Федеральное государственное унитарное предприятие «ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МЕТРОЛОГИЧЕСКОЙ СЛУЖБЫ» (ФГУП «ВНИИМС»)

УТВЕРЖДАЮ Заместитель директора ФГУП «ВНИИМС»

Н.В. Иванникова 04 июля 2016 г.

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

Осциллографы-мультиметры промышленные Fluke серии 120

Методика поверки

МП 206.1-026-2016

г. Москва 2016

1

СОДЕРЖАНИЕ

1.	ОПЕРАЦ	ИИ ПОВЕРКИ	. 3
2.	СРЕДСТЕ	ЗА ПОВЕРКИ	. 4
3.	ТРЕБОВА	НИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ	4
4.	ТРЕБОВА	АНИЯ БЕЗОПАСНОСТИ	4
5.	услови	Я ПРОВЕДЕНИЯ ПОВЕРКИ	5
6.	внешни	ІЙ ОСМОТР И ПОДГОТОВКА К ПОВЕРКЕ	. 5
	6.1 Вне	шний осмотр	5
	62 Пог		5
7			5
7.	шовед	EITHE HOBEF KH	5
	7.1	Опробование	5
	7.2	Определение границ полосы пропускания	6
	7.3	Определение предела абсолютной погрешности измерения частоты	6
	7.4	Определение предела абсолютной погрешности измерения	7
	7.5	Определение предела абсолютной погрешности измерения	8
	7.6	напряжения переменного тока Определение относительной погрешностей измерения коэффициентов	8
	77	заполнения и амплитуды Определение абсолютной погрешности измерения разности фаз	9
	7.8	Определение предела абсолютной погрешности измерения	10
	7.0	силы переменного тока	10
	7.9	Определение аосолютнои погрешности измерения сопротивления	10
	7.10	Определение аосолютнои погрешности измерения емкости	11
	7.11	Определение аосолютной погрешности измерения мощности	11
	7.12	Определение относительной погрешности измерения коэффициента искажений и напряжения гармоник	12

8. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

Настоящая методика распространяется на осциллографы-мультиметры промышленные Fluke серии 120 моделей 123, 124, 125, 123В, 124В и 125В (далее - приборы) фирмы "Fluke Corporation», США, и устанавливает методы и средства первичной и периодической поверок.

Интервал между поверками установлен - 2 года.

1 ОПЕРАЦИИ ПОВЕРКИ

1.1 При проведении поверки должны быть выполнены операции, указанные в таблице 1.

При поверке определяются основные погрешности приборов.

Таблица 1-Операции поверки

Наименование операции		Вид поверки	
		первичная	периодич.
Опробование	7.1	+	+
Определение границ полосы пропускания	7.2	+	+
Определение предела абсолютной погрешности измерения частоты	7.3	+	+
Определение предела абсолютной погрешности измерения напряжения постоянного тока	7.4	+	+
Определение предела абсолютной погрешности измерения напряжения переменного тока	7.5	+	+
Определение относительной погрешностей измерения коэффициентов заполнения и амплитуды	7.6	÷	÷
Определение абсолютной погрешности измерения разности фаз	7.7	÷	+
Определение предела абсолютной погрешности измерения силы переменного тока	7.8	+	+
Определение абсолютной погрешности измерения сопротивления	7.9	+	+
Определение абсолютной погрешности измерения ёмкости	7.10	+	+
Определение абсолютной погрешности измерения мощности	7.11	+	+
Определение относительной погрешности измерения коэффициента искажений и гармоник	7.12	+	+

2. СРЕДСТВА ПОВЕРКИ

2.1 При проведении поверки должны применяться средства поверки, указанные в таблице

Таблица 2 - Средства поверки

Воспроизводимые величины	Диапазон	Основная	Рекомендуемый
		погрешность	ТИП
Напряжение постоян. тока	От 0 до ± 1020 В	0,004 %	
Напряжение перемен. тока	синусоидальное		
Амплитуда	От 0 до ± 1050 В	$\pm 0,025$ %	
Частота	От 10 до 10 ⁵ Гц	± 0,0025 %	T C F
Калиброванная синусоида	От 4 мВ до 2,5В	+ 1.5 %	Калибратор
Амплитуда	пик-пик	(плоскостность)	универсальныи
Частота	от 50 кГц до 600 МГц	$\pm 0,025$ %	Fluke
Напряжение перемен. тока	прямоугольное		5520A-8C600
Амплитуда, от пика до пика	От 2,3 до 148 В	$\pm 0,03$ %	с токовыми
Частота	От 10 до 10 ³ Гц)	± 0,0025 %	катушками
Сила переменного тока	до 1000 А (10-100 Гц)	$\pm 0,045$ %	
Сопротивление	0,1 мОм - 400 МОм	± 0,015 %	
Ёмкость	500 пФ – 40,0 мкФ	± 0,6 %	
Имитация термопар	Тип B,C,E,J,K,L,N,R	± 0.14 °C	
Напряжение переменного	синусоидальное	± [0,05+0,01×	IC
тока фазное (45-55 Гц)	От 0 до 0 - 634,0 В	× (Uном/U-1)]	Калиоратор
Разность фаз (1-я гармоника)	0 - 360 °	±0,03 °	переменного
Коэффициент искажения	0.1.20.0/	$\pm(0,015 +$	напряжения и тока
синусоидального напряжения	0,1-30 %	+0,005K _U) %	многофункцио-
Сила переменного тока	or 0.001 rs 7.5 A	$\pm [0,05+0,01]$	и Нальный и Россира V?»
	ог 0,001 до 7,5 A	· (Іном/І –1)] %	«recype-K2»
Температура, °С	От -50 до +99,9 °С	± 0,05 °C	Термометр ТЛ-300
Давление, кПа	От 80 до 106	±200 Па	Барометр БАММ-1
Влажность, %	От 10 до 100	±1%	Психрометр М34

Обозначения: U - измеряемое, Uном - номинальное напряжение

I - измеряемый, Іном – номинальный ток

К_U – коэффициент несинусоидальности напряжения

2.2 Вместо указанных в таблице 2 средств поверки разрешается применять аналогичные средства поверки, обеспечивающие требуемые технические характеристики.

2.3 Применяемые средства поверки должны быть исправны, поверены, иметь свидетельства о поверке.

З ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

К проведению поверки допускаются лица, имеющие высшее или среднетехническое образование, практический опыт в области радиотехнических измерений, и аттестованные в соответствии с ПР50.2.012-94.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

4.1 К проведению поверки допускаются лица, изучившие руководство по эксплуатации прибора, прошедшие проверку знаний правил техники безопасности и эксплуатации электроустановок с напряжением до 1000 В и имеющие свидетельство по электробезопасности не ниже III группы. Требования безопасности при подготовке и проведению испытаний должны соответствовать ГОСТ 22261-94 и ГОСТ 12.3.019-80.

4.2 Во избежание несчастного случая и для предупреждения повреждения поверяемого анализатора необходимо обеспечить выполнение следующих требований:

- подсоединение поверяемого прибора к сети должно производиться с помощью сетевого кабеля из комплекта прибора;
- заземление поверяемого прибора и средств поверки должно производиться посредством заземляющего провода сетевого кабеля;
- запрещается подавать на входы прибора сигналы с уровнем, превышающим максимально допускаемое значение;
- запрещается работать с прибором в условиях температуры и влажности, выходящих за пределы рабочего, а также при наличии в воздухе взрывоопасных веществ;
- запрещается работать с прибором в случае обнаружения его повреждения.

5 УСЛОВИЯ ПРОВЕДЕНИЯ ПОВЕРКИ

При проведении поверки должны соблюдаться следующие условия окружающей среды:

- температура воздуха 20 ± 5 °C;
- относительная влажность воздуха 65 ± 15 %;
- атмосферное давление 750 \pm 30 мм рт. ст.;
- напряжение питающей сети 220 ± 4,4 В;
- частота питающей сети 50 ± 1 Гц.

6 ВНЕШНИЙ ОСМОТР И ПОДГОТОВКА К ПОВЕРКЕ

6.1 Внешний осмотр

- 6.1 При проведении внешнего осмотра проверяются:
 - чистота и исправность разъемов;
 - отсутствие механических повреждений корпуса прибора и ослабления крепления элементов его конструкции (определяется на слух при наклонах прибора);
 - сохранность органов управления прибора, четкость фиксации их положений.

При наличии дефектов или повреждений, препятствующих нормальной эксплуатации поверяемого прибора, он направляется в сервисный центр для ремонта.

6.2 Подготовка к поверке

Перед началом работы поверитель должен изучить «Руководство пользователя» поверяемого прибора, а также руководства по эксплуатации применяемых средств поверки.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

Общие указания по проведению поверки

В процессе выполнения операций результаты измерений заносятся в протокол поверки. Полученные результаты должны укладываться в пределы допускаемых значений, которые указаны в разделе технические характеристики «Руководства пользователя».

При получении отрицательных результатов операции её необходимо повторить.

При повторном отрицательном результате прибор следует направить в сервисный центр для проведения регулировки и/или ремонта.

7.1 Опробование

- Через адаптер питания подключите прибор к сети переменного тока
- нажмите кнопку включение
- включите кнопку меню
- курсором выделите настройки пользователя и нажмите экранную кнопку enter
- выберите формат язык, выберите языки нажмите, жранную кнопку enter
- выберите формат дата, установите дату и нажмите, жранную кнопку enter
- выберите формат время, установите время и нажмите, экранную кнопку enter

- Выберите формат информация и проверъте номера модели, серийный №, версию прошивки ПО (должна быть V1.00.03 или выше), установите номерили дату поверки и нажмите жранную кнопку enter.
- Подключите к входам каналов A и B через входные кабели (без делителей) питающую сеть переменного тока.
- Нажмите и оппустите кнопку SCOPE METER. По умолчанию прибор находится в режиме автоматических измерений.
- Измерьте напряжение и частоту сети каждым каналом. Они должны соответствовать используемой сети.
- Для проверки перемещения изображения по экрану нажимайте кнопку ВАСК до закрытия всех меню и вторичных панелей кнопок. Кнопкой F1 выберите канал A или B и кнопками со стрелками в центре передней панели проверьте возможность перемещения изображения в разные стороны. Максимальное перемещение – 4 деления экрана. Для смены проверяемого канала нажмите кнопку F1.

Результаты опробования удовлетворительны, если указанные процедуры выполняются.

7.2 Определение границ полосы пропускания

Установить на приборе прямой вход по переменному току и режим AutoReading, для чего:

- нажать кнопку ScopeMeter, установить входы A и B на переменный ток, соединение через провода.
- затем F1, чтобы открыть панель копок осциллографа.
- нажать F1 чтобы открыть меню ИЗМЕРЕНИЕ.
- нажать F1 чтобы выбрать для параметра AutoReading значение ВКЛ.
- нажать F4 чтобы выбрать ГОТОВО и закрыть меню.

Подключить калибратор Fluke 5520А-SC600 к входу канала А.

Для проверки нижней границы полосы пропускания установите на калибраторе напряжение синусоидальной формы частотой 10 Гц и амплитудой от пика до пика 2 В. Измерить напряжение прибором. Если измеренное прибором напряжение не менее 1,4 В – результат удовлетворительный. Таким же образом проверить канал **В**.

Для проверки нижней границы полосы пропускания установите на калибраторе режим калиброванной синусоиды амплитудой от пика до пика 2 В. Установите частоту, соответствующую верхней границе полосы пропускания. Если измеренное прибором напряжение не менее 1,4 В – результат удовлетворительный. Так же проверить канал В. Показания занесите в таблицу 3.

Tuotingu 5 npobopku Tpunin nonoobi nponyokumin						
Предел полосы	Предел полосы Допускаемый нижний		і измерений			
пропускания	предел показаний, В	Канал А	Канал В			
Верхний	1 /					
Нижний	1,4					

Таблица 3- проверка граний полосы пропускания

7.3 Определение предела абсолютной погрешности измерения частоты

Установите на калибраторе Fluke 5520A-SC600 режим калиброванной синусоиды амплитудой от пика до пика 2 В и подключить калибратор к входу канала А прибора.

Установить на приборе прямой вход по переменному току и режим AutoReading.

Нажать кнопку ScopeMeter, установить входы A и B на переменный ток, соединение через провода, режим измерения - частота

Проверка погрешностей измерения частоты проводится при частотах, указанных в таблице 4.

			*	-	
Частота	Допускаемые пределы показаний		Резул измет	ьтаты ений	
	Модели Fluke 123, 1				
	минимум	максимум	Канал А	Канал В	
1	0,993	1,007			
10	9,930	10,07			
70	69,63	70,37			
Fluke 123B, 24B,125B					
50	49,73	50,27			

Таблица 4- проверка абсолютных погрешностей измерения частоты, МГц

Если результаты измерений лежат в пределах, указанных в таблице 4 – результат поверки положительный.

7.4 Определение основной погрешности измерения напряжения постоянного тока

Соедините входы A и B прибора с выходом калибратора Fluke 5520A-SC600 кабелями без делителей, нажатием кнопкит **MENU** перейти нажатием кнопки **Scopmeter** в режим установок :экранными кнопками **A** и **B** включить оба канала и установить режим **B пост. Тока**

- кнопкой F3 выбрать через экранное меню датчик тока 1:1 провода
- через экранное меню отключить в обоих каналах режим AutoReading
- кнопкой F2 включить установку на постоянный ток
- экранными кнопками установить линии развёртки каналов A и B приблизительно на центральную линию масштабной сетки.
- кнопками слева RANGE установить необходимый коэффициент отклонения
- установить калибратор Fluke 5520A-SC600 в режим формирования напряжения постоянного тока
- последовательно подавать с калибратора напряжения постоянного тока с величинами, указанными в таблице 3, считывать с информационной строчки дисплея численные значения напряжений, измеренные каналами А и В.

Напряжения	Коэффициент	Допускаемые пределы показаний		Результаты измерений	
калиоратора	отклонения	минимум	максимум	Канал А	Канал В
+6,0 мВ	5 мВ/леп	+4,9 мВ	+7,1 мВ		
-6,0 мВ	5 мд/дел.	-4,9 мВ	-7,1 мВ		
+30,0 мВ	10 xP/707	+29,1 мВ	+30,9 мВ		
-30,0 мВ	то мв/дел.	-29,1 мВ	-30,9 мВ		
+300 мВ	100 мВ/лел	+291 мВ	+309 мВ		
-300 мВ		-291 мВ	-309 мВ		
+3,00 B	1 В/дел.	+2,91 B	+3,09 B		
-3,00 B		-2,91 B	-3,09 B		
+30,0 B	10 В/дел.	+29,1 B	+30,9 B		
-30,0 B		-29,1 B	-30,9 B		
+300 B	100 В/дел.	+291 B	+309 B		
-300 B		-291 B	-309 B		
+1000 B	500 В/дел.	+970 B	+1023 B		
-1000 B		-970 B	-1023 B		

Таблица 5- проверка погрешности измерения напряжения постоянного тока

Примечание : измерения +/- 1000 В выполнены с внешними входными делителями VPS410

Для измерений с делителями VPS410 или VPS510 соедините входы A и B с выходом калибратора кабелями через эти делители, кнопкой F2 и курсорами переключить установку на 10:1

Результаты проверки считаются удовлетворительными, если лежат в пределах, указанных в таблице 3.

7.5 Определение погрешности измерения напряжения переменного тока

Соедините входы A и B прибора с выходом калибратора Fluke 5520A-SC600 кабелями без делителей, нажатием кнопкит USER перейти в режим установок выбрать следующие установки прибора:

- кнопкой MANUAL/AUTO включить ручной режим измерения
- кнопкой SCOPE включить режим осциллографа
- кнопками A и B включить оба канала
- кнопкой F1 и курсорами включить установку READINGS ON и READING Vac
- кнопкой F2 включить установку COULPLING AC
- кнопкой F2 и курсорами включить установку ATTENUATION 1:1
- кнопкой F4 и курсорами включить установки Attenuator: Normal
- кнопками слева MOVE установить линии развёртки развертки каналов А и В приблизительно на центральную линию масштабной сетки.
- кнопками слева RANGE установить необходимый коэффициент отклонения
- установить на калибраторе формирование напряжения переменного тока частотой 50 Гц
- последовательно подавать с калибратора напряжения переменного тока с величинами, указанными в таблице 6, считывать с информационной строчки дисплея численные значения напряжений, измеренные каналами А и В.

Таблица 6 - проверка погрешности измерения напряжения переменного тока

Результаты	Коэффициент	Допускаемые пределы показаний		Результаты измерений	
измерений	измерений отклонения		максимум	Канал А	Канал В
6,0 мВ	5мВ/дел.	4,9 мВ	7,1 мВ		
30,0 мВ	10 мВ/дел.	29,1 мВ	30,9 мВ		
300 мВ	100 мВ/дел.	291 мВ	309 мВ		
3,00 B	1 В/дел.	2,91 B	3,09 B		
30,0 B	10 В/дел.	29,1 B	30,9 B		
300 B	100 В/дел.	291 B	309 B		
1000 B	500 В/дел.	970 B	1023 B		

- Примечание: измерения 1000 В выполнены с внешними входными делителями VPS410 Для определения погрешностей измерений с делителями VPS410 или VPS510 соедините входы A и с выходом калибратора кабелями через эти делители и кнопкой F2 и курсорами переключить установку на ATTENUATION 10:1
 - На калибраторе Fluke 5520A-SC600 установить значения переменного синусоидального напряжения и частоты в соответствии с таблицей 6.
 - Снять численные показания измеренного значения напряжения с экрана прибора

Результаты проверки считаются удовлетворительными, если результаты измерений лежат в пределах, указанных в таблице 6.

7.6 Определение относительной погрешности измерений коэффициента заполнения и коэффициента амплитуды

Соедините входы прибора А и В с выходом калибратора Fluke 5520A-SC600.

Выбрать через экранное меню установки прибора связь по постоянному току без делителей, режим AutoReading.

Установить на калибраторе Fluke 5520A-SC600 напряжение переменного тока прямоугольной формы величиной 10 В, частотой 10 кГц и коэффициентами заполнения согласно таблице 7.

Коэффициент	F	ний, %		
заполнения, %	Допускаемые пр	еделы показаний	Показани	я прибора
(калибратор)	минимум	максимум	Канал А	Канал В
3	2,983	3,017		
10	9,948	10,07		
20	19,88	20,12		
50	49,73	50,27		
70	69,63	70,35		
95	89,53	95,49		- - -

Таблица 7 – проверка относительной погрешности измерений коэффициента заполнения

- Снять с экрана прибора численные показания измеренных значений коэффициента заполнения на каналах **A** и **B**.

Результат измерения считается удовлетворительным, если измеренное значение находится в пределах, указанных в 2 и 3 столбцах таблицы 7.

При определении относительной погрешности измерений коэффициента амплитуды сохранить установки прибора и калибратора, используемые при измерениях коэффициента заполнения.

Таблица 8 – проверка относительной погрешности измерений коэффициента амплитуды

Коэффициент	Pe	ний, %		
заполнения, %	Допускаемые пре	делы показаний	Показания	прибора
(калибратор)	минимум	максимум	Канал А	Канал В
10	9,52	10,05		
20	4,76	5,025		
50	1,90	2,01		
90	1,06	1,12		

Результаты проверки считаются удовлетворительными, если результаты измерений лежат в пределах, указанных в таблице 8.

7.7 Определение абсолютной погрешности измерения разности фаз

Измерение может проводиться с использованием калибратора Fluke 5520A-SC600 и любых токовых клещей, коэффициент преобразования силы переменного тока в напряжение соответствует спецификации прибора. Далее излагается процедура измерения с использованием токовых клещей переменного тока i400s, входящих в комплект поставки моделей.

- Откройте через меню вход прибора В
- Кнопками вверх/вниз выделите пункт выбрать
- Кнопками вверх/вниз выделите тип датчика токовые клещи
- Коэффициент преобразования 1 мВ/А
- Подсоедините разъём кабеля клещей к входу прибора **В**
- Подсоедините токовую катушку 1:50 к выходу тока калибратора
- Охватите клещами магнитопровод токовой катушки
- Откройте через меню вход прибора А (напряжение)и выбрать его установки:
- связь по постоянному току без делителей
- измерение переменного напряжения
- Установите режим AutoReading для обоих каналов

- Установите силу тока калибратора 2 А (с учётом токовой катушки 100 А) напряжение 200
 В, частоту переменного тока 50 Гц, фазу канала В 0°.
- Включите калибратор, установите фазу канала A согласно первому столбцу таблицы 9 и измерьте разность фаз прибором.

Заданная	Результаты измерений разности фаз, ⁰				
разность фаз, ⁰	Допускаемые	пределы показаний	Изме	ерено	
(калибратор)	минимум максимум		образец №	образец №	
0	-2	2			
30	28	32			
60	58	62			
90	88	92			
150	148	152			

Таблица 9 – Определение абсолютной погрешности измерений разности фаз

Результаты проверки считаются удовлетворительными, если результаты измерений лежат в пределах, указанных в таблице 9.

7.8. Определение абсолютной погрешности измерения силы переменного тока

Измерение может проводиться с использованием любых токовых клещей, коэффициент преобразования в напряжение силы постоянного, переменного и пикового тока соответствует спецификации прибора. Далее излагается процедура измерения с использованием токовых клещей переменного тока i400s, входящих в комплект поставки моделей (основная погрешность ± 2 %). При отсутствии токовых клещей имитируйте их выходное напряжение калибратором Fluke 5520A-SC600.

- Откройте меню
- Откройте вход А
- Кнопками вверх/вниз выделите пункт выбрать
- Кнопками вверх/вниз выделите тип датчика токовые клещи
- Коэффициент преобразования 1 мВ/А
- Подсоедините разъём кабеля клещей к входу прибора А
- Подсоедините токовую катушку 1:50 к токовому выходу калибратора Fluke 5520A-SC600
- Охватите клещами магнитопровод токовой катушки
- Установите калибратор в режим формирования силы переменного тока частоты 50 Гц
- Включите калибратор, установите силу тока калибратора с учётом токовой катушки (× 50) и измерьте её прибором.
- Для получения результатов с каналом В проведите аналогичные операции.

Таблица 10 – проверка абсолютной погрешности измерений силы тока

IImana	Сила тока, А						
ЧИСЛО	калибратора	калибратора	ора Допускаемые пределы показаний		Измеренная		
витков		с катушкой	минимум	максимум			
10	0,1	1	0,981	1,021			
10	0,2	2	1,963	2,043			
10	0,5	5	4,892	5,107			
50	0,2	10	9,785	10,215			
50	1,0	50	48,985	51,015			
50	2,0	100	97,985	102,015			
50	4,0	200	195,985	204,015			
50	8,0	400	391,985	408,015			

Результаты проверки считаются удовлетворительными, если результаты измерений лежат в пределах, указанных в таблице 10.

7.9 Определение абсолютной погрешности измерения сопротивления

- Соединить прибор с калибратором Fluke 5520A-SC600, выходы имитации сопротивления
- Для измерения сопротивления (Ω) используйте красный экранированный измерительный провод от входа **A** и черный неэкранированный заземляющий провод от разъема **COM**.
- Выбрать через меню установку поверяемого прибора измерение сопротивления (Ω)
- Установить автоматический выбор диапазонов измерения
- Нажать кнопку МЕТЕК
- Установить на калибраторе сопротивление в первой поверяемой точкой таблицы
- Снять численное показание измеренного значения сопротивления с экрана прибора.
- Провести измерения на всех поверяемых точках, указанных в таблице 11.

Таблица 11 - проверка абсолютной погрешности измерения сопротивления.

Сопротивление	Допус	Результаты	
на выходе	пределы	измерений	
калибратора	минимум	максимум	
0 Ом	0.0 Ом	0.5 Ом	
400 Ом	397.1 Ом	402.9 Ом	
4 кОм	3.971 кОм	4.029 кОм	
40кОм	39.71 кОм	40.29 кОм	
400 кОм	397.1 кОм	402.9 кОм	
4 МОм	3.971 МОм	4.029 МОм	
30 МОм	29.77 МОм	30.23 МОм	
		1	

Результаты проверки считаются удовлетворительными, если результаты измерений лежат в пределах, указанных в таблице 11.

7.10 Определение абсолютной погрешности измерения ёмкости

- Соединить прибор с калибратором Fluke 5520A-SC600, выходы имитации сопротивления
- Для измерения прибором ёмкости используйте красный экранированный измерительный провод от входа **A** и черный неэкранированный заземляющий провод от разъема **COM**.
- Выбрать через меню установку поверяемого прибора измерение ёмкости
- Установить автоматический выбор диапазонов измерения
- Нажать кнопку **METER**
- Установить на калибраторе ёмкость в первой поверяемой точкой таблицы
- Снять с экрана прибора численное показание измеренного значения ёмкости.
- Провести измерения на всех поверяемых точках, указанных в таблице 12.

Таблица 12 - проверка абсолютной погрешности измерения ёмкости.

Ёмкость, мкФ	Допус	Результаты	
имитируемая	пределы	измерений	
калибратором	минимум	максимум	
4,00 нФ	3,82 нФ	4,090нФ	
40,0 нФ	38,20 нФ	40,90 нФ	
400,0 нФ	382,0 нФ	4090 нФ	
4,000 мкФ	3,820 мкФ	4,090 мкФ	
40,00 мкФ	38,20 мкФ	40,9 ОмкФ	
400,0 мкФ	382,0 мкФ	409, 0мкФ	

Результаты проверки считаются удовлетворительными, если результаты измерений лежат в пределах, указанных в таблице 12.

7.11 Определение абсолютной погрешности измерения мощности

Для определения абсолютной погрешности измерения мощности однофазной сети переменного тока используем калибратор Fluke 5520A-SC600. Выберем максимальное значение напряжения 220 В, а тока - 400 А. Для этого к входу прибора А подать напряжение с выхода напряжения фазы калибратора А, служащего для формирования напряжения сети, а к входу прибора В, имитирующую напряжение вторичной обмотки трансформатора тока, измеряющего силу тока сети, напряжения фазы калибратора В. Коэффициент преобразования трансформатора тока примем 10 мВ/А, что соответствует модели **i400s**, которым стандартно комплектуются приборы данной серии.

На приборе установим режим измерения мощности переменного тока, а на калибраторе «**Ресурс-К2**» напряжение переменного тока частотой 50 Гц величинами, указанными в таблице 15.

	Сигналы, подавае- мые на каналы		Фазовый сдиг между каналами		Измеренная мощность, В А		
% максимальной					Допускаемые		
					пределы показаний		Показания
мощности	Канал А,	Канал В,	Между	Cose	MITTIMAN	Marchana	прибора
	В	A	А и В, ⁰	Cυsψ	минимум	максимум	
22	55,0	400,0	0,0	1,0	21,12	22,88	
44	110,0	400,0	0,0	1,0	42,24	45,76	
66	165,0	400,0	0,0	1,0	63,66	68,64	
88	220	400,0	0,0	1,0	84,48	91,52	
22	220	100,0	0,0	1,0	21,12	22,88	
44	220	200,0	0,0	1,0	42,24	45,76	
66	220	300,0	0,0	1,0	63,66	68,64	
88	220	400,0	0,0	1,0	84,48	91,52	
88	220	400,0	0,0	1,0	84,48	91,52	
76,20	220	400,0	30	0,866	73,16	79,26	
62,21	220	400,0	45	0,707	59,73	64,70	
44	220	400,0	60	0,5	42,24	45,76	

Таблица 15 – измерение абсолютных погрешностей измерений мощности переменного тока.

Результаты проверки считаются удовлетворительными, если результаты измерений лежат в пределах, указанных в таблице 15.

7.12 Определение относительной погрешности измерения коэффициента искажений и гармоник

Измерение искажений проводится с помощью калибратора переменного напряжения и тока многофункционального **«Ресурс-К2»** на частоте 50 Гц, раздельно для напряжения и напряжения, имитирующего силу тока. Амплитуда основной гармоники напряжения ± 100 В, напряжений 33-й, и 49-й гармоник - 20 В. Амплитуда основной гармоники силы тока, подаваемой на шину токовых клещей типа i400s ± 5 A, 33-й, и 49-й гармоник – 1 A.

Гармоники отображаются при измерениях напряжения на входе **A**, тока на входе **B** и мощности вычислением по результатам эти измерений. На входе **A** принудительно устанавливается режим измерения напряжения, а на входе **B** - тока. В режиме измерения гармоник прибор использует только режим автоматической настройки (**AUTO**). Чувствительность по вертикали и по оси времени автоматически оптимально настраиваются по параметрам подаваемого на вход сигнала. Клавиши масштабирования (**mV**, **V** и **s TIME ns**) в режиме **AUTO** блокируются.

Чтобы измерить гармоники, необходимо выполнить следующие действия:

Подключите вход A для измерения напряжения (VOLT) и мощности (WATT), а вход B - для измерения тока (AMP) и мощности (WATT). Если вход A уже настроен на измерение напряжения (V), а вход B - на измерение тока (AMP), будут использованы имеющиеся настройки датчиков. Если нет - откроется меню PROBE (Датчик), которое позволит выбрать настройки датчиков.

Нажмите экранную кнопку F1 и выберите отображение гармоник напряжения на входе A (VOLT), тока на входе B (AMP) или мощности (WATT).

Нажмите экранную кнопку F2 и выберите позицию % f, чтобы отобразить гистограммы отдельных гармоник в % от среднеквадратичного значения основной гармоники. Масштаб по вертикали можно увеличить нажатием кнопки «вверх» на лицевой панели.

Для снятия точных численных показаний с гистограмм на экране нажмите экранную кнопку **F4** и выберите режим **CURSOR ON** (курсор включен). При этом на вершине гистограммы появится знак вертикального курсора. На экране отобразится численное показание, соответствующее отмеченной гистограмме (порядку гармоники). Чтобы выбрать другую гистограмму, необходимо переместить курсор нажатием кнопок «**вправо/влево**» на лицевой панели.

При измерении гармоник на экране отображаются несколько величин, в частности суммарный коэффициент искажений **THD**, соответствующий % доле гармоник в сигнале от среднеквадратичного значения основной гармоники (% f) или полного сигнала (% r).

Величина гистограммы % f, отмеченной курсором, равна части в процентах от среднеквадратичного значения основной гармоники напряжения/тока/мощности.

Величина (%f)	Допус пределы по	каемые эказаний, %	Результаты измерений		
	минимум	максимум	N₂	N₂	
Напряжения					
THD	24.75	29.19			
33 –я гармоника	19.11	20.91			
49 –я гармоника	19,05	20,85			
Силы тока					
THD	024.75	29.19			
33 –я гармоника	19.11	20.91			
49 –я гармоника	19,05	20,85			

Таблица 16 - относительные погрешности измерения искажений

Результаты проверки считаются удовлетворительными, если результаты измерений лежат в пределах, указанных в таблице 16.

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

При выполнении операций поверки оформляется протокол в произвольной форме.

При положительных результатах поверки выдается свидетельство о поверке в соответствии с п. 4 Приказа Минпромторга России № 1815 от 0.06.2015 г., с указанием полного наименования аккредитованной на право поверки организации, номера и дата свидетельства о поверке, наименования и обозначения поверенного средства измерения, его заводского номера, обозначения документа, по которому выполнена поверка, имени поверителя.

При отрицательных результатах поверки, выявленных при внешнем осмотре, опробовании или выполнении операций поверки, выдается извещение о неиригодности.

Начальник отдела 206.1 ФГУП «ВНИИМС»

(Киселев В.В.)

Ведущий научный сотрудник

(Авербух В.Д.)

nationalise 19 anno 19 20 anno 19