УТВЕРЖДАЮ
Директор Восточно-Сибирского
филиста ФГУП «ВНИИФТРИ»

И.Н. Лазовик

2016 г.

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ)

ОАО «АК «Транснефть» в части ООО «Транснефть – Восток»

одо «дк «транснефть» в части обо «транснефть – восток» по объекту «МН «Куюмба-Тайшет» ППМН через р. Ангара»

МЕТОДИКА ПОВЕРКИ

МП 002-2016

Разработчики:

Нач. отдел	а испытаний средств изме	ерений Восточно-
	Сибирского филиала ФГУ	П «ВНИИФТРИ»
	Allange	Н.Ф. Крайнов
Вед. инж	сенер отдела испытаний ср	редств измерений
Восточно-	Сибирского филиала ФГУ	П «ВНИИФТРИ»
	All	А.А. Кочне

СОДЕРЖАНИЕ

	crp.
1 Основные положения	3
2 Операции и средства поверки	4
3 Требования к квалификации поверителей	5
4 Требования безопасности	5
5 Условия поверки	5
6 Подготовка к поверке	5
7 Порядок проведения поверки	5 5 5 5 5 5
7.1 Внешний осмотр АИИС КУЭ	5
7.1.2 Проверка комплектности технической документации	6
7.2 Проверка функционирования составных компонентов АИИС КУЭ	6
7.2.1 Проверка функционирования счетчика	6
7.2.2 Проверка правильности соединения разъемов цифровых интерфейсов счетчика с	c
кабелями связи	6
7.2.3 Проверка связи со счетчиком	6
7.2.4 Проверка даты и времени счетчика	6
7.2.5 Проверка защиты от несанкционированного доступа к счетчику через оптический порт	7
7.2.6 Проверка функционирования вспомогательных технических компонентов системы	7
7.2.7 Проверка функционирования ИВК	7
7.2.8 Проверка защиты программного обеспечения от несанкционированного доступа	7
7.2.9 Проверка нагрузки на вторичные цепи измерительных трансформаторов напряжения	7
7.2.10 Проверка нагрузки на вторичные цепи измерительных трансформаторов тока	8
7.2.11 Проверка падения напряжения в линии связи между вторичной обмоткой ТН и	
счетчиком	8
7.3 Опробование АИИС КУЭ в целом	8
7.3.1 Подготовка к опробованию АИИС КУЭ в целом	8
7.3.2 Сбор данных со счетчика, входящего в состав системы	8
7.4 Проверка отсутствия ошибок информационного обмена	8
7.4.1 Проверка отсутствия ошибок информационного обмена при наличии нагрузки на	_
присоединении	9
7.5 Оценка основных метрологических характеристик АИИС КУЭ ОАО «АК «Транснефть»	-
в части ООО «Транснефть – Восток» по объекту «МН «Куюмба-Тайшет» ППМН через	
р. Ангара»	9
р. тып арал 7.5.1 Пределы допускаемой относительной погрешности ИК при измерении электроэнергии	
в рабочих условиях применения АИИС КУЭ при доверительной вероятности 0,95	9
7.5.2 Проверка хода системных часов и функции измерений времени	11
7.5.2.1 Проверка работы системы коррекции часов компонентов АИИС КУЭ	11
7.5.2.2 Определение хода системных часов за одни сутки	11
7.5.2.2 Определение хода енетемных часов за одни сутки 7.6 Проверка соответствия программного обеспечения зафиксированному при проведении	
испытаний в целях утверждения типа АИИС КУЭ. Проверка обеспечения защиты ПО в	
процессе эксплуатации	11
8 Оформление результатов поверки	12
о оформление результатов поверки	12
Приложение А. Основные СИ АИИС КУЭ ОАО «АК «Транснефть» в части ООО «Транс-	-
нефть – Восток» по объекту «МН «Куюмба-Тайшет» ППМН через р. Ангара»	13
Приложение Б. Пределы допускаемой относительной погрешности ИК при измерении	ł.
электроэнергии в рабочих условиях применения АИИС КУЭ ОАО «АК «Транснефть» в	
части ООО «Транснефть – Восток» по объекту «МН «Куюмба-Тайшет» ППМН через	
р. Ангара» при доверительной вероятности 0,95	, 14
primitapan hen dobehitembilan behaninatin 0,20	1 7

1 ОСНОВНЫЕ ПОЛОЖЕНИЯ

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии АИИС КУЭ ОАО «АК «Транснефть» в части ООО «Транснефть – Восток» по объекту «МН «Куюмба-Тайшет» ППМН через р. Ангара» предназначена для измерения активной и реактивной электроэнергии (мощности), потребленной за установленные интервалы времени, а также автоматизированного сбора, обработки, хранения, отображения и передачи полученной информации.

АИИС КУЭ решает следующие задачи:

- выполнение измерений 30-минутных приращений активной и реактивной электроэнергии (мощности);
- периодический (1 раз в сутки) и/или по запросу автоматический сбор привязанных к единому календарному времени результатов измерений приращений электроэнергии с заданной дискретностью учета (30 мин.);
- хранение результатов измерений в специализированной базе данных, отвечающей требованию повышенной защищенности от потери информации (резервирование баз данных) и от несанкционированного доступа;
 - передачу в заинтересованные организации результатов измерений;
- предоставление по запросу контрольного доступа к результатам измерений, данных о состоянии объектов и средств измерений со стороны серверов организаций-участников оптового рынка электроэнергии к измерительно-вычислительному комплексу (далее ИВК), устройству сбора и передачи данных (далее УСПД);
- обеспечение защиты оборудования, программного обеспечения и данных от несанкционированного доступа на физическом и программном уровнях (установка аппаратных ключей, паролей и т.п.);
- диагностика и мониторинг функционирования технических и программных средств АИИС КУЭ;
 - конфигурирование и настройка параметров АИИС КУЭ;
- ведение системы единого времени (COEB) в АИИС КУЭ (синхронизация внутренних часов компонентов системы).

АИИС КУЭ ОАО «АК «Транснефть» в части ООО «Транснефть – Восток» по объекту «МН «Куюмба-Тайшет» ППМН через р. Ангара» и измерительный канал (ИК) формируются из следующих средств измерений (далее – измерительных компонентов) утверждённых типов:

- трансформаторов тока (ТТ) по ГОСТ 7746;
- трансформаторов напряжения (ТН) по ГОСТ 1983;
- трехфазного многофункционального счетчика электрической энергии с цифровым интерфейсом RS-485 по ГОСТ Р 52323-2005 для активной электроэнергии и по ГОСТ Р 52425-2005 для реактивной электроэнергии;
- измерительно-вычислительного комплекса (ИВК) на базе компьютера типа IBM РС (сервер БД) в качестве коммуникационной и архивной станции.

Перечень и характеристики основных средств измерений, входящих в состав измерительного канала АИИС КУЭ, приведены в Приложении А.

Нормальные, допускаемые и фактические условия измерений АИИС КУЭ приведены в технорабочей документации на систему.

Пределы допускаемой относительной погрешности ИК при доверительной вероятности 0,95 при измерении электроэнергии в рабочих условиях применения АИИС КУЭ приведены в Приложении Б.

Принцип действия АИИС КУЭ: аналоговые сигналы переменного тока с выводов измерительных трансформаторов поступают на входы счетчика электроэнергии. Счетчик преобразует мгновенные значения входных сигналов в цифровой код. Микропроцессором счетчика вычисляются активная и реактивная мощность, а также активная и реактивная электроэнергия за 30-минутные интервалы времени. Счетчики снабжены отсчетными устройствами и цифровыми выходами. Информация сохраняется в энергонезависимой памяти. По запросу измерительная информация с заданной периодичностью поступает в цифровом виде по каналам связи на ИВК.

Используемое программное обеспечение позволяет производить сбор данных со счетчика, а также выполняет обработку, хранение полученных данных на жёстком диске сервера БД ИВК, отображает данные в наглядной форме (таблицы, графики), ведет оперативный контроль средней (30-минутной) электроэнергии (мощности), выводит полученную информацию на печать и передает в заинтересованные организации. Уровень защиты программного обеспечения АИИС КУЭ от непреднамеренных и преднамеренных изменений – высокий (по Р 50.2.077-2014).

Первичную поверку проводят после установки и монтажа необходимого оборудования на объекте.

Установку отдельных технических компонентов, снимавшихся для ремонта и/или поверки в течение интервала между поверками, проводят без дополнительной поверки АИИС КУЭ, если метрологические характеристики и условия применения этих компонентов не изменились.

Интервал между поверками АИИС КУЭ ОАО «АК «Транснефть» в части ООО «Транснефть – Восток» по объекту «МН «Куюмба-Тайшет» ППМН через р. Ангара» — 4 года.

2 ОПЕРАЦИИ И СРЕДСТВА ПОВЕРКИ

При проведении поверки должны быть выполнены следующие операции, указанные в таблице 1, и должны использоваться средства поверки, указанные в таблице 2.

Таблица 1 - Операции поверки

№ п/п	Наименование операций поверки			
1	Внешний осмотр, проверка технической документации	п. 7.1		
2	Проверка функционирования составных компонентов	п. 7.2		
3	Опробование АИИС КУЭ в целом	п. 7.3		
4	Проверка отсутствия ошибок информационного обмена	п. 7.4		
5	Оценка основных метрологических характеристик АИИС КУЭ	п. 7.5		
6	Подтверждение идентификации программного обеспечения утвержденному типу АИИС КУЭ и зафиксированной при проведении испытаний. Проверка обеспечения защиты ПО в процессе эксплуатации	п. 7.6		
7	Оформление результатов поверки	п. 8		

Таблица 2 - Средства поверки

Тип средства поверки	Метрологические характеристики	Назначение	
Радиочасы МИР РЧ-02	Пределы допускаемой погрешности привязки переднего фронта выходного импульса к шкале координированного времени UTC: ±1 мкс	Определение хода часов компонентов системы	
Тайм-серверы imvp ФГУП «ВНИИФТРИ»	Пределы допускаемой погрешности синхронизации системного времени относительно ШВ UTC(SU): ± 10 мкс		
Термометр ртутный стеклянный лабораторный ТЛ-4 №2	Температура окружающей среды: (от 0 до $+55$) 0 C; ± 0.3 0 C, 2 класс		
Гигрометр психометрический ВИТ	Отн. влажность воздуха $(20 \div 90)$ %; отн. погрешность: ± 7 % (от $+5$ до $+10)$ °C, ± 6 % (свыше $+10$ до $+30)$ °C	Определение внешних влияющих факторов	
Барометр-анероид БАММ	Атм. давление (80 ÷ 106) кПа; отн. погрешность: осн. ±0,2 %, доп. ±0,5 %		
Вольтамперфазометр цифровой РЕТОМЕТР-М2	Напряжение: $(0,06-750)$ В; ПГ $\pm (0,005\cdot x_{изм}+0,03)$ В; Ток во вторичной цепи: $(0,04-40)$ А; $\pm (0,02\cdot x_{изм}+0,03)$ А Частота сети: $(40-80)$ Гц; ПГ $\pm 0,01$ Гц; Коэффициент мощности: фазовый угол $(-180-+180)^\circ$; ПГ $\pm 0,5_U^\circ$; $\pm 1,5_U^\circ$; $\pm 2,5_I^\circ$	Определение параметров сети	
Переносной ПК с ПО ПК «Энергосфера» модуль «Электроколлектор» Адаптер к оптическому порту	-	Для считывания информации со счетчика	

Допускается проведение поверки с применением других основных и вспомогательных средств поверки, обеспечивающих определение и контроль метрологических характеристик с требуемой точностью.

3 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

Поверку АИИС КУЭ должен выполнять персонал, аттестованный в соответствии с ПР 50.2.012-94 «Порядок аттестации поверителей средств измерений», прошедший инструктаж по технике безопасности на рабочем месте и имеющий группу по технике безопасности не ниже III, освоивший работу с системой и используемыми средствами измерений.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

При проведении поверки должны быть соблюдены требования безопасности, установленные ГОСТ 12.2.007.0-75, ГОСТ 12.2.007.3-75, ГОСТ 22261-94, действующими «Правилами технической эксплуатации электроустановок потребителей», «Правилами технической эксплуатации электрических станций и сетей РФ» и «Межотраслевыми правилами по охране труда (правила безопасности) при эксплуатации электроустановок» (РД-153-34.0-03.150-00), а также требованиями безопасности, установленными в эксплуатационной документации на технические и измерительные компоненты, входящие в состав АИИС КУЭ ОАО «АК «Транснефть» в части ООО «Транснефть — Восток» по объекту «МН «Куюмба-Тайшет» ППМН через р. Ангара», и на средства поверки.

5 УСЛОВИЯ ПОВЕРКИ

При проведении поверки при рабочих условиях эксплуатации должны соблюдаться следующие условия, если это не оговорено особо в руководствах по эксплуатации на компоненты АИИС:

- температура окружающего воздуха (20±5) °C;
- относительная влажность не более 80 %;
- атмосферное давление 84-107 кПа (630-795 мм рт.ст.);
- напряжение питающей сети переменного тока 220 B ±5 %:
- частота питающей сети (50±0,5) Гц.

6 ПОДГОТОВКА К ПОВЕРКЕ

Перед проведением поверки выполняют следующие подготовительные работы:

- средства измерений, задействованые в поверке АИИС КУЭ, должны быть пригодны к эксплуатации (иметь действующие свидетельства о поверке);
- ознакомиться с эксплуатационной документацией на компоненты ИК АИИС КУЭ и на АИИС в целом, а также с Методикой (методами) измерений, распространяющуюся на систему;
- провести технические и организационные мероприятия по обеспечению безопасности проводимых работ в соответствии с положениями ГОСТ 12.2.007.0-75 и ГОСТ 12.2.007.3-75;
- средства поверки и вспомогательные технические средства установить в рабочих условиях применения в соответствии с требованиями эксплуатационной документации.

7 ПОРЯДОК ПРОВЕДЕНИЯ ПОВЕРКИ

7.1 Внешний осмотр АИИС КУЭ

При выполнении внешнего осмотра АИИС КУЭ проверяется:

- соответствие номенклатуры и типов технических и программных компонентов указанным в документации на АИИС КУЭ ОАО «АК «Транснефть» в части ООО «Транснефть Восток» по объекту «МН «Куюмба-Тайшет» ППМН через р. Ангара»;
- наличие действующих свидетельств (записей в паспортах) о поверке измерительных трансформаторов тока, напряжения, счетчика электроэнергии и сервера синхронизации времени ССВ-1Г;
- наличие действующих пломб в оговоренных местах, соответствие заводских номеров на шильдиках измерительных компонентов АИИС КУЭ номерам, указанным в документации на систему;
- наличие и качество заземления корпусов компонентов системы и металлических шкафов, в которых они расположены;

- внешний вид каждого компонента АИИС КУЭ с целью выявления возможных механических повреждений, загрязнения и следов коррозии;
 - наличие напряжения питания на счетчике (должен работать жидкокристаллический индикатор счетчика);
 - наличие напряжения питания и отсутствие ошибки ССВ-1Г;
 - наличие напряжения питания на модемах (должны светиться светодиоды на лицевой панели модема);
 - наличие напряжения питания на преобразователях интерфейсов (должен светиться светодиод, сигнализирующий о наличии питания);
 - функционирование ИВК (должна функционировать операционная система, необходимая для работы программы сбора данных, Windows и запускаться специализированное ПО ПК «Энергосфера»).

7.1.2 Проверка комплектности технической документации

В комплект документации, хранящейся на объекте, должны входить:

- руководство по эксплуатации АИИС КУЭ;
- копия сертификата об утверждении типа с приложением копией+ описания типа АИИС КУЭ;
 - руководства по эксплуатации и паспорта на все компоненты системы;
- копии действующих свидетельств о последней поверке АИИС КУЭ и входящих в нее измерительных компонентов;
 - настоящая методика поверки.

7.2 Проверка функционирования составных компонентов АИИС КУЭ

Перед опробованием всей АИИС КУЭ в целом необходимо выполнить проверку функционирования основных компонентов АИИС КУЭ.

7.2.1 Проверка функционирования счетчика

Для проведения проверки функционирования счетчика необходимо убедиться в наличии напряжения питания на счетчике. Проверить правильность подключения счетчика к цепям тока и напряжения (соответствие схем подключения – схемам, приведенным в паспорте на счетчик). Счетчик считать работоспособными, если работают все сегменты индикаторов, отсутствуют коды ошибок или предупреждений, прокрутка параметров осуществляется в заданной последовательности, время внутренних часов соответствует календарному, работает оптический порт счетчика СЭТ-4ТМ.

При проведении проверки функционирования счетчика руководствуются требованиями эксплуатационной документации на счетчик.

7.2.2 Проверка правильности соединения разъемов цифровых интерфейсов счетчика с кабелями связи

До проведения опробования АИИС КУЭ должна быть проверена правильность соединений разъемов цифровых интерфейсов счетчика с магистральными кабелями ведущими к преобразователям интерфейсов. Правильность соединений проверяется по приведенным в документации на счетчик и преобразователи интерфейсов схемам соединений разъемов цифровых интерфейсов.

7.2.3 Проверка связи со счетчиками

Проверка возможности обеспечения подключения по одному или нескольким цифровым интерфейсам компонентов АИИС, в том числе для автономного считывания, удалённого доступа и параметрирования:

проверка счетчика осуществляется следующим образом: к оптопорту счетчика, в соответствии с руководством по эксплуатации (ИЛГШ.411152.145РЭ) подключается ноутбук; с помощью ноутбука с установленным ПО «Конфигуратор СЭТ-4ТМ» и модулем «Электроколлектор» ПО ПК «Энергосфера» проверяются функции автономного считывания информации, удаленного доступа и параметрирования счетчиков (см. описание работы программ).

7.2.4 Проверка даты и времени счетчика

До начала опробования АИИС необходимо проверить соответствие даты и времени счетчика календарной дате и времени. Проверка может осуществляться визуально или с

помощью переносного компьютера и программного обеспечения «Конфигуратор СЭТ-4ТМ».

С индикатора счетчика визуально снимают показания даты, времени и сравнивают с календарным (на индикаторах всех счетчиков должны присутствовать показания текущей даты и времени).

С помощью ПО «Конфигуратор СЭТ-4ТМ» и модуля «Электроколлектор» ПО ПК «Энергосфера», переносного компьютера и оптопорта со счетчика снимаются показания текущей даты и времени. Производится сравнение текущей даты и времени счетчика с календарным.

Расхождение показаний часов счетчика с календарным временем должно быть не более ± 5.0 с.

7.2.5 Проверка защиты от несанкционированного доступа к счетчику через оптический порт

Проверка защиты от несанкционированного доступа к счетчику через оптический порт проводится с помощью переносного компьютера с ПО «Конфигуратор СЭТ-4ТМ» и модуля «Электроколлектор» ПО ПК «Энергосфера» и оптопорта. Осуществляется попытка связи со счетчиком с заведомо неправильным паролем. Испытание считается успешным, если связи со счетчиком установить не удается.

7.2.6 Проверка функционирования вспомогательных технических компонентов системы

При проведении проверки функционирования вспомогательных технических компонентов АИИС руководствуются требованиями эксплуатационной документации на них.

Проверка функционирования модемов, модулей интерфейсов, контроллеров приемапередачи данных должна производиться в составе всей системы.

При проверке всех вспомогательных технических компонентов необходимо убедиться в наличии питания в соответствии с технической документацией. Подача питания фиксируется соответствующими элементами сигнализации (светодиодами и лампочками).

С помощью ИВК и ПО ПК «Энергосфера» модуль «Сервер опроса» осуществляется связь с удаленным объектом (объектами). После установления успешного соединения между модемами или по выделенным линиям связи производится опрос счетчика.

Вспомогательные технические средства считаются исправно функционирующими в составе системы, если по установленному соединению успешно прошел опрос счетчика.

7.2.7 Проверка функционирования ИВК

Для проведения проверки функционирования ИВК необходимо:

- подать напряжение питания на все вспомогательные компоненты комплекса (адаптеры интерфейсов, модемы и центральный компьютер),
- проследить за правильностью прохождения загрузки операционной среды, необходимой для работы программы опроса счетчиков, УСПД;
 - запустить на выполнение программное обеспечение ПК «Энергосфера»;
 - осуществить опрос счетчика с помощью ПО ПК «Энергосфера».

ИВК считается исправно функционирующим, если загрузка операционной среды прошла успешно, программный комплекс «Энергосфера» запущен и в базе данных программы сохранены собранные данные.

7.2.8 Проверка защиты программного обеспечения от несанкционированного доступа

На ИВК запустить на выполнение программу сбора данных и в поле «пароль» ввести неправильный код. Испытание считать успешным, если при вводе неправильного пароля программа не разрешает продолжить работу.

- проверить работу аппаратных ключей. Для этого выключают сервер и APM и снимают аппаратную защиту (отсоединяют Наѕр-ключ от портов компьютеров). Включают компьютеры, загружают операционную систему и запускают программу. Проверка прошла успешно, если получено сообщение об отсутствии «ключа защиты».

7.2.9 Проверка нагрузки на вторичные цепи измерительных трансформаторов напряжения

При проверке мощности ТН необходимо убедиться, что отклонение вторичного

напряжения при нагруженной вторичной обмотке составляет не более ± 10 % от U_{HOM} .

Измеряют мощность нагрузки ТН, которая должна находиться в диапазоне указанном в ГОСТ 1983.

Измерение мощности нагрузки на вторичные цепи ТН проводят в соответствии с аттестованной в установленном порядке методикой выполнения измерений.

Примечания:

- 1 Допускается измерения мощности нагрузки на вторичных цепях ТН не проводить, если такие измерения проводились при составлении паспортов—протоколов на данный измерительный канал в течение истекающего межповерочного интервала системы. Результаты проверки считают положительными, если паспорт—протокол подтверждает выполнение указанного выше условия для ТН;
- 2 Допускается мощность нагрузки определять расчетным путем, если известны входные (проходные) импедансы всех устройств, подключенных ко вторичным обмоткам измерительных трансформаторов.

7.2.10 Проверка нагрузки на вторичные цепи измерительных трансформаторов тока

Измеряют мощность нагрузки на вторичные цепи ТТ, которая должна находиться в диапазоне указанном в ГОСТ 7746.

Измерение тока и вторичной нагрузки ТТ проводят в соответствии с аттестованной в установленном порядке методикой выполнения измерений.

Примечания:

- 1 Допускается измерения мощности нагрузки на вторичных цепях TT не проводить, если такие измерения проводились при составлении паспортов—протоколов на данный измерительный канал в течение истекающего межповерочного интервала системы. Результаты проверки считают положительными, если паспорт-протокол подтверждает выполнение указанного выше условия для TT;
- 2 Допускается мощность нагрузки определять расчетным путем, если известны входные (проходные) импедансы всех устройств, подключенных ко вторичным обмоткам TT.

7.2.11 Проверка падения напряжения в линии связи между вторичной обмоткой ТН и счетчиком

Измеряют падение напряжения U_n в проводной линии связи для каждой фазы по утвержденному документу «Методика выполнения измерений падения напряжения в линии соединения счетчика с трансформатором напряжения в условиях эксплуатации». Падение напряжения не должно превышать 0.25 % от номинального значения на вторичной обмотке TH.

Примечания:

- 1 Допускается измерение падения напряжения в линии соединения счетчика с TH не проводить, если такие измерения проводились при составлении паспортов—протоколов на данный измерительный канал в течение истекающего межповерочного интервала системы. Результаты проверки считают положительными, если паспорт—протокол подтверждает выполнение указанного выше требования;
- 2 Допускается падение напряжения в линии соединения счетчика с TH определять расчетным путем, если известны параметры проводной линии связи и сила электрического тока, протекающего через линию связи.

7.3 Опробование АИИС КУЭ в целом

7.3.1 Подготовка к опробованию АИИС КУЭ в целом

Опробование системы в целом проводится на ИВК с помощью программного обеспечения ПК «Энергосфера». Для проведения опробования системы в программном обеспечении ИВК должна быть задана конфигурация испытываемой системы. Сбор данных со всех счетчиков, УСПД, входящих в состав системы, осуществляется с помощью программного обеспечения, установленного на сервере БД ИВК ПАО «Транснефть».

Опробование системы считается успешным, если по завершению опроса всех счетчиков, УСПД в отчетах, представленных в программе, присутствуют показания по учету электроэнергии с указанием текущей даты и времени.

7.3.2 Сбор данных со счетчика, входящего в состав системы

Сбор данных со счетчика, входящего в состав системы с помощью стационарного компьютера, расположенного на ИВК:

- Подать питание на ИВК;
- Запустить на выполнение программу сбора данных;
- Проверить конфигурацию, заданную в программе опроса счетчика;
- Выполнить опрос счетчика, входящего в состав системы;

Опробование АИИС КУЭ считать успешным, если по завершению опроса счетчика, в отчетах присутствуют показания по энергопотреблению с указанием текущей даты и времени.

7.4 Проверка отсутствия ошибок информационного обмена

Операция проверки отсутствия ошибок информационного обмена предусматривает

экспериментальное подтверждение идентичности числовой измерительной информации в счетчике электрической энергии (исходная информация) и в ИВК ПАО «Транснефть».

Определение ошибок информационного обмена может проводиться в статическом режиме, т. е. когда показания счетчика в ходе проверки остаются неизменными и в динамическом режиме, когда показания счетчика изменяются. Статический режим предусматривает отсчет показаний счетчика при отсутствии нагрузки. Для АИИС КУЭ ОАО «АК «Транснефть» в части ООО «Транснефть — Восток» по объекту «МН «Куюмба-Тайшет» ППМН через р. Ангара» допускается определение ошибок информационного обмена по следующему методу:

7.4.1 Проверка отсутствия ошибок информационного обмена при наличии нагрузки на присоединении

- Снять показания предыдущих коммерческих данных (показания по энергии и мощности за предыдущий период учета) с помощью переносного компьютера и программного обеспечения ПК «Энергосфера» модуль «Электроколлектор» через оптический порт;
- С помощью ПО ПК «Энергосфера» модуль «Сервер опроса», расположенного на ИВК, провести опрос счетчика и получить распечатку результатов опроса по предыдущим коммерческим данным (показаниям по энергии и мощности);
- Сравнить показания по предыдущим коммерческим данным, зафиксированным на индикаторе счетчика или зафиксированными в памяти переносного компьютера, и показаниями, хранящимися в ИВК.

Если разность показаний индикатора счетчика или переносного компьютера и ИВК не превышает двух единиц младшего (последнего) разряда, считают, что данный измерительный канал прошел проверку успешно.

7.5 Оценка основных метрологических характеристик АИИС КУЭ ОАО «АК «Транснефть» в части ООО «Транснефть – Восток» по объекту «МН «Куюмба-Тайшет» ППМН через р. Ангара»

К основным метрологическим характеристикам системы относятся:

- пределы допускаемой относительной погрешности ИК при доверительной вероятности 0,95 при измерении электроэнергии в рабочих условиях применения АИИС КУЭ;
 - ход системных часов за одни сутки.

7.5.1 Пределы допускаемых относительных погрешностей измерения активной и реактивной электрической энергии и мощности

Пределы допускаемой относительной погрешности ИК при доверительной вероятности 0,95 при измерении электроэнергии в рабочих условиях применения АИИС КУЭ вычисляются как композиция пределов допускаемых значений составляющих для рабочих условий применения системы по формуле:

$$\delta_{W} = \pm 1, 1 \cdot \sqrt{\delta_{J}^{2} + \delta_{U}^{2} + \delta_{\theta}^{2} + \delta_{JI}^{2} + \delta_{CO}^{2} + \sum_{j=1}^{I} \delta_{C_{j}}^{2} + \delta_{TR}^{2}}, \qquad (1)$$

где δ_{l} токовая погрешность TT, %;

 δ_U - погрешность напряжения ТН, %;

 δ_{θ} - погрешность трансформаторной схемы подключения счетчика за счет угловых погрешностей ТТ и ТН, %;

 δ_{II} - погрешность из-за потери напряжения в линии соединения счетчика с ТН, %;

 δ_{CO} - основная относительная погрешность счетчика, %;

 δ_{C_i} - дополнительная погрешность счетчика от *j*-й влияющей величины, %;

l - число влияющих величин;

 δ_{TR} - погрешность синхронизации времени СОЕВ при проведении измерений количества электроэнергии.

Все указанные в формуле (1) составляющие погрешности измерительного канала представляют собой пределы допускаемых значений $\pm \delta$ (с соответствующим индексом), числовые значения которых получают из технической документации на СИ. При этом:

1) погрешность трансформаторной схемы подключения счетчика δ_{θ} вычисляют по формуле:

- для активной электроэнергии:
$$\delta_{\theta_p} = 0.029 \cdot \sqrt{\theta_J^2 + \theta_U^2} \cdot \frac{\sqrt{1 - \cos^2 \varphi}}{\cos \varphi}$$
, (2)

- для реактивной энергии:
$$\delta_{\theta_{\mathcal{Q}}} = 0.029 \cdot \sqrt{\theta_{\mathcal{J}}^2 + \theta_{\mathcal{U}}^2} \cdot \frac{\sqrt{1 - \sin^2 \varphi}}{\sin \varphi}$$
, (3)

где θ_{i} - угловая погрешность ТТ по ГОСТ 7746-2001, мин;

 θ_U - угловая погрешность ТН по ГОСТ 1983-2001, мин;

 $\cos \varphi$ - коэффициент мощности по активной электроэнергии контролируемого присоединения, усредненный за 30 мин;

 $\sin \varphi$ - коэффициент мощности по реактивной электроэнергии контролируемого присоединения, усредненный за 30 мин.

2) дополнительные погрешности счетчика вычисляют по формулам вида:

$$\delta_{C_j} = K_j \cdot \Delta \xi_j, \tag{4}$$

где K_j - коэффициент влияния j-й величины (из паспортных данных счетчика);

 $\Delta \xi_{j}$ - отклонение j-й величины от ее нормального значения;

Основные составляющие дополнительной погрешности счетчика (КТ 0,2S (A) и 0,5(R))

 δ_{cH} - из-за магнитной индукции внешнего происхождения до 0,5 мТл, %;

 δ_{cU} - из-за изменения напряжения в пределах $\pm 10\%$, %;

 δ_{cT} - из-за изменения температуры T, %;

 δ_{cf} - из-за изменения частоты в пределах $\pm 2\%$, %.

Погрешность измерения длительности 30-минутных интервалов времени в счетчике δ_T обусловлена ходом собственных часов, который не превышает $\pm 5,0$ с/сут, т.е. $\delta_T \leq \pm 0,005\%$. На общую погрешность измерения энергии данная погрешность существенно не влияет. А так как погрешность измерения средней энергии $\delta_{\overline{W_p}}$ на 30-минутном интервале времени складывается из погрешности измерения мощности δ_p и погрешности измерения времени δ_T , то практически $\delta_{\overline{W_p}} = \delta_p$; $\delta_{\overline{W_0}} = \delta_Q$.

Пределы допускаемой относительной погрешности ИК при доверительной вероятности 0,95 при измерении мощности в рабочих условиях применения АИИС КУЭ δ_P в виду цифрового характера передачи данных и согласно паспорта счетчика принимаем равной δ_{W}

Пределы допускаемой относительной погрешности ИК при доверительной вероятности 0,95 при измерении электроэнергии и мощности в рабочих условиях применения АИИС КУЭ определяются композицией пределов допускаемых значений погрешностей трансформаторов тока, напряжения и счетчиков электроэнергии в реальных условиях эксплуатации и практически не зависят от способов передачи измерительной информации в цифровой форме и способов организации информационных каналов. (Предел допускаемой дополнительной абсолютной погрешности измерения электроэнергии в АИИС КУЭ ОАО «АК «Транснефть» в части ООО «Транснефть — Восток» по объекту «МН «Куюмба-Тайшет» ППМН через р. Ангара», получаемой за счет математической обработки измерительной информации, поступающей от счетчика, составляет ±2 ЕМР измеренного (учтенного) значения (0,002 кВт·ч и определяется ценой младшего разряда, которая может быть индицирована на мониторах ИВК)).

Пределы допускаемой относительной погрешности ИК при доверительной вероятности 0,95 при измерении электроэнергии и мощности в рабочих условиях применения АИИС КУЭ ОАО «АК «Транснефть» в части ООО «Транснефть — Восток» по объекту «МН «Куюмба-Тайшет» ППМН через р. Ангара», приведены в Приложении Б.

Если в результате поверки АИИС КУЭ ОАО «АК «Транснефть» в части ООО «Транснефть – Восток» по объекту «МН «Куюмба-Тайшет» ППМН через р. Ангара» установлено, что:

- рабочие условия применения соответствуют регламентированным в Методике (методах) измерений,
 - средства измерений, входящие в систему, имеют действующие свидетельства о поверке,

- ошибки информационного обмена и дополнительные погрешности, вызванные обработкой измерительной информации пренебрежимо малы (менее 0,02%),
- то пределы допускаемой относительной погрешности ИК при доверительной вероятности 0,95 при измерении электроэнергии в рабочих условиях применения АИИС КУЭ не превосходят значений, нормированных в эксплуатационной документации, Методике (методах) измерений, и приведены в Приложении Б.

7.5.2 Проверка хода системных часов и функции измерений времени

В штатном режиме работы АИИС КУЭ часы сервера и счетчика периодически корректируются ГЛОНАСС/GPS-приемником, т.е. синхронизируются по времени и погрешности внутренних часов системы не влияют на метрологические характеристики. При отказе канала связи с приемником погрешность измерения времени определяется внутренними часами сервера и счетчика.

7.5.2.1 Проверка работы системы коррекции часов компонентов АИИС КУЭ

Выключив систему коррекции, изменяют время часов счетчика на 5-10 с, включают систему коррекции. Через 1 час проверяют расхождение времени.

Результаты испытаний считаются положительными, если разность показаний текущего времени всех компонентов системы составляет не более ± 5.0 с.

7.5.2.2 Определение хода системных часов за сутки

- 7.5.2.2.1 Для определения хода системных часов АИИС КУЭ используют переносной инженерный пульт (ноутбук) с ПО ПК «Энергосфера», подключенный к Интернету, и тайм-серверы NTP, входящие в состав эталона времени и частоты ФГУП «ВНИИФТРИ» (ntp1.imvp.ru или ntp2, или ntp3). (При отсутствии доступа в Интернет используют радиочасы МИР РЧ-02).
- 7.5.2.2.2 Выполнить синхронизацию часов переносного инженерного пульта (ноутбука) с эталонным временем при помощи тайм-сервера через Интернет, используя службу ОС Windows «W32Time/resync», предварительно настроив её командой «w32tm/config/manualpeerlist:46.254.241.74».
- 7.5.2.2.3 Разместить часы инженерного пульта рядом с экраном сервера БД ИВК. Зафиксировать с помощью фотоаппарата часы сервера БД ИВК и часы инженерного пульта.
- 7.5.2.2.4 Отключить коррекцию часов сервера АИИС. Оставить сервер во включенном состоянии на 24 часа. По истечении 24 часов выполнить п.п. 7.5.2.2.2 и 7.5.2.2.3.

Рассчитать суточный ход часов как разность показаний часов сервера БД ИВК и часов инженерного пульта.

- 7.5.2.2.5 Система считается выдержавшей испытание, если абс. погрешность хода системных часов за сутки не превысила ± 5.0 с.
- 7.6 Подтверждение идентификации программного обеспечения утвержденному типу АИИС КУЭ и зафиксированной при проведении испытаний. Проверка обеспечения защиты ПО в процессе эксплуатации
- 7.6.1 Определение идентификационных признаков метрологически значимой части ПО АИИС КУЭ.

Идентификация ПО АИИС КУЭ реализуется следующими методами:

- с помощью ПО АИИС КУЭ или аппаратно-программных средств, разработанных организацией-разработчиком АИИС КУЭ (либо разработчиком ПО АИИС КУЭ);
- с использованием специальных протестированных (аттестованных, сертифицированных) аппаратно-программных средств и/или протестированного (аттестованного, сертифицированного) ΠO .

При проведении испытаний проверяется соответствие следующих заявленных идентификационных данных программного обеспечения (по Р 50.2.077-2014):

- 7.6.1.1 Наименование программного обеспечения;
- 7.6.1.2 Идентификационное наименование программного обеспечения:
- 7.6.1.3 Номер версии (идентификационный номер) программного обеспечения;

Проверку по пп. 7.6.1.1-7.6.1.3 выполняют после загрузки ПО по информации из раздела «Справка».

Убедиться, что идентификационное наименование и номер версии (лицензии) ПО соответствует заявленному в технической документации на АИИС КУЭ.

Результаты проверки считать положительными, если идентификационное наименование и номер версии (лицензии) ПО соответствует заявленному в технической документации на АИИС КУЭ.

7.6.1.4 Цифровой идентификатор программного обеспечения (контрольная сумма исполняемого кода).

Контрольные суммы исполняемого кода, зафиксированные при утверждении типа АИИС КУЭ, записаны в описании типа АИИС КУЭ для каждого метрологически значимого выделяемого модуля ПО;

При проведении поверки цифровой идентификатор программного обеспечения определяется на сервере ПАО «Транснефть», где установлено ПО ПК «Энергосфера», следующим образом:

- запускаем программу WinMD5FileChecker (во вложении) это менеджер файлов, позволяющий производить хэширование файлов;
- открываем в ней метрологически значимый модуль ПО: pso_metr.dll, являющийся библиотекой результатов измерений, коэффициентов трансформации измерительных трансформаторов и т.д. и входящий в дистрибутив ПО ПК «Энергосфера»;
 - нажимаем кнопку «Рассчитать»;
 - сверяем полученные контрольные суммы.

Результаты проверки считать положительными, если контрольные суммы исполняемого кода, зафиксированные при испытаниях в описании типа, совпадают с контрольными суммами исполняемого кода, полученными при проведении поверки АИИС КУЭ, и число значащих разрядов измерения электроэнергии, заложенное на сервере, не менее числа значащих разрядов измерения счетчиков электроэнергии.

- 7.6.1.5 Алгоритм вычисления цифрового идентификатора программного обеспечения: WinMD5.
 - 7.6.2 Проверка обеспечения защиты ПО от несанкционированного доступа.

Данная проверка проводится с целью избежания искажений результатов измерений.

- В целях предотвращения несанкционированной настройки и вмешательства, которые могут привести к искажению результатов измерений при проведении испытаний проверяется:
- установка паролей на сервер АИИС КУЭ и установка пароля на конфигурирование и настройку параметров ПО ПК «Энергосфера».
- проверка журналов событий и фиксации в них фактов пропадания напряжения, попыток несанкционированного изменения настроек и вмешательства в базу данных конфигурационных параметров АИИС КУЭ.
- проверяется применение и достаточность применяемых специальных средств защиты метрологически значимой части ПО СИ и результатов измерений от преднамеренных изменений тому уровню защиты ПО (по Р 50.2.077-2014), которое было зафиксировано при испытаниях в целях утверждения типа и указано в описании типа АИИС КУЭ.

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

Результаты поверки АИИС КУЭ ОАО «АК «Транснефть» в части ООО «Транснефть – Восток» по объекту «МН «Куюмба-Тайшет» ППМН через р. Ангара» оформляют путем записи в протоколе поверки произвольной формы.

При положительных результатах поверки АИИС КУЭ на нее выдается свидетельство о поверке в соответствии с Порядком проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке, утвержденным приказом Минпромторга № 1815 от 2 июля 2015 г. Знак поверки наносится на свидетельство о поверке в виде оттиска клейма и наклейки.

При отрицательных результатах поверки АИИС КУЭ к эксплуатации не допускается, выписывается «Извещение о непригодности» в соответствии с «Порядком проведения поверки средств измерений» с указанием причин непригодности, ранее выданное свидетельство о поверке АИИС КУЭ аннулируют.

Приложение А

Перечень и характеристики средств измерений, входящих в состав ИК АИИС КУЭ, с указанием непосредственно измеряемой величины, наименования ввода, типов и классов точности средств измерений представлены в таблице А1.

Таблица A1 – Перечень и характеристики средств измерений, входящих в состав ИК АИИС КУЭ ОАО «АК «Транснефть» в части ООО «Транснефть – Восток» по объекту «МН «Куюмба-Тайшет» ППМН через р. Ангара»

Номер ИК	Наименование присоединения	Į	Вид измеряемой		
		TT	TH	Счетчик	электрической энергии (мощности)
1	ВЛ-10 кВ, ф.123-07 от ПС 35/10 кВ №123 "Пинчуга" (ПКУЭ-10 кВ на опоре №216)	ТЛО-10 Кл.т 0,5S К _{ТТ} =30/5 Госреестр № 25433-11	ЗНОЛП-ЭК-10 Кл.т 0,5 Ктн=10000:√3/100:√3 Госреестр № 47583-11	СЭТ-4ТМ.03М Кл.т 0,2S/0,5 Госреестр № 36697-12	активная, реактивная

Примечания:

¹ Допускается замена измерительных трансформаторов и счетчиков на аналогичные утвержденных типов с метрологическими характеристиками такими же, как у перечисленных в таблице 2.

² Замена оформляется актом в установленном в ООО «Транснефть – Восток» порядке. Акт хранится совместно с настоящим описанием типа АИИС КУЭ как его неотъемлемая часть.

Таблица Б1 — Пределы допускаемой относительной погрешности ИК при измерении электроэнергии в рабочих условиях применения АИИС КУЭ при доверительной вероятности p=0,95 в зависимости от параметров контролируемой электросети: тока нагрузки I и коэффициента мощности $\cos \varphi(\sin \varphi)$

	Активная электроэнергия W_P и ее приращение за 30 мин.							
11	и усредненная за 30 мин. активная мощность Р							
Номер ИК	Класс		Знач	$\pm \delta_{P \mathrm{I}_{2\%}}$, %	$\pm \delta_{P \mathrm{I}_{5\%}}$, %	$\pm \delta_{P I_{20\%}}, \%$	$\pm \delta_{P I_{100\%}}$, %	
	точности			для диапазона	для диапазона	для диапазона	для диапазона	
	TT	TH	Сч.	$\cos \varphi$	$I_{2\%} \le I < I_{5\%}$	$I_{5\%} \le I < I_{20\%}$	$I_{20\%} \le I < I_{\text{HOM} = 100\%}$	$I_{100\%} \le I \le I_{120\%}$
				1	1,9	1,2	1,0	1,0
1	0,5S	105	,5 0,2S	0,9	2,4	1,4	1,2	1,2
1		0,5		0,8	2,9	1,8	1,4	1,4
				0,5	5,5	3,0	2,3	2,3
	Реактивная электроэнергия W_O и ее приращение за 30 мин.					н.		
11	и усредненная за 30 мин. реактивная мощность Q							
Номер ИК	Класс Знач		Знач.	$\pm \delta_{Q I_{2\%}}$, %	$\pm \delta_{Q \mathrm{I}_{5\%}}, \%$	$\pm \delta_{Q I_{20\%}}, \%$	$\pm \delta_{Q I_{100\%}}, \%$	
YIIX	точности с		$\cos \varphi /$	для диапазон	на для диапазон	а для диапазона	для диапазона	
	TT	TH	Сч.	$\sin \varphi$	$I_{2\%} \le I < I_{5\%}$	$I_{5\%} \le I < I_{20\%}$	$I_{20\%} \leq I < I_{100\%}$	$ I_{100\%} \le I \le I_{120\%} $
	0,58	,58 0,5		0,9/0,4	4 6,6	3,7	2,9	2,8
1				0,8/0,6	0 4,5	2,7	2,2	2,2
				0,5/0,8	7 2,9	2,1	2,0	2,0

Примечания:

1 Рабочие условия:

- допускаемая температура окружающего воздуха:
 - для измерительных трансформаторов от минус 60 до +40 °C,
 - для счетчиков СЭТ-4TM.03M от минус 40 до +60 °C,
 - для ИВК (20±10) °C,
 - для сервера синхронизации времени ССВ-1Г от +5 до +40 °C;
- диапазон напряжения (0,9–1,1)*Uном*;
- частота (50±1,5) Гц.
- 2 Погрешность в рабочих условиях указана для колебаний температуры окружающего воздуха в месте расположения счетчиков электроэнергии в процессе выполнения измерений от +5 до +35 °C.
 - 3 В таблицах 3а и 36 приняты следующие обозначения:

 $W_{P2\%}$ ($W_{O2\%}$) — значение электроэнергии при 2 %-ной нагрузке (минимальная нагрузка);

 $W_{P5\%}$ ($W_{O5\%}$) – значение электроэнергии при 5 %-ной нагрузке;

 $W_{P20\%}$ ($W_{O20\%}$) — значение электроэнергии при 20 %-ной нагрузке;

 $W_{P100\%}$ ($W_{Q100\%}$) – значение электроэнергии при 100 %-ной нагрузке (номинальная нагрузка);

 $W_{P120\%}(W_{O120\%})$ — значение электроэнергии при 120 %-ной нагрузке (максимальная нагрузка).