вероятности 0,95) расстояний определяется по формуле:

$$\Delta S = \left(\frac{\sum_{j=1}^{n} S_{ij}}{n_{j}} - S_{0j}\right) \pm 2 \cdot \sqrt{\frac{\sum_{j=1}^{n} \left(S_{ij} - \frac{\sum_{j=1}^{n} S_{ij}}{n_{j}}\right)^{2}}{n_{j} - 1}},$$

где ΔS - абсолютная погрешность измерений j-го расстояния, мм;

 $S_{\theta j}$ - эталонное (действительное) значение j-го расстояния, полученное по эталонному тахеометру;

 Si_{j} - полученное значение j-го расстояния i-м приемом по поверяемому тахеометру;

 n_{i} - число приемов измерений j-го расстояния.

СКП измерений каждой линии вычисляется по формуле:

$$m_{S_i} = \sqrt{\frac{\sum_{i=1}^{n_j} (S_{0_j} - S_{i_j})^2}{n_j}},$$

 m_{S_i} - СКП измерения j-го расстояния.

Значение абсолютной погрешности (при доверительной вероятности 0,95) и СКП измерений расстояний должны соответствовать значениям, приведённым в Приложении к настоящей методике поверки.

Если требование п.7.3.1. не выполняется, тахеометр признают непригодным к применению, дальнейшие операции поверки не производят.

7.3.2. Определение абсолютной погрешности и СКП измерений угла

Абсолютная погрешность и СКП измерений углов определяется на эталонном коллиматором стенде путем многократных измерений (не менее четырех циклов измерений, состоящих из измерений в положении «Круг право» (КП) и «Круг лево» (КЛ)) горизонтального угла $(90\pm30)^\circ$ и вертикального угла (60лее $\pm20^\circ$).

Абсолютная погрешность измерений (при доверительной вероятности 0,95) горизонтального и вертикального углов вычисляется по формуле:

$$\Delta_{v_j} = \left(\frac{\sum_{i=1}^n V_{ij}}{n} - V_{0,j}\right) \pm 2 \cdot \sqrt{\frac{\sum_{i=1}^n (V_{ij} - \sum_{i=1}^n V_{ij})^2}{n}},$$

где Δ_{vi} - абсолютная погрешность измерений горизонтального (вертикального) угла, ...";

 V_{0j} - значение горизонтального (вертикального) угла по эталонному коллиматорному стенду, взятое из свидетельства о поверке на него, ...";

 $V_{\it ij}$ - значение горизонтального (вертикального) угла по поверяемому тахеометру, ...". n - число измерений.

СКП измерений горизонтального и вертикального углов вычисляется по формуле:

$$\mathbf{m}_{\mathbf{v}_{i}} = \sqrt{\frac{\sum_{i=1}^{n} V_{i}^{2}}{n}},$$

где m_{Vi} - СКП измерений горизонтального (вертикального) угла, ...";

 V_i - разность между измеренным поверяемым тахеометром значением i-го горизонтального (вертикального) угла и значением i-го горизонтального (вертикального) угла по эталонному коллиматорному стенду, взятому из свидетельства о поверке на него ...":

п - число измерений.

Значения абсолютной погрешности (при доверительной вероятности 0,95) и средней квадратической погрешности измерений углов не должны превышать значений, указанных в Приложении к настоящей методике поверки.

Если требование п.7.3.2. не выполняется, тахеометр признают непригодным к применению, дальнейшие операции поверки не производят.

8. Оформление результатов поверки

- 8.1. Результаты поверки оформляются протоколом, составленным в виде сводной таблицы результатов поверки по каждому пункту раздела 7 настоящей методики поверки.
- 8.2. При положительных результатах поверки, тахеометр признается годным к применению и на него выдается свидетельство о поверке установленной формы. Знак поверки наносится на свидетельство о поверке в виде наклейки и / или поверительного клейма.
- 8.3. При отрицательных результатах поверки, тахеометр признается непригодным к применению и на него выдается извещение о непригодности установленной формы с указанием основных причин.

Руководитель отдела OOO «Автопрогресс — M»

В.А. Лапшинов

ПРИЛОЖЕНИЕ (обязательное)

Метрологические характеристики

Наименование характеристики	Значение характеристики				
Модификация	CX-102LN	CX-105LN	CX-102LNL	CX-105LNL	
Диапазон измерений: углов,°	от 0 до 360				
расстояний, м, не менее: - отражательный режим (1 призма) - диффузный режим - диффузный режим увеличенной дальности	от 1,4 до 3000,0 от 1,5 до 250,0 ¹⁾ от 5 до 2000 ¹⁾ от 5 до 700 ²⁾				
Границы допускаемой абсолютной погрешности измерений углов (при доверительной вероятности 0,95),"	±4	±10	±4	±10	
Допускаемая средняя квадратическая по- грешность измерений углов,"	2	5	2	5	
Границы допускаемой абсолютной погрешности измерений расстояний (при доверительной вероятности 0,95), мм: - отражательный режим (1 призма) - диффузный режим - диффузный режим увеличенной дальности:	$\pm 2\cdot(2+2\cdot10^{-6}\cdot D)$ ± 10 $\pm 2\cdot(10+10\cdot10^{-6}\cdot D)$ $\pm 2\cdot(10+23\cdot10^{-6}\cdot D)$ где D — измеряемое расстояние, мм				
Допускаемая средняя квадратическая погрешность измерений расстояний, мм: - отражательный режим (1 призма) - диффузный режим - диффузный режим увеличенной дальности: от 5 до 500 м включ. св. 500 до 2000 м включ.	2+2·10 ⁻⁶ ·D 5				

 $^{^{1)}}$ - измерения на поверхность соответствующей белой поверхности пластины Кодак с коэффициентом отражения 90% по ГОСТ 8.557-2007.

²⁾ - измерения на поверхность соответствующей белой поверхности пластины Кодак с коэффициентом отражения 18% по ГОСТ 8.557-2007.