ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УНИТАРНОЕ ПРЕДПРИЯТИЕ «ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МЕТРОЛОГИЧЕСКОЙ СЛУЖБЫ» (ФГУП «ВНИИМС»)

ДАТЧИКИ ВИБРАЦИИ ИВД-3

2016 г.

МЕТОДИКА ПОВЕРКИ ПБКМ.468223.002 МП

> г. Москва 2016 г.

Содержание

1 Операция поверки
2 Средства поверки
3 Требования к квалификации поверителей4
4 Требования безопасности
5 Условия поверки4
6 Подготовка к поверке4
7 Проведение поверки
7.1 Внешний осмотр
7.2 Определение допускаемой основной относительной погрешности измерения СКЗ виброскорости по цифровому каналу
7.3 Определение допускаемой основной относительной погрешности измерения СКЗ виброскорости по токовому каналу
7.4 Определение погрешности срабатывания предупредительного и аварийного сигнала
8 Оформление результатов поверки
ПРИЛОЖЕНИЕ А (обязательное) Ссылочные нормативные документы9
ПРИЛОЖЕНИЕ Б (обязательное) Схема испытаний по определению основной относительной погрешности измерения СКЗ виброскорости10
ПРИЛОЖЕНИЕ В (обязательное) Инструкция по работе с программой ConfigIVD12
ПРИЛОЖЕНИЕ Г (обязательное) Схема установки трехкомпонентного датчика

Настоящая методика предназначена для первичной и периодической поверки датчика вибрации ИВД-3 (далее датчика), а также поверки после ремонта датчика.

Порядок работы с датчиком при его поверке совместно с настоящей методикой устанавливает нормативная и эксплуатационная документация, указанная в приложении А.

Поверку проводят организации, аккредитованные на право проведения поверки.

Интервал между поверками 3 года.

1 Операция поверки

При проведении поверки выполняют операции, приведенные в таблице 1.

Таблица 1

Наименование операции	Номер пункта НД по поверке
Внешний осмотр	7.1
Определение допускаемой основной относительной погрешности измерения СКЗ виброскорости по цифровому каналу	7.2
Определение допускаемой основной относительной погрешности измерения СКЗ виброскорости по токовому каналу*	7.3
Определение погрешности срабатывания предупредительного и аварийного сигнала**	7.4
Примечание: -*- проводится только для варианта исполнения ИВД-3Т420; -**- проводится только для варианта исполнения ИВД-3В	

При получении отрицательного результата при выполнении той или иной операции поверку прекращают, датчик бракуют и оформляют результаты поверки согласно 8.

2 Средства поверки

Поверка проводится на аттестованном оборудовании с применением средств поверки, имеющих действующее клеймо поверки. При проведении поверочных работ применяют средства измерений и вспомогательные устройства, указанные в таблице 2.

Таблица 2

Номер пункта НД	Наименование и тип средства поверки и основные технические
по поверке	характеристики
7 7 7 7 7 4	Генератор сигналов произвольной формы 33120А № 26209-03 диапазон частот выходного сигнала (синусоидальный) от 1 × 10 ⁻⁴ до 15 МГц; пределы допускаемой основной относительной погрешности частоты выходного сигнала
1.2, 1.3, 1.4	± 20 × 10°; диапазон напряжения от 50 мВ (Пик-Пик) до 10 В (Пик-Пик); пределы допускаемой абсолютной погрешности установки выходного напряжения, не более ± 0.01 × U ₋₁ .
7.2, 7.3, 7.4	Источник питания MPS № 32050-06 Модель MPS-3003D. Напряжение от 0 до 30 В
7.3	Калибратор электрических сигналов СА 51 № 53468-13 Диапазон измерений от 0 до ± 24 мА; погрешность ± (0,025 % × X + 4 мкА), где X – измеренное или установленное значение / 100 %
7.2, 7.3, 7.4	Преобразователь виброизмерительный 4383 № 8516-81 диапазон измерения виброускорения (пик) от 5 × 10 ⁻³ до 50 × 10 ³ м/с ² ; диапазон рабочих частот 0,1 до 8400 Гц; пределы допускаемого отклонения коэффициента преобразования от номинального

r	
777371	Усилитель мощности TIRA модели ВАА 120
7.2, 7.3, 7.4	Напряжение от 0 до 20 В
	Усилитель измерительный Nexus мод. 2692 № 17592-98
727374	Диапазон частот от 0,1 до 100000 Гц;
7.2, 7.5, 7.4	нелинейные искажения и шум не более 0,003 %;
	неравномерность амлитудо-частотной характеристики – 1 дБ
	Мультиметр цифровой 34401А № 54848-13
727371	до 100 В погрешность \pm (0,0045 × X _{изм} + 0,0006 × X);
7.2, 7.3, 7.4	до 3 А погрешность $\pm (0, 120 \times X_{H3M} + 0, 020 \times X),$
	где X _{изм} – процент от измеренного значения; X – процент от предела измерений
	Приспособление для установки датчика на вибростенд
7.2, 7.3, 7.4	ПБКМ.301200.001
70.70	Приспособление для установки датчика, имеющего три оси измерения на
1.2, 1.3	вибростенд ПБКМ.301200.002
	Вибростенд V406 LDS
7.2, 7.3, 7.4	Частотный диапазон 5 – 9000 Гц:
	Выталкивающая сила 100 Н
777774	Адаптер RS-485/RS-232 ADAM-4520-D2E
1.2, 1.3, 1.4	Преобразование интерфейса RS-485 в RS-232
	ПК ІВМ РС
777371	WINDOWS XP, Vista, 7;
1.2, 1.3, 1.4	Порт - СОМ или переходник USB-СОМ;
	Программа ConfigIVD

Допускается применять средства, не приведенные в таблице 2, при условии обеспечения определения метрологических характеристик с требуемой точностью.

3 Требования к квалификации поверителей

Поверитель должен пройти инструктаж по технике безопасности и иметь удостоверение на право работы с электроустановками с напряжением до 1000 В и группой допуска не ниже III.

4 Требования безопасности

При проведении поверки должны быть соблюдены требования безопасности руководства по эксплуатации ПБКМ.468223.002 РЭ, НТД на средства поверки и инструкций предприятия, производящего поверку.

5 Условия поверки

При проведении испытаний должны соблюдаться нормальные условия:

- температура окружающего воздуха от 15 до 25 °С;
- относительная влажность от 50 до 80 %;
- атмосферное давление от 84,0 до 106,7 кПа (630 800 мм рт. ст.);
- напряжение питающей сети (220,0 ± 22,0) В, частотой (50 ± 0,4) Гц;

– отсутствие вибрации, внешних электрических и магнитных полей (кроме земного магнитного поля и магнитного поля вибростенда).

6 Подготовка к поверке

Перед проведением поверки датчик необходимо выдержать в нормальных условиях в течение не менее 4 часов.

Подготовка датчика к работе выполняется в соответствии с требованиями эксплуатационных документов.

7 Проведение поверки

7.1 Внешний осмотр

Комплектность датчика проверяется на соответствие паспорту ПБКМ.468223.002 ПС.

Внешний вид должен соответствовать требованиям руководства по эксплуатации ПБКМ.468223.002 РЭ. При внешнем осмотре должно быть установлено соответствие следующим требованиям:

- отсутствие механических повреждений корпуса, соединительных кабелей и соединений;

- наличие маркировки и функциональных надписей;

– маркировка и функциональные надписи, относящиеся к органам управления и присоединения, должны восприниматься без затруднений и неоднозначности;

- наличие и исправность заземляющего зажима.

В случае несоответствия датчика хотя бы одному из вышеперечисленных требований, его признают непригодным к применению, поверку не проводят и оформляют результаты поверки согласно 8.

7.2 Определение допускаемой основной относительной погрешности измерения СКЗ виброскорости по цифровому каналу

Испытания для датчиков, имеющих одну ось измерения, проводят с использованием приспособления ПБКМ.301200.001.

Датчик с помощью приспособления ПБКМ.301200.001 установить на столе вибростенда так, чтобы ось чувствительности датчика совпадала с осью колебания стенда. Собрать схему согласно приложению Б. Подать напряжение на датчик и прогреть его в течение одной минуты. Запустить на ПК технологическую программу ConfigIVD, произвести настройку и установку связи с датчиком согласно ПБКМ.468223.002 РЭ.

Задать частоту колебаний стола стенда 160 Гц и последовательно виброскорости 0,5, 1; 3; 15; 30 мм/с на этой частоте. Произвести отсчёты показаний датчика с программы ConfigIVD.

Вычислить основную относительную погрешность δ_{a} , %, по формуле (1).

$$\delta_{a} = 100 \cdot \left[\frac{1}{N} \cdot \sum_{i}^{N} \left(\frac{V_{i} - V_{0i}}{V_{0i}} \right)^{2} \right]^{1/2}, \tag{1}$$

где V_i – показания датчика, мм/с;

*V*_{0i} – показания вибропреобразователя, мм/с;

N-количество измерений.

В случае, если основная относительная погрешность δ_a превышает 3 %, провести калибровку датчика согласно инструкции, приведенной в приложении В. Повторить определение основной относительной погрешности δ_a .

Задать СКЗ виброскорости 10 мм/с на частотах: 10, 20, 40, 80, 160, 300, 400, 500 Гц и СКЗ виброскорости 4 мм/с на частотах 600, 700, 800, 900, 1000 Гц. Произвести отсчёты показаний датчика с программы ConfigIVD.

Вычислить основную относительную погрешность δ_f , %, по формуле (2)

$$\delta_{f} = 100 \cdot \left[\frac{1}{N} \sum_{i}^{N} \left(\frac{V_{i} - V_{0i}}{V_{0i}} \right)^{2} \right]^{1/2},$$
(2)

где *V_i* – показания датчика, мм/с;

*V*_{0i} – показания вибропреобразователя, мм/с;

N – количество измерений.

Вычислить основную относительную погрешность δ, % по формуле (3).

$$\delta = \left(\delta_a^2 + \delta_f^2 + \delta_0^2\right)^{1/2},\tag{3}$$

где δ_0 - погрешность виброустановки, %.

Датчик признают годным при выполнении условия

$$\left|\delta_{V_i}\right|_{\max} \leq 10\,,$$

в противном случае его признают непригодным к применению, дальнейшую поверку не проводят и оформляют результаты поверки согласно 8.

Испытания для датчиков, имеющих три оси измерения, проводят аналогично с использованием приспособления ПБКМ.301200.001 совместно с приспособлением ПБКМ.301200.002. Схема установки датчика, имеющего три оси измерения, представлена в приложении Г.

7.3 Определение допускаемой основной относительной погрешности измерения СКЗ виброскорости по токовому каналу

Испытания для датчиков, имеющих одну ось измерения, проводят с использованием приспособления ПБКМ.301200.001.

Датчик с помощью приспособления ПБКМ.301200.001 установить на столе вибростенда так, чтобы ось чувствительности датчика совпадала с осью колебания стенда. Собрать схему согласно приложению Б. Подать напряжение на датчик и прогреть его в течение одной минуты. Запустить на ПК технологическую программу ConfigIVD, произвести настройку и установку связи с датчиком согласно ПБКМ.468223.002 РЭ.

Задать частоту колебаний стола стенда 160 Гц и последовательно виброскорости 0,5, 1; 3; 15; 30 мм/с на этой частоте. Показания датчика считывать с калибратора СА 51 (T1F6011) (в режиме измерения тока).

Диапазон воспроизведения СКЗ виброскорости по токовому каналу соответствует таблице 3.

Таблица 3

СКЗ виброскорости, мм/с	Выходной токовый сигнал, мА
0	4
30	20

Вычислить основную относительную погрешность δ_a , %, по формуле (4).

$$\delta_{a} = 100 \cdot \left[\frac{1}{N} \cdot \sum_{i}^{N} \left(\frac{I_{i} - I_{0i}}{I_{0i}} \right)^{2} \right]^{1/2},$$
(4)

где I_i – показания калибратора, мА;

 I_{0i} – расчетное значение тока, мА, рассчитывается по формуле (5);

$$I_{0i} = \frac{I_h - I_l}{V_h - V_l} \cdot V_{0i} + I_l,$$
(5)

где *I_h* – верхняя граница диапазона воспроизведения токового сигнала, 20 мА;

*I*_{*l*} – нижняя граница диапазона воспроизведения токового сигнала, 4 мА;

V_h – верхняя граница диапазона измерения СКЗ виброскорости, 30 мм/с;

*V*_{*l*} – нижняя граница диапазона измерения СКЗ виброскорости, 0 мм/с;

 V_{0i} – задаваемое значение СКЗ виброскорости, мм/с.

В случае, если основная относительная погрешность δ_a превышает 3 %, провести калибровку датчика согласно инструкции, приведенной в приложении В. Повторить определение основной относительной погрешности δ_a.

Задать СКЗ виброскорости 10 мм/с на частотах: 10, 20, 40, 80, 160, 300, 400, 500 Гц и СКЗ виброскорости 4 мм/с на частотах 600, 700, 800, 900,1000 Гц. Показания датчика считать с калибратора СА 51 (Т1F6011) (в режиме измерения тока).

Вычислить основную относительную погрешность δ_f , %, по формуле (6).

$$\delta_{f} = 100 \cdot \left[\frac{1}{N} \cdot \sum_{i}^{N} \left(\frac{I_{i} - I_{0i}}{I_{0i}} \right)^{2} \right]^{1/2},$$
(6)

где I_i – показания калибратора, мА;

 I_{0i} – расчетное значение тока, мА, рассчитывается по формуле (5)

Вычислить основную относительную погрешность δ, %, по формуле (7).

$$\delta = \left(\delta_a^2 + \delta_f^2 + \delta_0^2\right)^{1/2},\tag{7}$$

где δ_0 – погрешность виброустановки, %.

Датчик признают годным при выполнении условия

 $\left|\delta_{V_i}\right|_{\max} \leq 10,$

в противном случае его признают непригодным к применению, дальнейшую поверку не проводят и оформляют результаты поверки согласно 8.

Испытания для датчиков, имеющих три оси измерения, проводят аналогично с использованием приспособления ПБКМ.301200.001 совместно с приспособлением ПБКМ.301200.002. Схема установки датчика, имеющего три оси измерения, представлена в приложении Г.

7.4 Определение погрешности срабатывания предупредительного и аварийного сигнала

Испытания для датчиков, имеющих одну ось измерения, проводят с использованием приспособления ПБКМ.301200.001.

Датчик с помощью приспособления ПБКМ.301200.001 установить на столе вибростенда так, чтобы ось чувствительности датчика совпадала с осью колебания стенда. Собрать схему согласно приложению Б. Подать напряжение на датчик и прогреть его в течение одной минуты. Запустить на ПК технологическую программу ConfigIVD, произвести настройку и установку связи с датчиком согласно ПБКМ.468223.002 РЭ.

При помощи программы ConfigIVD установить величины предупредительной и аварийной уставки от 0,5 до 30 мм/с, причем предупредительная уставка должна быть меньше аварийной.

Момент формирования дискретного сигнала фиксируют в программе ConfigIVD.

Задать частоту колебания стола стенда 160 Гц и плавно увеличивать СКЗ виброскорости до появления дискретных сигналов предупреждение и авария. Произвести отсчёты показаний датчика в момент срабатывания контрольной уставки.

Датчик считается выдержавшим испытания, если показания датчика в момент формирования дискретного сигнала находятся в пределах ± 0,2 мм от величины заданной уставки.

В противном случае его признают непригодным к применению, дальнейшую поверку не проводят и оформляют результаты поверки согласно 8.

8 Оформление результатов поверки

При положительных результатах поверки оформляется свидетельство о поверке согласно и делается отметка в паспорте в соответствии с «Порядком проведения поверки средств измерений, требований к знаку поверки и содержанию свидетельства о поверке». Знак поверки наносится на свидетельство о поверке.

При несоответствии результатов поверки требованиям любого из пунктов настоящей методики датчик к дальнейшему применению не допускают и выдают извещение о непригодности с указанием причины непригодности в соответствии с «Порядком проведения поверки средств измерений, требований к знаку поверки и содержанию свидетельства о поверке».

Начальник отдела 204

А.Е. Рачковский

Начальник лаборатории 204/3

А.Г. Волченко

Разработчик Инженер 1-кат.

NO Empl

О.А. Ткачук

ПРИЛОЖЕНИЕ А (обязательное) Ссылочные нормативные документы

Таблица А.1

Обозначение	Наименование	Номер пункта, в котором дана ссылка
ПБКМ.468223.002 РЭ	Руководство по эксплуатации. Датчики вибрации ИВД 3	4, 7.1, 7.2, 7.3, 7.4
ПБКМ.468223.002 ПС	Паспорт. Датчики вибрации ИВД 3	7.1
	Порядок проведения поверки средств измерений, требования к знаку поверки и содержание свидетельства о поверке	8

ПРИЛОЖЕНИЕ Б (обязательное) Схема испытаний по определению основной относительной погрешности измерения СКЗ виброскорости

- 1 Датчик ИВД 3;
- 2 приспособление для установки датчика на вибростенд (ПБКМ.301200.001);
- 3 Вибропреобразователь «Брюль и Къер» 4383;
- 4 адаптер RS-485/RS-232 или RS-485/USB;
- 5 персональный компьютер;
- 6 линейный источник питания Matrix MPS-3003D;
- 7 усилитель измерительный «Брюль и Къер» Nexus 2692;
- 8 мультиметр цифровой Agilent 34401А (в режиме измерения напряжения);
- 9 вибростенд V406 LDS;
- 10 усилитель мощности TIRA модели ВАА 120;
- 11 генератор Agilent 33120А;
- 12 калибратор электрических сигналов YOKOGAWA CA 51 (в режиме измерения тока).

Рисунок Б.1

ПРИЛОЖЕНИЕ В (обязательное)

Инструкция по работе с программой ConfigIVD

В.1 Назначение

Программа ConfigIVD предназначена для проверки и настройки датчиков на предприятии – изготовителе и на объекте заказчика.

Программа поставляется в виде исполняемого *exe* – файла.

В.2 Предварительные аппаратные процедуры

Подключить датчик через адаптер RS-485 / RS-232 или RS-458 / USB к порту RS-232 ПК и или USB-порту соответственно подать питающее напряжение.

В.3 Установка связи с датчиком

Запустить программу – файл ConfigIVD.exe

После запуска на экране монитора появится окно «Тестирование и настройка датчика вибрации» – рисунок В.1.

	Номер: *****	States and	Версия	ПО: *****	
Скорость: 38400 Modbus - адрес: 3 	**** *****	0.00	0.31	*****	Na ***** Мин ***** Макс *****
Успехов 0	****	0.00	0.31	*****	
Ошибок: 13	l P I Pastor	 מאנוגאינים לויים	p.S *****	Пр.W *****	Авар *****
Сброс	Сброс границ	Балибронка.	Liponation.	Astronomy.	
Тоспедняя ошибка обмен нет ответа от датчика Обмен с АЦП	асдатчиком		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·

Рисунок В.1 – Окно «Тестирование и настройка датчика вибрации»

ВНИМАНИЕ! ВО ИЗБЕЖАНИЕ СБОЙНЫХ СИТУАЦИЙ, И ОШИБОК ПРОГРАММИРОВАНИЯ ДАТЧИКА ЗАПРЕЩАЕТСЯ ПРОИЗВОДИТЬ МАНИПУЛЯЦИИ, НЕ ОПИСАННЫЕ В ДАННОЙ ИНСТРУКЦИИ.

Если номер порта, скорость обмена и адрес датчика соответствуют величинам, установленным по умолчанию, которые выводятся в соответствующих полях на панели «Параметры подключения», то в поле «Успехов» будет увеличивающиеся количество успешных обменов. Обмен с датчиком считается установленным. Если обмен с датчиком не установлен, то в поле «Ошибок» будет выводиться увеличивающиеся количество ошибок обмена. В этом случае необходимо провести следующие действия.

Нажмите кнопку* «Поиск».

Примечание: -*- Здесь и далее по тексту выражение «Нажать кнопку» означает, что необходимо «щелкнуть» левой кнопкой «мыши» на соответствующей виртуальной кнопке.

При нажатии кнопки «Поиск...» открывается окно «Поиск датчика» – рисунок В.2.

Поиск датчика			
Порты СОМ1 СОМ3 СОМ4 СОМ4 СОМ9	Скорости Ø 1200 Ø 2400 Ø 4800 Ø 9600 Ø 19200 Ø 38400 Ø 57600	Адреса От: 0 До: 6	
Результаты почн Проверяется: Выбран:	ска		
Поиск	Photogram -	ебар Отказ	

Рисунок В.2 – Окно «Поиск датчика»

В окне «Поиск датчика» задать номер порта, через который датчик подключен к ПК, скорости обмена и диапазон адресов обмена. Нажмите кнопку «Поиск».

На панели «Результаты поиска» в поле «Проверяется» будут индицироваться текущие параметры поиска, а в случае успешного окончания поиска в поле «Выбран» будут индицироваться параметры обмена.

Если по окончанию поиска в поле «Выбран» выводится сообщение «Контроллер не найден», то это свидетельствует либо о неисправности датчика, либо о неисправности линии, либо о неправильных действиях оператора.

Нажмите кнопку «Выбор».

При этом закрывается окно «Поиск датчика» и на панели «Параметры подключения» (рисунок В.1) в полях «Порт», «Скорость», «Modbus – адрес» индицируются выбранные параметры обмена, а в поле «Успехов» индицируется увеличивающиеся число успешных обменов – рисунок В.3.

араметры подключения	Информация с дат	чика				
Порт: СОМ9	Номер: 1	Сменить	Версия	а ПО: 4.(00	
Скорость: 38400 Modbus - адрес: 3	Y 0.31	канал зам 0.00	аскирован 0.31	Yn: Ya:	14.00 17.00	Na 20.00 Мин 6.00
Поиск	z 0.02	уровень в 0.00	норме 2.36	Zn: Za:	40.00 50.00	Макс 500.00
Сменить Успехов: 544	X 0.31	канал зам 0.00	аскирован 0.31	Xn: Xa:	14.00 17.00	
Ошибок 245	Г тестов	ый сигнал Г	lp.S 0.00	∏p.W	6.80	Авар 0.00
Сброс	Сброс границ	Калибровка	a sa a	· . · .		Уставки.
Последняя ошибка обмена	с датчиком					
Обмен с АЦП						
модуль Е-140 не найден						

Рисунок В.3 – Окно «Тестирование и настройка датчика вибрации»

В.4 Изменение параметров обмена.

При необходимости пользователь может изменить параметры обмена.

В окне «Тестирование и настройка датчика вибрации» на панели «Параметры подключения» нажать кнопку «Сменить...» при этом открывается окно «Сменить параметры обмена» - рисунок В.4.

Сменить параметры об	мена датчи
Скорость обмена:	634003 ·
Modbus • agpec:	3
Сменить	Отказ

Рисунок В.4 – Окно «Сменить параметры обмена»

В окне «Сменить параметры обмена» в поле «Скорость обмена» выбрать из списка нужную скорость, в поле «Modbus-adpec» ввести требуемый номер и нажать кнопку «Сменить» (или «Отказ» при отказе от изменений).

Окно «Сменить параметры обмена» закрывается, а в окне «Тестирование и настройка датчика вибрации» появляются новые значения параметров обмена.

ВНИМАНИЕ! ПРИ ВВОДЕ НЕКОРРЕКТНЫХ ДАННЫХ ОБМЕН С ДАТЧИКОМ БУДЕТ ПРЕКРАЩЕН.

В этом случае необходимо вернуться к В.3.

В.5 Изменение уставок.

Значения предупредительной и аварийной уставок могут быть изменены пользователем.

В окне «Тестирование и настройка датчика вибрации» на панели «Информация с датчика» нажать кнопку «Уставки», при этом откроется окно «Сменить уставки» - рисунок В.5.

Сменить уставки	
Предупредительная уставка канала Z;	6
Аварийная уставка канала Z:	7.2
Предупредительная уставка канала Х:	6
Аварийная уставка канала Х;	7.2
Предупредительная уставка канала Ү:	6
Аварийная уставка канала Ү	7.2
Кол-во отсчетов для формирования аварии	3
Минимально возможное значение	6
Максимально возможное значение	500
Измеренная вепичина, соотв. максим. току	40
Режим работы ЦАП, канап 1	4-22 20.00 MM/c coorsercrayer 4.00 MA
Режим работы ЦАП, канал 2	40.00 MM/c cooteercrayer 10.00 MA
Сменить Отказ	

Рисунок В.5 – Окно «Сменить уставки»

В соответствующие поля введите требуемое значение уставок и нажмите кнопку «Сменить» (или «Отказ» при отказе от изменения).

При этом окно «Сменить уставки» закрывается, а в окне «Тестирование и настройка датчика вибрации» на панели «Информация с датчика» в соответствующих полях индицируются новые значения уставок.

При наведении курсора на область «Измеренная величина, соотв. максим. току», всплывает подсказка.

В.6 Калибровка датчика.

В.6.1. Калибровка осей чувствительности датчика

В окне «Тестирование и настройка датчика вибрации» на панели «Информация с датчика» нажать кнопку «Калибровка», при этом откроется окно «Калибровка трехкомпонентного датчика» - рисунок В.6.

Общие параметры		Канал Ү	
Частота, Гц:	160 -	Изм.знач.:	
∪эт с АЦП:		Эталонное напр-е, В	****
		Виброскорость, мм/с	****
Калибров	ка ЦАП	Тарировочный к-т	****
[™] stringr			h en de de a
Канап Х	· · · · · · · · · · · · · · · · · · ·	Канап Z	
Изм.знач.		Изм.знач.:	
Эталонное напр-е, В:	****	Эталонное напр-е, В:	*****
Виброскорость, мм/с	*****	Виброскорость, мм/с	****
Тарировочный к-т:	*****	Тарировочный к-т:	*****
[·	a de política de la	and And A	2 . V · · · ·

Рисунок В.6 – Окно «Калибровка трехкомпонентного датчика»

На панели «Общие параметры» в поле «Частота» выставить величину частоты вибростенда, ввести её в память программы клавишей «Enter».

Панель разбита на области, соответствующие трем каналам датчика. В окне «Тарировочный к-т» выводится текущее значение тарировочного коэффициента по каждому каналу.

Калибровку датчика можно выполнить тремя способами: рассчитав тарировочный коэффициент, определив эталонное напряжение или используя внешний АЦП.

В.6.1.1 Калибровка датчика с расчетом тарировочного коэффициента.

Установить датчик на вибростенд, задать необходимый уровень вибрации, V_{3m} , мм/с. Измеренное значение скорости вибрации, V_{∂} , мм/с считать с программы ConfigIVD, в окне «Изм.знач.» на одной из панелей «Канал Х», «Канал Y», Канал Z» (в зависимости от того, какой канал датчика ИВД 3 калибруется).

Произвести расчет тарировочного коэффициента, К, по формуле (В.1).

$$K = \frac{V_{\Im T}}{V_{\varPi}},\tag{B.1}$$

где К – тарировочный коэффициент;

*V*_{эт} – уровень вибрации на вибростенде, мм/с;

И∂ – показания датчика, мм/с.

Ввести полученное значение в окно «Тарировочный к-т», записать его в память датчика клавишей «Enter».

В.6.1.2 Калибровка датчика с помощью определенного эталонного значения.

Установить датчик на вибростенд и задать необходимый уровень вибрации на вибростенде. На одной из панелей «Канал Х», «Канал Ү», «Канал Z» (в зависимости от того, какой канал датчика ИВД 3 калибруется) в поле «Эталонное напряжение, В» введите значение напряжения, рассчитанное по формуле (В.2).

$$U_{3m} = 10^4 \cdot (2 \cdot \pi \cdot f) \cdot V_{\kappa a \pi} \tag{B.2}$$

где $V_{\kappa a \pi}$ - значение виброскорости, мм/с, считанное с индикатора вибростенда,

f-частота вибростенда, Гц.

Нажмите кнопку «Enter».

Численные значения коэффициента перед *V*_{кал} приведены в таблице В.1.

Таблица В.1

Частота вибростенда, Гц.	Значение коэффициента 10 ⁻⁴ ·(2 <i>πf</i>)	
159,2	0,10000	
79,6	0,05000	
64	0,04021	
45	0,02827	

В поле «Виброскорость, мм/с» должна появиться величина виброскорости на стенде.

Нажмите кнопку «Калибровка», при этом в память датчика записывается новое значение тарировочного коэффициента.

В.6.1.3 Калибровка датчика с использованием внешнего АЦП

К ПК подключить внешний АЦП (L-Card, E14-140-М) и установить на ПК все необходимые драйверы.

На канал 1 АЦП подключить сигнал обратной связи с эталонного датчика (сигнал виброускорения, с заранее настроенной чувствительностью 100 мВ/м/с²).

После подключения АЦП установит датчик на вибростенд и задать необходимый уровень вибрации. Нажать кнопку «Uэт с АЦП».

Нажать кнопку «Калибровка», при этом в память датчика записывается новое значение тарировочного коэффициента.

В.6.2. Калибровка ЦАП

Пользователь может произвести калибровку ЦАП.

В окне «Калибровка трехкомпонентного датчика» нажать на кнопку «Калибровка ЦАП», при этом откроется окно «Калибровка ЦАП» (рисунок В.6).

К выходным каналам датчика подключить мультиметр.

В окне «Калибровка ЦАП» нажать на кнопку «Подать на ЦАП минимальное значение». С мультиметра считать значение тока на выходе и внести его в поле «значение на выходе, мА».

В окне «Калибровка ЦАП» нажать на кнопку «Подать на ЦАП максимальное значение». С мультиметра считать значение тока на выходе и внести его в поле «значение на выходе, мА».

Нажать на кнопку «Калибровка», при этом произойдет калибровка ЦАП. Кнопку «Отмена» нажать при отменен калибровки.

Для завершения калибровки ЦАП нажать на кнопку «Выход».

Канал 1 Канал 2 Подать на ЦАП минимальное значение на выходе, мА: 0 значение на выходе, мА: 0		мальное значение	
		значение на выходе, мА: 0	
Stumped Reference	Nation and a s	Подать на ЦАП макс	имальное значение
значение на выходе, мАс 🛛 🖯		значение на выходе, мА: 0	

Рисунок В.6 – Окно «Калибровка ЦАП»

Нажмите кнопку «ОК» в окне «Калибровка трехкомпонентного датчика», для его закрытия. По завершению работы с программой ConfigIVD нажать на кнопку «Выход» в окне «Тестирование и настройка датчиков вибрации».

1 Приспособление ПБКМ.301200.001; 2 Приспособление ПБКМ.301200.002.

Рисунок Г.1 – Установка датчика по оси Х

1 Приспособление ПБКМ.301200.001; 2 Приспособление ПБКМ.301200.002.

Рисунок Г.2 – Установка датчика по оси У