

ООО Центр Метрологии «СТП»

Регистрационный номер записи в реестре аккредитованных лиц RA.RU.311229

«УТВЕРЖДАЮ»

Технический директор

ООО Лентр Метрологии «СТП» И.А. Яценко

2016 г.

Государственная система обеспечения единства измерений

Система измерений количества и показателей качества сухого отбензиненного газа на газопроводе с выхода УПГ-2 Вынгапуровского ГПЗ филиала ОАО «СибурТюменьГаз»

МЕТОДИКА ПОВЕРКИ

МП 2403/1-311229-2016

СОДЕРЖАНИЕ

1 Введение	3
2 Операции поверки	4
3 Средства поверки	4
4 Требования техники безопасности и требования к квалификации поверителей	4
5 Условия поверки	5
6 Подготовка к поверке	5
7 Проведение поверки	5
8 Оформление результатов поверки	10
Приложение А	11

1 ВВЕДЕНИЕ

- 1.1 Настоящая методика поверки распространяется на систему измерений количества и показателей качества сухого отбензиненного газа на газопроводе с выхода УПГ-2 Вынгапуровского ГПЗ филиала ОАО «СибурТюменьГаз» (далее − СИК СОГ), заводской № 1986-15, изготовленную ЗАО НИЦ «ИНКОМСИСТЕМ», г. Казань, и устанавливает методику первичной поверки до ввода в эксплуатацию и после ремонта, а также методику периодической поверки в процессе эксплуатации.
- 1.2 СИК СОГ предназначена для автоматизированного измерения объемного расхода (объема) сухого отбензиненного газа (далее газ) при рабочих условиях и приведения объемного расхода (объема) газа к стандартным условиям по ГОСТ 2939—63.
- заключается 1.3 Принцип действия СИК СОГ В непрерывном поступающих от преобразователей преобразовании и обработке входных сигналов, объемного расхода (объема), абсолютного давления, температуры, входящих в состав блока измерительных линий (далее – БИЛ) и средств измерений (далее – СИ), входящих в состав блока измерений показателей качества газа (далее – БИК). При помощи системы обработки информации (далее – СОИ) автоматически рассчитывается плотность при стандартных условиях и коэффициент сжимаемости газа в соответствии с ГОСТ 30319.2-96. Далее автоматически выполняется расчет объемного расхода (объема) газа, приведенного к стандартным условиям по ГОСТ 2939-63, на основе измеренных объемного расхода (объема) при рабочих условиях, абсолютного давления, температуры газа и рассчитанного коэффициента сжимаемости газа.
- 1.4 СИК СОГ представляет собой единичный экземпляр измерительной системы, спроектированной для конкретного объекта из компонентов серийного отечественного и импортного изготовления. Монтаж и наладка СИК СОГ осуществлены непосредственно на объекте эксплуатации в соответствии с проектной документацией СИК СОГ и эксплуатационными документами ее компонентов.
 - 1.5 В состав СИК СОГ входят:
- БИЛ, состоящий из одной рабочей и одной резервной измерительных линий (далее ИЛ) DN 250;
 - БИК;
 - СОИ.

СИК СОГ состоит из измерительных каналов (далее – ИК), в которые входят следующие СИ, установленные на рабочей и резервной ИЛ:

- счетчики газа ультразвуковые FLOWSIC 600 (далее FLOWSIC 600) (регистрационный номер 43981-11);
- термопреобразователи сопротивления платиновые серии TR (регистрационный номер 49519-12), модели TR61 (далее TR61) в комплекте с преобразователями измерительными серии iTEMP TMT (регистрационный номер 57947-14), модели TMT82 (далее TMT82);
- преобразователи давления измерительные Cerabar S PMP71 (далее Cerabar) (регистрационный номер 41560-09).

В состав БИК входят следующие СИ:

- хроматографы газовые промышленные специализированные MicroSAM (регистрационный номер 46586-11);
- анализаторы температуры точки росы по углеводородам модель 241CE II (регистрационный номер 20443-11);
 - анализаторы влажности 3050-OLV (регистрационный номер 35147-07);
 - система ручного пробоотбора.
- В состав СОИ входят комплексы измерительно-вычислительные расхода и количества жидкостей и газов «АБАК+» (регистрационный номер 52866-13).

Взрывозащищенность (искробезопасность) электрических цепей СИК СОГ при

эксплуатации достигается путем применения преобразователей измерительных тока и напряжения с гальванической развязкой (барьеров искрозащиты) KFD2-STC4-Ex1.20 (регистрационный номер 22153-14).

- 1.6 Интервал между поверками первичных измерительных преобразователей (СИ), входящих в состав СИК СОГ в соответствии с описаниями типа на данные СИ. СОИ СИК СОГ поверяют на месте эксплуатации СИК СОГ в соответствии с настоящей методикой поверки.
 - 1.7 Интервал между поверками СИК СОГ 3 года.

2 ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки должны быть выполнены операции, приведенные в таблице 2.1.

Таблица 2.1 – Операции поверки

№ п/п	Наименование операции	Номер пункта методики поверки
1	Проверка технической документации	7.1
2	Внешний осмотр	7.2
3	Опробование	7.3
4	Определение метрологических характеристик	7.4
5	Оформление результатов поверки	8

3 СРЕДСТВА ПОВЕРКИ

3.1 При проведении поверки СИК СОГ применяют эталоны и СИ, приведенные в таблице 3.1.

Таблица 3.1 – Основные эталоны и СИ

Номер пункта методики	Наименование и тип основного и вспомогательного средства поверки и метрологические и основные технические характеристики средства поверки							
5	Барометр-анероид M-67 с пределами измерений от 610 до 790 мм рт.ст., погрешность измерений ± 0.8 мм рт.ст., по ТУ 2504-1797-75							
5	Психрометр аспирационный М34, пределы измерений влажности от 10 % до 100 %, погрешность измерений ±5 %							
5	Термометры лабораторные стеклянные ТЛС-4, диапазоны измерений от 0 °C до 55 °C по ГОСТ 28498-90. Цена деления шкалы 0,1°C							
7.4	Калибратор многофункциональный MC5-R-IS (далее – калибратор): диапазон воспроизведения силы постоянного тока от 0 до 25 мА, пределы допускаемой основной погрешности воспроизведения ±(0,02 % показания + 1 мкА); диапазон воспроизведения последовательности импульсов от 0 до 9999999 импульсов							

- 3.2 Допускается использование других эталонов и СИ по своим характеристикам не уступающим, указанным в таблице 3.1.
- 3.3 Все применяемые эталоны должны быть аттестованы; СИ должны иметь действующий знак поверки и (или) свидетельство о поверке и (или) запись в паспорте (формуляре) СИ, заверенной подписью поверителя и знаком поверки.

4 ТРЕБОВАНИЯ К ТЕХНИКЕ БЕЗОПАСНОСТИ И ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

- 4.1 При проведении поверки должны соблюдаться следующие требования:
- корпуса применяемых СИ должны быть заземлены в соответствии с их эксплуатационной документацией;

- ко всем используемым СИ должен быть обеспечен свободный доступ для заземления, настройки и измерений;
- работы по соединению вспомогательных устройств должны выполняться до подключения к сети питания;
- обеспечивающие безопасность труда, производственную санитарию и охрану окружающей среды;
- предусмотренные «Правилами технической эксплуатации электроустановок потребителей» и эксплуатационной документацией оборудования, его компонентов и применяемых средств поверки.
 - 4.2 К работе по поверке должны допускаться лица:
 - достигшие 18-летнего возраста;
- прошедшие специальную подготовку и имеющие удостоверения на право проведения поверки;
 - прошедшие инструктаж по технике безопасности в установленном порядке;
- изучившие эксплуатационную документацию на СИК СОГ, СИ, входящие в состав СИК СОГ, и средства поверки.

5 УСЛОВИЯ ПОВЕРКИ

При проведении поверки должны соблюдаться следующие условия:

- температура окружающего воздуха, °C

 (20 ± 5)

- относительная влажность, %

от 30 до 80

– атмосферное давление, кПа

от 84 до 106

6 ПОДГОТОВКА К ПОВЕРКЕ

Перед проведением поверки выполняют следующие подготовительные операции:

- проверяют заземление СИ, работающих под напряжением;
- эталонные СИ и СОИ СИК СОГ выдерживают при температуре, указанной в разделе 5, не менее трех часов, если время их выдержки не указано в инструкции по эксплуатации;
- эталонные СИ и СОИ СИК СОГ устанавливают в рабочее положение с соблюдением указаний эксплуатационной документации;
- осуществляют соединение и подготовку к проведению измерений эталонных СИ и СОИ СИК СОГ в соответствии с требованиями эксплуатационной документации.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Проверка технической документации

- 7.1.1 При проведении проверки технической документации проверяют:
- наличие руководства по эксплуатации на СИК СОГ;
- наличие паспорта на СИК СОГ;
- наличие свидетельства о предыдущей поверке СИК СОГ (при периодической поверке);
- наличие паспортов (формуляров) СИ, входящих в состав СИК СОГ;
- наличие методики измерений СИК СОГ.
- 7.1.2 Результаты проверки считают положительными при наличии всей технической документации по 7.1.1.

7.2 Внешний осмотр

- 7.2.1 При проведении внешнего осмотра СИК СОГ контролируют выполнение требований технической документации к монтажу СИ, измерительно-вычислительных и связующих компонентов СИК СОГ.
- 7.2.2 При проведении внешнего осмотра СИК СОГ устанавливают состав и комплектность СИК СОГ. Проверку выполняют на основании сведений, содержащихся в

паспорте на СИК СОГ. При этом контролируют соответствие типа СИ, указанного в паспортах на СИ, записям в паспорте на СИК СОГ.

7.2.3 Результаты проверки считают положительными, если монтаж СИ, измерительновычислительных и связующих компонентов СИК СОГ, внешний вид и комплектность СИК СОГ соответствуют требованиям технической документации.

7.3 Опробование

7.3.1 Подтверждение соответствия программного обеспечения СИК СОГ

- 7.3.1.1 Подлинность программного обеспечения (далее ПО) СИК СОГ проверяют сравнением идентификационных данных ПО с соответствующими идентификационными данными, зафиксированными при испытаниях в целях утверждения типа.
- 7.3.1.2 Проверку идентификационных данных СИК СОГ проводят в следующей последовательности:
 - на информационном дисплее СИК СОГ выбирают пункт меню «Информация»;
- полученные идентификационные данные сравнивают с исходными, которые представлены в таблице 7.1 и заносят в протокол.

Таблица 7.1 – Идентификационные данные ПО СИК СОГ

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	Abak.bex
Номер версии (идентификационный номер) ПО	1.0
Цифровой идентификатор ПО	4069091340
Алгоритм вычисления цифрового идентификатора ПО	CRC32

- 7.3.1.3 Проверяют возможность несанкционированного доступа к ПО СИК СОГ и наличие авторизации (введение логина и пароля), возможность обхода авторизации, проверка реакции ПО СИК СОГ на неоднократный ввод неправильного логина и (или) пароля (аутентификация).
- 7.3.1.4 Результаты опробования считают положительными, если идентификационные данные ПО СИК СОГ совпадают с идентификационными данными, которые приведены в таблице 7.1, а также исключается возможность несанкционированного доступа к ПО СИК СОГ и обеспечивается аутентификация.

7.3.2 Проверка работоспособности СИК СОГ

- 7.3.2.1 Приводят СИК СОГ в рабочее состояние в соответствии с технической документацией предприятия-изготовителя. Проверяют прохождение сигналов калибратора, имитирующих измерительные сигналы. Проверяют на информационном дисплее СИК СОГ показания по регистрируемым в соответствии с конфигурацией СИК СОГ параметрам технологического процесса.
- 7.3.2.2 Результаты опробования считаются положительными, если при увеличении/уменьшении значения входного сигнала соответствующим образом изменяются значения измеряемой величины на информационном дисплее СИК СОГ.

Примечание — Допускается проводить проверку работоспособности одновременно с определением метрологических характеристик по 7.4 данной методики поверки.

7.4 Определение метрологических характеристик

При определении метрологических характеристик должны быть выполнены операции, приведенные в таблице 7.2.

Таблица 7.2 – Операции определения метрологических характеристик СИК СОГ

№ п/п	Наименование операции	Ссылка на пункт методики испытаний
1	Определение метрологических характеристик первичных СИ, входящих в состав СИК СОГ	7.4.1

Nº		Ссылка на пункт
п/п	Наименование операции	методики
11/11		испытаний
	Определение приведенной погрешности СИК СОГ при	
2	преобразовании входных аналоговых сигналов силы постоянного	7.4.2
	тока (от 4 до 20 мА) в значение измеряемой физической величины	
3	Определение основной приведенной погрешности измерительного	7.4.3
	канала давления СИК СОГ	7.4.5
4	Определение основной приведенной погрешности измерительного	7.4.4
	канала температуры СИК СОГ	/ .च . च
5	Определение абсолютной погрешности СИК СОГ при подсчете	7.4.5
	количества импульсов	7.4.5
6	Определение основной относительной погрешности	7.4.6
	измерительного канала объема (объемного расхода) СИК СОГ	7.4.0
	Определение относительной погрешности СИК СОГ при	
7	измерении объема (объемного расхода) газа, приведенного к	7.4.7
	стандартным условиям	

7.4.1 Определение метрологических характеристик первичных СИ, входящих в состав СИК СОГ

7.4.1.1 Определение метрологических характеристик первичных СИ, входящих в состав СИК СОГ, проводят в соответствии с нормативными документами на поверку данных СИ (проводится в случае отсутствия действующих свидетельств о поверке СИ) приведенными в таблице 7.3.

Таблица 7.3 – Нормативные документы

Наименование СИ	Нормативные документы
Счетчики газа ультразвуковые FLOWSIC 600	МП 43981-11 «Инструкция. Государственная система обеспечения единства измерений. Счетчики газа ультразвуковые FLOWSIC 600. Методика поверки» утвержден ГЦИ СИ ФГУП ВНИИР 05 апреля 2010 г.
Преобразователи давления измерительные Cerabar S PMP71	МП 41560-09 «Преобразователи давления и уровня измерительные давления Cerabar, Deltabar и Waterpilot производства фирмы «Endress+Hauser GmbH+Co.KG», Германия», утвержден ГЦИ СИ ФГУП «ВНИИМС» 16.09.2009 г.
Термопреобразователи сопротивления платиновые TR61	МП 49519-12 «Термопреобразователи сопротивления платиновые серий TR, TST. Методика поверки», утвержден ГЦИ СИ ФГУП «ВНИИМС», 2011 г.
Преобразователи измерительные iTEMP TMT82	МП 57947-14 «Преобразователи измерительные серии iTEMP ТМТ. Методика поверки», утвержден ФГУП «ВНИИМС» 28.02.2014 г.
Хроматографы газовые промышленные специализированные МісгоSAM	«Хроматографы газовые промышленные специализированные MicroSAM фирмы «Siemens AG», Германия. Методика поверки МП-242-1992-2010», утвержден ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева» 20.12.2010 г.
Анализаторы температуры точки росы по углеводородам модель 241CE II	«Анализаторы точки росы по углеводородам модель 241СЕ II. Методика поверки № МП-242-1214-2011», утвержден ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева» в сентябре 2011 г.
Анализаторы влажности 3050- OLV	«Инструкция. Анализаторы влажности 3050 модели «3050-OLV», «3050-TE», «3050-DO», «3050-SLR»,

Наименование СИ	Нормативные документы
	«3050- AР», «3050-AМ», «3050-RМ». Методика поверки»,
	утвержден ВНИИМС в 2007 году.

- 7.4.1.2 Результаты поверки считаются положительными, если СИ, входящие в состав СИК СОГ, имеют действующий знак поверки и (или) свидетельство о поверке и (или) запись в паспорте (формуляре) СИ, заверяемой подписью поверителя и знаком поверки.
- 7.4.2 Определение приведенной погрешности СИК СОГ при преобразовании входных аналоговых сигналов силы постоянного тока (от 4 до 20 мА) в значение измеряемой физической величины
- 7.4.2.1 Отключают первичный измерительный преобразователь (СИ) измерительного канала и к соответствующему каналу, включая барьер искрозащиты, подключают калибратор, установленный в режим имитации сигналов силы постоянного тока (от 4 до 20 мА), в соответствии с инструкцией по эксплуатации.
- 7.4.2.2 С помощью калибратора устанавливают электрический сигнал силы постоянного тока. В качестве реперных точек принимаются точки соответствующие 1 %, 25 %, 50 %, 75 % и 99 % диапазона входного аналогового сигнала (силы постоянного тока от 4 до 20 мА).
- 7.4.2.3 С информационного дисплея СИК СОГ считывают значение входного сигнала и в каждой реперной точке вычисляют приведенную погрешность СИК СОГ при преобразовании входных аналоговых сигналов силы постоянного тока (от 4 до 20 мА) в значение измеряемой физической величины γ_1 , %, по формуле

$$\gamma_{\rm I} = \frac{I_{_{\rm M3M}} - I_{_{\rm 9T}}}{I_{_{\rm max}} - I_{_{\rm min}}} \cdot 100, \tag{1}$$

где $1_{_{\text{изм}}}$ — значение силы тока, соответствующее показанию измеряемого параметра СИК СОГ в *i*-ой реперной точке, мА;

 I_{T} — показание калибратора в *i*-ой реперной точке, мА;

 I_{\max}, I_{\min} — максимальное и минимальное значения границы диапазона входного аналогового сигнала силы постоянного тока, мА.

7.4.2.4 Значение силы тока, соответствующее показанию измеряемого параметра СИК СОГ в *i*-ой реперной точке вычисляют по формуле

$$I_{_{\text{M3M}}} = \frac{I_{_{\text{max}}} - I_{_{\text{min}}}}{X_{_{\text{max}}} - X_{_{\text{min}}}} \cdot (X_{_{\text{M3M}}} - X_{_{\text{min}}}) + I_{_{\text{min}}}, \qquad (2)$$

где X_{max} — максимальное значение измеряемого параметра, соответствующее максимальному значению границы диапазона входного аналогового сигнала силы постоянного тока (от 4 до 20 мА);

X_{min} – минимальное значение измеряемого параметра, соответствующее минимальному значению границы диапазона входного аналогового сигнала силы постоянного тока (от 4 до 20 мА);

X_{изм} – значение измеряемого параметра, соответствующее задаваемому входному аналоговому сигналу силы постоянного тока (от 4 до 20 мА). Считывают с информационного дисплея СИК СОГ.

- 7.4.2.5 Результаты поверки считаются положительными, если приведенная погрешность СИК СОГ при преобразовании входных аналоговых сигналов силы постоянного тока (от 4 до 20 мA) в значение измеряемой физической величины в каждой реперной точке не выходит за пределы $\pm 0,135$ %.
- 7.4.3 Определение основной приведенной погрешности измерительного канала давления СИК СОГ
- 7.4.3.1 После проведения каждой операции по 7.4.2.1 7.4.2.4 настоящей методики поверки в каждой реперной точке вычисляют основную приведенную погрешность

измерительного канала давления СИК СОГ $\gamma_{\text{ИК(p)}}$, %, по формуле

$$\gamma_{\text{MK}(p)} = \sqrt{\gamma_{\text{nn}}^2 + \gamma_1^2} , \qquad (3)$$

где γ_{nn} — пределы допускаемой основной приведенной погрешности измерения давления Cerabar, %;

γ₁ – приведенная погрешность СИК СОГ при преобразовании входных аналоговых сигналов силы постоянного тока (от 4 до 20 мА) в значение измеряемой физической величины, определенная по формуле (1), %.

- 7.4.3.2 Результаты поверки считаются положительными, если основная приведенная погрешность измерительного канала давления СИК СОГ не выходит за пределы $\pm 0,16$ %.
- 7.4.4 Определение основной приведенной погрешности измерительного канала температуры СИК СОГ
- 7.4.4.1 После проведения каждой операции по 7.4.2.1 7.4.2.4 настоящей методики поверки в каждой реперной точке вычисляют основную приведенную погрешность измерительного канала температуры СИК СОГ $\gamma_{\nu \kappa (T)}$, %, по формуле

$$\gamma_{\text{MK(T)}} = \sqrt{\left(\frac{\Delta t_1}{t_{\text{BI}} - t_{\text{HI}}} \cdot 100\right)^2 + \left(\frac{\Delta t_2}{t_{\text{BI}} - t_{\text{HI}}} \cdot 100 + \gamma_{\text{nm}}\right)^2 + \gamma_1^2},$$
 (4)

где ∆t₁ – максимальный предел допускаемого отклонения от HCX TR61, °C;

t_{ві}, t_{ні} – нижний и верхний пределы измерений (калибровки) СИ температуры, °С;

 ∆t₂ – пределы допускаемой основной абсолютной погрешности аналоговоцифрового преобразования ТМТ82, °C;

 тределы допускаемой основной приведенной погрешности цифроаналогового преобразования ТМТ82, %.

- 7.4.4.2 Результаты поверки считаются положительными, если основная приведенная погрешность измерительного канала температуры СИК СОГ не выходит за пределы $\pm 0,34$ %.
- 7.4.5 Определение абсолютной погрешности СИК СОГ при подсчете количества импульсов
- 7.4.5.1 Отключают первичный измерительный преобразователь (СИ) и к соответствующему каналу подключают калибратор, установленный в режим генерации импульсов, в соответствии с инструкцией по эксплуатации.
- 7.4.5.2 С помощью калибратора фиксированное количество раз (не менее трех) подают импульсный сигнал (10000 импульсов), предусмотрев синхронизацию начала счета импульсов.
- 7.4.5.3 С информационного дисплея СИК СОГ считывают значение входного сигнала и вычисляют абсолютную погрешность СИК СОГ при подсчете количества импульсов Δ_n , импульсы, по формуле

$$\Delta_{n} = n_{\text{MSM}} - n_{\text{SAR}}, \tag{5}$$

 ${\bf n}_{_{{\bf 3}\!{\bf M}}}$ — количество импульсов, заданное калибратором, импульсы.

- 7.4.5.4 Результаты поверки считаются положительными, если абсолютная погрешность СИК СОГ при подсчете количества импульсов не выходит за пределы ± 1 импульс на 10000 импульсов.
- 7.4.6 Определение основной относительной погрешности измерительного канала объема (объемного расхода) СИК СОГ
 - 7.4.6.1 После проведения каждой операции по 7.4.5.1 7.4.5.3 настоящей методики

поверки в каждой реперной точке вычисляют основную относительную погрешность измерительного канала объема (объемного расхода) СИК СОГ $\delta_{\text{ИК(V)}}$, %, по формуле

$$\delta_{\text{MK(V)}} = \sqrt{\delta_{\text{nn}}^2 + \left(\frac{\Delta_{\text{n}}}{n_{\text{MSM}}} \cdot 100\%\right)^2}, \qquad (6)$$

где δ_{nn} — относительная погрешность измерений объема (объемного расхода) газа при рабочих условиях FLOWSIC 600, %.

- 7.4.6.2 Результаты поверки считаются положительными, если основная относительная погрешность измерительного канала объема (объемного расхода) СИК СОГ не выходит за пределы ± 0.5 %.
- 7.4.7 Определение относительной погрешности СИК СОГ при измерении объема (объемного расхода) газа, приведенного к стандартным условиям
- 7.4.7.1 Относительная погрешность СИК СОГ при измерении объема (объемного расхода) газа, приведенного к стандартным условиям, определяется при помощи аттестованного программного комплекса «Расходомер-ИСО» модуль «ГОСТ 8.611–2013», либо в соответствии с документом «Инструкция. Государственная система обеспечения единства измерений. Расход и объем сухого отбензиненного газа. Методика измерений системой измерений количества и показателей качества сухого отбензиненного газа на газопроводе с выхода УПГ-2 Вынгапуровского ГПЗ филиала ОАО «СибурТюменьГаз», регистрационный номер ФР.1.29.2015.19321 в Федеральном информационном фонде по обеспечению единства измерений.
- 7.4.7.2 Результаты поверки считаются положительными, если относительная погрешность СИК СОГ при измерении объема (объемного расхода) газа, приведенного к стандартным условиям, не выходит за пределы ± 0.8 %.

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 8.1 Результаты поверки СИК СОГ оформляют протоколом с указанием даты и места проведения поверки, условий поверки, применяемых эталонов, результатов расчета погрешности. Форма протокола приведена в приложении А.
- 8.2 При положительных результатах поверки оформляют свидетельство о поверке СИК СОГ в соответствии с приказом Министерства промышленности и торговли Российской Федерации от 2 июля 2015 г. № 1815 «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке».
- 8.3 Отрицательные результаты поверки СИК СОГ оформляют в соответствии с приказом Министерства промышленности и торговли Российской Федерации от 2 июля 2015 г. № 1815 «Об утверждении Порядка проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке». При этом выписывается извещение о непригодности к применению СИК СОГ с указанием причин непригодности.

приложение а

(рекомендуемое)

Форма протокола поверки

Дата:

Наименование поверяемого средства измерений:

Заводской номер:

Владелец:

Поверитель: (наименование и адрес организации)

Место проведения поверки:

Поверка проведена в соответствии с документом: (наименование документа)

Наименование эталонов и вспомогательных средств: (с указанием заводского номера и свидетельства о поверке)

Условия проведения поверки:

температура окружающего воздуха, °С атмосферное давление, кПа относительная влажность окружающего воздуха, %

Результаты поверки

- 1. Проверка технической документации: соответствует (не соответствует)
- 2. Внешний осмотр: соответствует (не соответствует) требованиям 7.2 методики поверки.
- 3. Опробование: соответствует (не соответствует) требованиям 7.3 методики поверки.
- 3.1 Подтверждение соответствия программного обеспечения.

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	
Номер версии (идентификационный номер) ПО	
Цифровой идентификатор ПО	
Алгоритм вычисления цифрового идентификатора ПО	

- 3.2 Проверка работоспособности: исправна (неисправна)
- 4. Определение метрологических характеристик.
- 4.1 Определение метрологических характеристик первичных СИ, входящих в состав СИК СОГ.

№ п/п	Наименование средства измерений	Заводской номер	№ свидетельства о поверке

4.2 Определение приведенной погрешности СИК СОГ при преобразовании входных аналоговых сигналов силы постоянного тока (от 4 до 20 мА) в значение измеряемой физической величины и основной приведенной погрешности измерительного канала давления СИК СОГ.

Nº	Пози- ция	Эта- лонное значе- ние, мА	Нижний предел диапазона измерений, МПа	Верхний предел диапазона измерений, МПа	Показа- ния СИК СОГ, МПа	Показа- ния СИК СОГ, мА	Погреш- ность γ ₁ , %	Погреш- ность ү _{ик(р)} ,%

№	Пози- ция	Эта- лонное значе- ние, мА	Нижний предел диапазона измерений, МПа	Верхний предел диапазона измерений, МПа	Показа- ния СИК СОГ, МПа	Показа- ния СИК СОГ, мА	Погреш- ность γ ₁ , %	Погреш- ность ү _{ик(р)} ,%

4.3 Определение приведенной погрешности СИК СОГ при преобразовании входных аналоговых сигналов силы постоянного тока (от 4 до 20 мА) в значение измеряемой физической величины и основной приведенной погрешности измерительного канала температуры СИК СОГ.

No	Пози- ция	Эта- лонное значе- ние, мА	Нижний предел диапазона измерений, °C	Верхний предел диапазона измерений, °C	Показа- ния СИК СОГ, °С	Показа- ния СИК СОГ, мА	Погреш- ность γ ₁ , %	Погрешность $\gamma_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$

4.4 Определение абсолютной погрешности СИК СОГ при подсчете количества импульсов и основной относительной погрешности измерительного канала объема (объемного расхода) СИК СОГ.

№ канала	Эталонное значение, импульсы	Количество импульсов, подсчитанное СИК СОГ, импульсы	Погрешность Δ_n , импульсы	Погрешность $\delta_{{}_{ИK(V)}},$
	10000			
	10000			
	10000			

4.5 Определение относительной погрешности СИК СОГ при измерении объема (объемного расхода) газа, приведенного к стандартным условиям.

Привести расчет относительной погрешности СИК СОГ при измерении объема (объемного расхода) газа, приведенного к стандартным условиям.

	Поверитель		/
МΠ	1	подпись	расшифровка подписи