УТВЕРЖДАЮ

Генеральный директор ООО «КИА» В.Н. Викулин ILLECTBO C OFP сентября 2016 г. инфо агентство * MOCKBA

Государственная система обеспечения единства измерений

Установки для измерения напряжения и тока в электрохимических ячейках PARSTAT 4000+

> Методика поверки PARSTAT-MП-2016

> > г. Москва 2016

Настоящая методика поверки распространяется на установки для измерения напряжения и тока в электрохимических ячейках PARSTAT 4000+ (далее – установки), изготавливаемые компанией "Advanced Measurement Technology, Inc., Scientific Instruments / Princeton Applied Research", США, и устанавливает методы и средства их поверки.

Интервал между поверками – 1 год.

1 ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки должны быть выполнены операции, указанные в таблице 1.

Наименование операции	Номер пункта	Проведение операции при поверке	
	методики	первичной	периодической
Внешний осмотр и подготовка к поверке	6	да	да
Опробование (идентификация и диагностика)	7.2	да	да
Определение метрологических характеристик	7.3	да	да
Определение погрешности воспроизведения и измерения напряжения	7.3.1	да	да
Определение погрешности воспроизведения и измерения силы тока	7.3.2	да	да

Таблица 1 – Операции поверки

2 СРЕДСТВА ПОВЕРКИ

2.1 При проведении поверки должны применяться средства поверки, указанные в таблице 2.

2.2 Вместо указанных в таблице 2 средств поверки разрешается применять другие аналогичные средства поверки, обеспечивающие требуемые технические характеристики.

2.3 Применяемые средства поверки должны быть исправны, поверены, и иметь документы о поверке.

N⁰	Наименование средства поверки	Номер пункта методики	Рекомендуемый тип средства поверки
1	Измеритель постоянного напряжения и силы тока	7.3.1 7.3.2	Мультиметр Agilent 3458 A , Госреестр № 25900-03
2	Катушка сопротивления 0.01 Ω	7.3.2	Мера электрического сопротивления универсальная однозначная МС 3080М, Госреестр № 61295-150; номинал 0.01 Ω

Таблица 2 – Средства поверки

З ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

К проведению поверки допускаются лица с высшим или среднетехническим образованием, и имеющие практический опыт в области электрических измерений.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

4.1 При проведении поверки должны быть соблюдены требования безопасности в соответствии с ГОСТ 12.3.019-80 и требования, изложенные в разделе 2 инструкции по эксплуатации установки.

4.2 Во избежание несчастного случая и для предупреждения повреждения установки необходимо обеспечить выполнение следующих требований:

- подсоединение установки к сети должно производиться с помощью сетевого кабеля из комплекта прибора;

- заземление установки и средств поверки должно производиться посредством заземляющего провода сетевого кабеля;

- запрещается работать с установкой при снятых крышках или панелях;

- запрещается работать с установкой в условиях температуры и влажности, выходящих за пределы рабочего диапазона, а также при наличии в воздухе взрывоопасных веществ;

- запрещается работать с установкой в случае обнаружения ее повреждения.

5 УСЛОВИЯ ОКРУЖАЮЩЕЙ СРЕДЫ ПРИ ПОВЕРКЕ

При проведении поверки должны соблюдаться следующие условия окружающей среды:

- температура воздуха (23 ± 5) °C;

- относительная влажность воздуха от 30 до 80 %;

- атмосферное давление от 84 до 106.7 kPa.

6 ВНЕШНИЙ ОСМОТР И ПОДГОТОВКА К ПОВЕРКЕ

6.1 Внешний осмотр

6.1.1 При проведении внешнего осмотра проверяются:

- чистота и исправность разъемов, отсутствие механических повреждений корпуса и ослабления крепления элементов установки;

- комплектность установки.

6.1.2 При наличии дефектов или повреждений, препятствующих нормальной эксплуатации установки, ее направляют в ремонт.

6.2 Подготовка к поверке

6.2.1 Перед началом работы поверитель должен изучить руководство по эксплуатации установки, а также руководства по эксплуатации применяемых средств поверки.

6.2.2 Соединить установку с компьютером кабелем USB из комплекта установки. Кабелем из комплекта установки подсоединить ее к сети 220 V; 50 Hz.

Подключить разъем D измерительного кабеля к разъему на передней панели установки и зафиксировать его предусмотренными для этого по бокам разъема винтами.

6.2.3 Включить питание установки.

6.2.4 Выполнить установку программы VersaStudio на компьютер.

6.2.5 Перед началом выполнения операций по определению метрологических характеристик установка и мультиметр должны быть выдержаны во включенном состоянии в соответствии с указаниями руководств по эксплуатации. Минимальное время прогрева установки 30 min.

PARSTAT-MΠ-2016	Методика поверки. 28.09.2016	стр. 3 из 8

7.1 Общие указания по проведению поверки

В процессе выполнения операций результаты измерений заносятся в протокол поверки. Полученные результаты должны укладываться в пределы допускаемых значений, которые указаны в таблицах настоящего раздела документа. При получении отрицательных результатов по какой-либо операции необходимо повторить операцию. При повторном отрицательном результате прибор следует направить в сервисный центр для проведения регулировки и/или ремонта.

7.2 Опробование (идентификация и диагностика)

7.2.1 Идентификация

В главном меню программы, показанном на рисунке 1, выбрать Help, About. Записать индицируемый номер версии программного обеспечения в таблицу 7.2.

Рисунок 1 – Главное меню VersaStudio

7.2.2 Диагностика

7.2.1 В главном меню программы выбрать Tools, Virtual Potentiostat. При этом появится окно, показанное на рисунке 2.

Virtual Potentiostat	· · · · · · · · · · · · · · · · · · ·	terte :	
POLTAGE .		999.	
CURRENT PR		99	
Mode	Cel		Current Range
 Potentiostat Galvanostatic 	Internal ○ External	Cell Off	Auto
	Applied A	C	
1 V 🖌	Amplitude:	10 mV	
Set	Frequency:	1 kH: >*	\$et
	· · · · · · · · · · · · · · · · · · ·		- Potentiostat Diagnostics

Рисунок 2 – Окно Virtual Potentiostat

7.2.2 Кликнуть Potentiostat Diagnostics, Perform Self Check (игнорируя "0.0V Aux Out"). Дождаться завершения диагностики, записать результат проверки в таблицу 7.2.

DADOTATIN (TRACIC		1 0
PARSTAT-MII-2016	Методика поверки. 28.09.2016	стр. 4 из 8

Таблица 7.2.1 – Опробование

Содержание проверки	Результат проверки	Критерий проверки
Проверка идентификации		Номер версии программы VersaStudio 2.44.4 и выше
Диагностика (Self Check)		Отсутствие сообщений об ошибках

7.3 Определение метрологических характеристик

7.3.1 Определение погрешности воспроизведения и измерения напряжения

7.3.1.1 Установить мультиметр в режим измерения постоянного напряжения с автоматическим выбором предела измерения.

7.3.1.2 Выполнить соединения измерительного кабеля установки с гнездами мультиметра и резистором нагрузки следующим образом.

Присоединить наконечники кабеля:

- «зеленый» и «серый» к гнезду "INPUT HI" мультиметра;

- «красный» и «белый» к гнезду "INPUT LO" мультиметра.

Присоединить резистор нагрузки с сопротивлением (1 k $\Omega \pm 10$ %) параллельно входу "INPUT" мультиметра.

7.3.1.3 В окне Virtual Potentiostat (рисунок 2) выбрать Potentiostat, Applied DC, Cell External, Cell On.

7.3.1.4 Устанавливать значения напряжения, указанные в столбце 1 таблицы 7.3.1. После ввода нового значения нажимать клавишу Set.

Записывать измеренные мультиметром значения напряжения в столбец 2 таблицы 7.3.1, измеренные установкой значения напряжения (отсчеты на дисплее "VOLTAGE") в столбец 4 таблицы 7.3.1.

7.3.1.5 Установить значение напряжения 0 mV, нажать Cell On.

7.3.1.6 Вычислить значения абсолютной погрешности измерения напряжения $\Delta U = (U_M - U_0).$ Записать значения абсолютной погрешности в столбец 5 таблицы 7.3.1.

Установленное значение напряжения	Измеренное мультиметром значение напряжения U ₀	Пределы допускаемых значений воспроизведения напряжения	Измеренное установкой значение напряжения U _M	Абсолютная погрешность измерения напряжения (U _M – U ₀)	Пределы допускаемой абсолютной погрешности измерения напряжения
1	2	3	4	5	6
10 mV		8.990 11.010			± 1.01
100 mV		98.90 101.10			± 1.10
1 V		0.9980 1.0020			± 0.002
10 V		9.999 10.011			± 0.011

Таблица 7.3.1 – Погрешность установки и измерения напряжения

7.3.2 Определение погрешности воспроизведения и измерения силы тока

7.3.2.1 Для измерения силы тока до 200 mA установить мультиметр в режим измерения постоянного тока с автоматическим выбором предела измерения.

7.3.2.2 Выполнить соединения измерительного кабеля установки с гнездами мультиметра следующим образом.

Присоединить наконечники кабеля:

- «зеленый» и «серый» к гнезду "INPUT I" мультиметра;

- «красный» и «белый» к гнезду "INPUT LO" мультиметра.

7.3.2.3 В окне Virtual Potentiostat (рисунок 1) выбрать Galvanostat, Applied DC, Cell External, Cell On.

7.3.2.4 Устанавливать значения силы тока от 200 nA до 20 mA, указанные в столбце 1 таблицы 7.3.2.

После ввода нового значения нажимать клавишу Set.

Записывать измеренные мультиметром значения силы тока (знак будет отрицательным) в столбец 2 таблицы 7.3.2, измеренные установкой значения силы тока (отсчеты на дисплее "CURRENT") в столбец 4 таблицы 7.3.2.

7.3.2.5 Закрыть панель Virtual Potentiostat.

В главном меню программы (рисунок 1) выбрать Experiment, New. При этом появится окно Select An Action, показанное на рисунке 3.

Tech	nnique Actions	Technique Actions	Technique Actions
Volta Ope Line Cycl Stai	mmetry: en Circuit ear Scan Voltammetry lic Voltammetry (Single) lic Voltammetry (Multiple Cycles) rcase Linear S can Voltammetry rcase Cuclic Voltammetry	Corrosion: Open Circuit Linear Polarization Resistance (LPR) Tafel Potentiodynamic Cyclic Polarization Potentiodynamic	Impedance: Open Circuit Potentiostatic EIS Galvanostatic EIS
Lyclic Voltammetry (Multiple Lycles) Staircase Linear Scan Voltammetry Staircase Cyclic Voltammetry (Single) Staircase Cyclic Voltammetry (Multiple Cycles) Chronoacoulometry Chronopotentiometry Chronocoulometry Recurrent Potential Pulses Recurrent Galvanic Pulses Fast Potential Pulses Fast Galvanic Pulses Square Wave Voltammetry Differential Pulse Voltammetry Normal Pulse Voltammetry Reverse Normal Pulse Voltammetry	Galvanic Corrosion Galvanostatic Galvanostatic Zero Resistance Ammeter (ZRA) Electrochemical Noise (EN) Split LPR Galvanic Control LPR	Technique Actions Energy: Open Circuit Multi-Vertex Scan Constant Potential Constant Current Constant Resistance Current CCDPL Power CCD Resistance CCD	

Рисунок 3 – Окно Select An Action

7.3.2.6 Выбрать Corrosion, Galvanostatic, подтвердить выбор клавишей OK. Ввести название файла, в котором будут сохранены собранные данные, нажать OK (Save). Появится окно Experiment Properties.

PARSTAT-MII-2016	Методика поверки. 28.09.2016	стр. 6 из 8

7.3.2.7 В окне Experiment Properties сделать установки:

- Cell in Use External, Time per Point 1 s, Duration (s) 10

- Current 200 mA;

7.3.2.8 Нажать клавишу Run (зеленого цвета).

Записать измеренное мультиметром значение силы тока (знак будет отрицательным) в столбец 2 таблицы 7.3.2, измеренное установкой значение силы тока (отсчет среднего значения в правой части окна) в столбец 4 таблицы 7.3.2.

7.3.2.9 Установить значение силы тока 0 mA, нажать клавишу Run.

7.3.2.10 Отсоединить наконечники кабеля от мультиметра.

Установленное значение силы тока	Измеренное мультиметром значение силы тока I ₀	Пределы допускаемых значений воспроизведения силы тока	Измеренное установкой значение силы тока 1 _м	Абсолютная погрешность измерения силы тока (1 _м – 1 ₀)	Пределы допускаемой абсолютной погрешности измерения силы тока
1	2	3	4	5	6
200 nA		198.6 201.4			± 1.4
2 μA		1.986 2.014			± 0.014
20 µA		19.86 20.14			± 0.14
200 µA		198.6 201.4			± 1.4
2 mA		1.986 2.014			± 0.014
20 mA		19.86 20.14			± 0.14
200 mA		198.6 201.4			± 1.4
1 A		0.993 1.007			± 0.007

Таблица 7.3.2 – Погрешность установки и измерения силы тока

7.3.2.11 Перевести мультиметр в режим измерения постоянного напряжения с автоматическим выбором предела измерения.

7.3.2.12 Выполнить соединения измерительного кабеля установки с гнездами мультиметра и клеммами меры сопротивления 0.01 Ω следующим образом.

Присоединить наконечники кабеля:

- «зеленый» и «серый» к клемме "II" меры сопротивления;

- «красный» и «белый» к клемме "12" меры сопротивления.

Соединить клемму "U1" меры сопротивления с гнездом "INPUT HI" мультиметра; клемму "U2" меры сопротивления с гнездом "INPUT LO" мультиметра.

7.3.2.13 В окне Experiment Properties установить силу тока 1 А.

7.3.2.14 Рассчитать измеренное значение силы тока $I_0 = U/R$, где U – отсчет напряжения на мультиметре, R – номинальное значение меры сопротивления. Записать данное значение I_0 в столбец 2 таблицы 7.3.2.

Записать измеренное установкой значение силы тока I_M (отсчет среднего значения в правой части окна) в столбец 4 таблицы 7.3.2.

7.3.2.15. Установить значение силы тока 0 А, нажать клавишу Run.

7.3.2.16 Вычислить значения абсолютной погрешности измерения силы тока $\Delta l = (l_M - l_O).$

Записать значения абсолютной погрешности в столбец 5 таблицы 7.3.2.

7.3.2.17 Закрыть программу VersaStudio.

$1 \Lambda \Lambda 5 1 \Lambda 1 - 1 1 \Pi - 2 V I V$	ИСТОДИКА ПОВЕрки. 20.09.2010	

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

8.1 Протокол поверки

8.1.1 При выполнении операций поверки оформляется протокол в произвольной форме с указанием следующих сведений:

- полное наименование аккредитованной на право поверки организации;

- номер и дата протокола поверки

- наименование и обозначение поверенного средства измерения, установленные опции;

- заводской (серийный) номер;

- обозначение документа, по которому выполнена поверка;

- наименования, обозначения и заводские (серийные) номера использованных при поверке средств измерений, сведения об их последней поверке;

- температура и влажность в помещении;

- полученные значения метрологических характеристик;

- фамилия лица, проводившего поверку.

8.1.2 При положительных результатах поверки допускается протокол поверки не оформлять, а результаты поверки привести на оборотной стороне свидетельства о поверке по форме раздела «Метрологические и технические характеристики» описания типа или по форме таблиц раздела 7.3 настоящей методики поверки.

8.2 Свидетельство о поверке

При положительных результатах поверки выдается свидетельство о поверке и наносится знак поверки в виде наклейки в соответствии с Приказом Минпромторга России № 1815 от 02.07.2015 г.

8.3 Извещение о непригодности

При отрицательных результатах поверки, выявленных при внешнем осмотре, опробовании, или выполнении операций поверки, выдается извещение о непригодности в соответствии с Приказом Минпромторга России № 1815 от 02.07.2015 г.

Главный метролог ООО «КИА»

Заместитель генерального директора по метрологии ЗАО «АКТИ-Мастер»

В.В. Супрунюк

Д.Р. Васильев