ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МЕТРОЛОГИЧЕСКОЙ СЛУЖБЫ **ВНИИМС**

УТВЕРЖДАЮ:

Заместитель директора

по производственной метрологии

ФГУП «ВНИИМС»

Н.В. Иванникова

2016 г.

Система автоматизированная информационно-измерительная коммерческого учета электроэнергии (АИИС КУЭ) АО «Оборонэнергосбыт» по Калужской области (ГТП Фаянсовая)

Методика поверки

МП 206.1-117-2016

Оглавление

1 ОБЩИЕ ПОЛОЖЕНИЯ	3
2 НОРМАТИВНЫЕ ССЫЛКИ	
3 ОПЕРАЦИИ ПОВЕРКИ	
4 СРЕДСТВА ПОВЕРКИ5 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ	5
6 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ	
7 УСЛОВИЯ ПОВЕРКИ	
8 ПОДГОТОВКА К ПОВЕРКЕ	
9 ПРОВЕДЕНИЕ ПОВЕРКИ	
10. ПОДТВЕРЖДЕНИЕ СООТВЕТСТВИЯ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ	
11 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ	

Настоящая распространяется методика систему автоматизированную на коммерческого информационно-измерительную учета электроэнергии (АИИС АО «Оборонэнергосбыт» по Калужской области (ГТП Фаянсовая), заводской номер № 641, предназначенной для измерения активной и реактивной электроэнергии, отдельными технологическими объектами «Оборонэнергосбыт» Калужской AO по (ГТП Фаянсовая), сбора, хранения, обработки и передачи полученной информации. Выходные данные системы могут использоваться для коммерческих расчетов.

1 ОБЩИЕ ПОЛОЖЕНИЯ

- 1.1 Поверке подлежит АИИС КУЭ, реализующая косвенный метод измерений электрической энергии. Поверка включает в себя покомпонентную поверку средств измерений (далее СИ), входящих в состав измерительных каналов (далее ИК), а также комплектную поверку системы в целом, с учетом положений раздела 8 ГОСТ Р 8.596-2002. В случае если на момент проведения комплектной поверки АИИС КУЭ СИ, входящие в состав ИК, поверены и имеют действующие свидетельства о поверке повторно покомпонентная поверка СИ может не проводиться.
- 1.2 Первичную поверку до ввода в эксплуатацию системы выполняют после проведения испытаний АИИС КУЭ с целью утверждения типа. Допускается совмещение операций первичной поверки и операций, выполняемых при проведении испытаний с целью утверждения типа. Периодическую поверку системы выполняют в процессе эксплуатации АИИС КУЭ. Допускается выполнять периодическую поверку только для ИК, находящихся в текущей эксплуатации. Интервал между поверками АИИС КУЭ раз в 4 года.
- 1.3 СИ, входящие в состав ИК АИИС КУЭ, поверяют с интервалами между поверками, установленными при утверждении их типа. Если очередной срок поверки СИ, входящих в состав ИК АИИС КУЭ, наступает до очередного срока поверки АИИС КУЭ, поверяется только данное СИ, а поверка АИИС КУЭ не проводится. После поверки СИ, входящих в состав ИК АИИС КУЭ, и восстановления работоспособности ИК выполняется проверка ИК в той его части и в том объеме, который необходим для того, чтобы убедиться, что действия, связанные с поверкой измерительного компонента, не нарушили метрологических требований (характеристик) ИК (схема соединения, коррекция времени и т.п.).
- 1.4 После ремонта АИИС КУЭ, замены её измерительных компонентов, аварий в энергосистеме, если эти события могли повлиять на метрологические характеристики ИК, проводят внеочередную поверку АИИС КУЭ в объеме первичной. Допускается подвергать поверке только те СИ, которые подверглись указанным выше воздействиям.

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящей методике использовались ссылки на следующие нормативные документы: РМГ 51-2002 «ГСИ. Документы на методики поверки средств измерений. Основные положения».

Порядок проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке, утвержден Приказом Минпромторга России от 02.07.2015 г. № 1815;

ГОСТ Р 8.596-2002 «ГСИ. Метрологическое обеспечение измерительных систем. Общие положения».

ГОСТ 8.216-2011 «ГСИ. Трансформаторы напряжения. Методика поверки».

МИ 2845-2003 «ГСИ. Измерительные трансформаторы напряжения $6/\sqrt{3}...35$ кВ. Методика поверки на месте эксплуатации с помощью эталонного делителя».

ГОСТ 8.217-2003 «ГСИ. Трансформаторы тока. Методика поверки».

ГОСТ 7746-2001 «Трансформаторы тока. Общие технические условия».

ГОСТ 1983-2001 «Трансформаторы напряжения. Общие технические условия».

ГОСТ Р 52323-2005 (МЭК 62053-22:2003) «Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 22. Статические счетчики активной энергии классов точности 0,2S и 0,5S».

ГОСТ Р 52425-2005 (МЭК 62053-23:2003) «Аппаратура для измерения электрической энергии переменного тока. Частные требования. Часть 23. Статические счетчики реактивной энергии».

МИ 3195-2009. «ГСИ. Мощность нагрузки трансформаторов напряжения. Методика выполнения измерений без отключения цепей».

МИ 3196-2009. «ГСИ. Вторичная нагрузка трансформаторов тока. Методика выполнения измерений без отключения цепей».

ГОСТ 32144-2013 «Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения»;

ГОСТ 12.2.003-91 «Система стандартов безопасности труда. Оборудование производственное. Общие требования безопасности».

ГОСТ 12.2.007.0-75 «Система стандартов безопасности труда. Изделия электротехнические. Общие требования безопасности».

ГОСТ 12.2.007.3-75 «Система стандартов безопасности труда. Электротехнические устройства на напряжение свыше 1000 В. Требования безопасности».

Правила по охране труда при эксплуатации электроустановок. 2014 г.

3 ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки выполняют операции, указанные в таблице 1.

Таблица 1 – Операции поверки

Наименование операции	Номер пункта НД по поверке	Обязательность проведения операции при	
		первичной поверке	периодической поверке
1	2	3	4
1. Подготовка к проведению поверки	8	Да	Да
2. Внешний осмотр	9.1	Да	Да
3. Поверка измерительных компонентов АИИС КУЭ	9.2	Да	Да
4. Проверка работоспособности и исправности счетчиков электрической энергии	9.3	Да	Да
5. Проверка нагрузки на вторичные цепи измерительных трансформаторов тока	9.4	Да	Да
6. Проверка нагрузки на вторичные цепи измерительных трансформаторов напряжения	9.5	Да	Да
7. Проверка падения напряжения в линии связи между вторичной обмоткой ТН и счетчиков.	9.6	Да	Да
8. Проверка погрешности часов компонентов АИИС КУЭ	9.7	Да	Да

Продолжение таблицы 1

1	2	3	4
9. Проверка отсутствия ошибок информационного обмена	9.8	Да	Да
10. Подтверждение соответствия программного обеспечения	10	Да	Да
11. Оформление результатов поверки	11	Да	Да

4 СРЕДСТВА ПОВЕРКИ

При проведении поверки применяют следующие средства поверки (эталоны, средства измерений и вспомогательные устройства):

- Средства поверки трансформаторов тока в соответствии с ГОСТ 8.217-2003 «Трансформаторы тока. Методика поверки»;
- Средства поверки трансформаторов напряжения в соответствии с ГОСТ 8.216-2011 «Трансформаторы напряжения. Методика поверки» и/или по МИ 2845-2003;
- СИ в соответствии с документом МИ 3195-2009. «ГСИ. Мощность нагрузки трансформаторов напряжения. Методика выполнения измерений без отключения цепей»;
- СИ в соответствии с документом МИ 3196-2009. «ГСИ. Вторичная нагрузка трансформаторов тока. Методика выполнения измерений без отключения цепей»;
- СИ в соответствии с документом «Методика выполнения измерений параметров нагрузки и вторичных цепей трансформаторов тока и напряжения прибором «Энерготестер ПКЭ»;
- Средства поверки счетчиков ПСЧ-3 АРТ.07 по методике поверки ИЛГШ.411152.147 РЭ1 согласованной с ГЦИ СИ ФГУ «Нижегородский ЦСМ» в 2007 г;
- ИИС «Пирамида» по документу «Системы информационно-измерительные контроля и учета энергопотребления «Пирамида». Методика поверки» ВЛСТ 150.00.000 И1, утвержденному ГЦИ СИ ФГУП «ВНИИМС» в 2010 г.;
- УСВ-2 по документу «ВЛСТ 237.00.000И1», утверждённым ГЦИ СИ ФГУП ВНИИФТРИ в 2009 г.;
- Термометр по ГОСТ 28498-90, диапазон измерений от минус 40 до плюс 50°С, цена деления 1°С.
- Радиочасы «МИР РЧ-01», принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS);
- Переносной компьютер с ПО и оптический преобразователь для работы со счетчиками и с ПО для работы с радиочасами «МИР РЧ-01».

Примечания:

- 1. Допускается применение других средств поверки с метрологическими характеристиками, обеспечивающими в соответствии с вышеуказанными нормативными документами требуемую точность измерений.
 - 2. Все СИ, применяемые при поверке, должны быть утвержденного типа и поверены.

5 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

5.1 К проведению поверки АИИС КУЭ допускают работников организаций, аккредитованных в области обеспечения единства измерений на право поверки СИ в порядке, установленном законодательством РФ об аккредитации в национальной системе аккредитации, изучивших настоящую методику поверки и формуляр АИИС КУЭ, имеющих опыт работы по поверке измерительных систем. Для выполнения отдельных операций поверки допускаются работники, удовлетворяющие требованиям, приведенным в п.п. 5.2 – 5.8.

- 5.2 Определение погрешности часов компонентов АИИС КУЭ и отсутствия ошибок информационного обмена осуществляется работниками, имеющими опыт работы в области измерений электрических величин, изучившими вышеуказанные документы, а также руководство пользователя по работе с радиочасами «МИР РЧ-01», принимающими сигналы спутниковой навигационной системы Global Positioning System (GPS).
- 5.3 Поверка трансформаторов тока, входящих в состав АИИС КУЭ, осуществляется поверителями средств измерений электрических величин организаций, аккредитованных на право поверки СИ в порядке, установленном законодательством РФ об аккредитации в национальной системе аккредитации, изучившими документ ГОСТ 8.217-2003. «Трансформаторы тока. Методика поверки» и допущенными к производству указанных работ в соответствии с правилами по охране труда при эксплуатации электроустановок.
- 5.4 Поверка трансформаторов напряжения, входящих в состав АИИС КУЭ, осуществляется поверителями средств измерений электрических величин организаций, аккредитованных на право поверки СИ в порядке, установленном законодательством РФ об аккредитации в национальной системе аккредитации, изучившими документ ГОСТ 8.216-2011. «Трансформаторы напряжения. Методика поверки» и/или МИ 2845-2003 «ГСИ. Измерительные трансформаторы напряжения $6\sqrt{3}...35$ кВ. Методика проверки на месте эксплуатации» и допущенными к производству указанных работ в соответствии с правилами по охране труда при эксплуатации электроустановок.
- 5.5 Поверка счетчиков, входящих в состав АИИС КУЭ, осуществляется поверителями средств измерений электрических величин организаций, аккредитованных на право поверки СИ в порядке, установленном законодательством РФ об аккредитации в национальной системе аккредитации, изучившими документ, содержащий методику поверки счетчиков, и допущенными к производству указанных работ в соответствии с правилами по охране труда при эксплуатации электроустановок.
- 5.6 Измерение вторичной нагрузки измерительных трансформаторов тока, входящих в состав АИИС КУЭ, осуществляется работниками, допущенными к производству указанных работ в соответствии с правилами по охране труда при эксплуатации электроустановок и изучившими применяемый при поверке документ, содержащий методику измерений вторичной нагрузки измерительных трансформаторов тока.
- 5.7 Измерение вторичной нагрузки измерительных трансформаторов напряжения, входящих в состав АИИС КУЭ, осуществляется работниками, допущенными к производству указанных работ в соответствии с правилами по охране труда при эксплуатации электроустановок и изучившими применяемый при поверке документ, содержащий методику измерений вторичной нагрузки измерительных трансформаторов напряжения.
- 5.8 Измерение потерь напряжения в линии соединения счетчика с измерительным трансформатором напряжения, входящими в состав АИИС КУЭ, осуществляется работниками, допущенными к производству указанных работ в соответствии с правилами по охране труда при эксплуатации электроустановок и изучившими применяемый при поверке документ, содержащий методику выполнения измерений параметров нагрузки и вторичных цепей трансформаторов тока и напряжения.

Примечание.

При проведении поверочных и измерительных работ должны присутствовать сотрудники объекта из числа ответственных за электрохозяйство, на котором размещены компоненты АИИС КУЭ и представители структурного подразделения, ответственного за обслуживание АИИС КУЭ, имеющие опыт работы и право на подключение и отключение СИ в соответствии со схемой поверки или с методикой выполнения измерений.

6 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

6.1 При проведении поверки должны быть соблюдены требования безопасности, установленные ГОСТ 12.2.007.0-75, ГОСТ 12.2.007.3-75, «Правилами техники безопасности при

эксплуатации электроустановок потребителей», «Правилами технической эксплуатации электроустановок потребителей», «Правилами по охране труда при эксплуатации электроустановок», а также требования безопасности на средства поверки, поверяемые трансформаторы и счетчики, изложенные в их руководствах по эксплуатации.

- 6.2 Эталонные средства измерений, вспомогательные средства поверки и оборудование должны соответствовать требованиям ГОСТ 12.2.003-91, ГОСТ 12.2.007.3-75, ГОСТ 12.2.007.7-75.
- 6.3 Все оперативные отключения и включения должны проводиться руководителем работ в соответствии с программой проведения работ, утвержденной в установленном порядке.

7 УСЛОВИЯ ПОВЕРКИ

Условия поверки АИИС КУЭ должны соответствовать условиям ее эксплуатации, нормированным в технической документации, но не выходить за нормированные условия применения средств поверки.

8 ПОДГОТОВКА К ПОВЕРКЕ

- 8.1 Для проведения поверки поверителю должны быть предоставлены копии следующих документов:
 - руководство пользователя АИИС КУЭ;
 - описание типа АИИС КУЭ;
- свидетельства о поверке измерительных компонентов, входящих в состав ИК, и свидетельство о предыдущей поверке системы (при периодической поверке и первичной поверке после ремонта);
- акты замены измерительных компонентов ИК АИИС КУЭ (при периодической поверке и первичной поверке после ремонта);
 - паспорта-протоколы на ИК;
 - паспорт (формуляр) АИИС КУЭ.
- 8.2 Перед проведением поверки на месте эксплуатации АИИС КУЭ эксплуатирующая организация выполняют следующие подготовительные работы:
- проводит организационно-технические мероприятия по обеспечению безопасности поверочных работ в соответствии с действующими отраслевыми правилами обеспечения безопасности и ПУЭ;
- осуществляет доступ поверителей к работам и местам установки измерительных трансформаторов, счетчиков электроэнергии, серверу АИИС КУЭ (центральный компьютер) для проведения работ по п.п. 9.1, 9.3, 9.4.

9 ПРОВЕДЕНИЕ ПОВЕРКИ

9.1 Внешний осмотр

- 9.1.1 Проверяют целостность корпусов и отсутствие видимых повреждений компонентов АИИС КУЭ, наличие предусмотренных поверительных пломб и клейм на измерительных компонентах.
- 9.1.2 Проверяют размещение измерительных компонентов, наличие шильдиков и маркировку компонентов, правильность схем подключения трансформаторов тока и напряжения к счетчикам электрической энергии; правильность прокладки проводных линий по проектной документации на АИИС КУЭ.
 - 9.1.3 Проверяют соответствие типов и заводских номеров установленных измерительных

компонентов типам и заводским номерам, указанным в формуляре АИИС КУЭ.

9.1.4 Проверяют отсутствие следов коррозии и нагрева в местах подключения проводных линий.

При обнаружении несоответствий по п. 9.1 дальнейшие операции по поверке ИК прекращаются, АИИС КУЭ бракуется и выписывается извещение о непригодности.

9.2 Поверка измерительных компонентов АИИС КУЭ

— 9.2.1 Проводится поверка СИ, входящих в состав измерительных компонентов: измерительных трансформаторов тока в соответствии с ГОСТ 8.217-2003. «Трансформаторы тока. Методика поверки», измерительных трансформаторов напряжения в соответствии с ГОСТ 8.216-2011. «Трансформаторы напряжения. Методика поверки» и/или по МИ 2845-2003 «ГСИ. Измерительные трансформаторы напряжения 6√3...35 кВ. Методика проверки на месте эксплуатации», счетчиков ПСЧ-3 АРТ.07 - по методике поверки ИЛГШ.411152.147 РЭ1 согласованной с ГЦИ СИ ФГУ «Нижегородский ЦСМ» в 2007 г. (поверка СИ проводится в том случае, если отсутствуют действующие свидетельства о поверке)

При обнаружении несоответствий по п. 9.2.1 дальнейшие операции по поверке ИК прекращаются, АИИС КУЭ бракуется и выписывается извещение о непригодности.

9.3 Проверка работоспособности и исправности счетчиков электрической энергии

- 9.3.1 Проверяют наличие и сохранность пломб поверительных и энергоснабжающих организаций на счетчике и испытательной коробке.
- 9.3.2 Проверяют работу всех сегментов индикаторов, отсутствие кодов ошибок или предупреждений, прокрутку параметров в заданной последовательности.
- 9.3.3 Проверяют работоспособность оптического порта счетчика с помощью переносного компьютера. Оптический преобразователь подключают к переносному компьютеру. Опрашивают счетчик по установленному соединению. Опрос счетчика считается успешным, если получен отчет, содержащий данные, зарегистрированные счетчиком.
- 9.3.4 Проверяют соответствие индикации даты в счетчике календарной дате (число, месяц, год). Проверку осуществляют визуально или с помощью переносного компьютера через оптопорт.

При обнаружении несоответствий по п. 9.3 дальнейшие операции по поверке ИК прекращаются, АИИС КУЭ бракуется и выписывается извещение о непригодности.

9.4 Проверка нагрузки вторичных цепей измерительных трансформаторов тока

- 9.4.1 Проверяют наличие и сохранность пломб поверительных и пломб энергосбытовых организаций на клеммных соединениях, имеющихся на линии связи трансформаторов тока (далее TT) со счетчиком электрической энергии. Проверяют наличие оригиналов актов, подтверждающих правильность подключения вторичных обмоток TT.
- 9.4.2 Проверяют наличие данных измерений мощности нагрузки вторичных цепей ТТ по МИ 3196-2009 «Государственная система обеспечения единства измерений вторичная нагрузка трансформаторов тока без отключения цепей. Методика выполнения измерений» с оформлением паспортов-протоколов. Срок проведения ревизии ИК, а также утверждения паспортов-протоколов должен быть не более 1 года до момента проведения поверки.

При обнаружении несоответствий по п. 9.4 дальнейшие операции по поверке ИК прекращаются, ИК АИИС КУЭ бракуется и выписывается извещение о непригодности.

9.5 Проверка нагрузки вторичных цепей измерительных трансформаторов напряжения

9.5.1 Проверяют наличие и сохранность пломб поверительных и энергоснабжающих организаций на клеммных соединениях, имеющихся на линии связи ТН со счетчиком. Проверяют наличие оригиналов актов, подтверждающих правильность подключения первичных и вторичных обмоток ТН.

9.5.2 Проверяют наличие данных измерений мощности нагрузки вторичных цепей ТН по МИ 3195-2009 «Государственная система обеспечения единства измерений. Мощность нагрузки трансформаторов напряжения. Методика выполнения измерений без отключения цепей» с оформлением паспортов-протоколов. Срок проведения ревизии ИК, а также утверждения паспортов-протоколов должен быть не более 1 года до момента проведения поверки.

При обнаружении несоответствий по п. 9.5 дальнейшие операции по поверке ИК прекращаются, ИК АИИС КУЭ бракуется и выписывается извещение о непригодности.

9.6 Проверка падения напряжения в линии связи между вторичной обмоткой ТН и счетчиков

Проверяют наличие данных измерений падения напряжения U_n в проводной линии связи для каждой фазы по утвержденному документу «Методика выполнения измерений параметров нагрузки и вторичных цепей трансформаторов тока и напряжения прибором «Энерготестер ПКЭ» в условиях эксплуатации с оформлением паспортов-протоколов. Паспорта-протоколы должны быть оформлены не ранее, чем за год до проведения поверки ИК. Падение напряжения не должно превышать 0.25~% от номинального значения на вторичной обмотке TH.

При обнаружении несоответствий по п. 9.6 дальнейшие операции по поверке ИК прекращаются, ИК АИИС КУЭ бракуется и выписывается извещение о непригодности.

9.7 Проверка погрешности часов компонентов системы

9.7.1 Проверка СОЕВ

Включают радиочасы «МИР РЧ-01», принимающие сигналы спутниковой навигационной системы Global Positioning System (GPS), и сверяют показания радиочасов с показаниями часов сервера, получающего сигналы точного времени от УССВ. Расхождение показаний радиочасов с сервером не должно превышать ± 1 с. Для снятия синхронизированных измерений рекомендуется использовать одновременное фотографирование экранов поверяемого и поверительного оборудования.

- 9.7.2 Распечатывают журнал событий счетчика, выделив события, соответствующие сличению часов корректируемого счетчика и корректирующего сервера БД. Расхождение времени часов корректируемого и корректирующего компонента в момент предшествующий коррекции не должно превышать ±4 с.
- 9.7.3 СОЕВ обеспечивает корректировку времени ИК АИИС КУЭ с точностью не хуже ± 5.0 с.

При обнаружении несоответствий по п. 9.7 дальнейшие операции по поверке ИК прекращаются, АИИС КУЭ бракуется и выписывается извещение о непригодности.

9.8 Проверка отсутствия ошибок информационного обмена

Операция проверки отсутствия ошибок информационного обмена предусматривает экспериментальное подтверждение идентичности числовой измерительной информации в счетчиках электрической энергии (исходная информация), и памяти центрального компьютера (сервера БД).

В момент проверки все технические средства, входящие в проверяемый ИК, должны быть включены.

- 9.8.1 На центральном компьютере (сервере БД) системы распечатывают значения активной и реактивной электрической энергии, зарегистрированные с 30-ти минутным интервалом за полные предшествующие дню проверки сутки по всем ИК. Проверяют наличие данных, соответствующих каждому 30-ти минутному интервалу времени. Пропуск данных не допускается за исключением случаев, когда этот пропуск был обусловлен отключением ИК или устраненным отказом какого-либо компонента системы.
 - 9.8.2 Распечатывают журнал событий счетчика и сервера и отмечают моменты нарушения

связи между измерительными компонентами системы. Проверяют сохранность измерительной информации в памяти центральных компьютерах (серверах) системы на тех интервалах времени, в течение которого была нарушена связь.

- 9.8.3 Используя переносной компьютер, считывают через оптопорт профиль нагрузки за полные предшествующие дню проверки сутки, хранящийся в памяти счетчика. Различие значений активной (реактивной) мощности, хранящейся в памяти счетчика (с учетом коэффициентов трансформации измерительных трансформаторов) и базе данных центрального компьютера (сервера БД) полученные по п. 9.8.2 не должно превышать двух единиц младшего разряда учтенного значения.
- 9.8.4 Рекомендуется вместе с проверкой по п. 9.8.3 в реальном режиме времени сличить показания счетчика по активной и реактивной электрической энергии строго в конце получаса (часа) с данными, зарегистрированными в центральном компьютере (сервере БД) системы для того же момента времени. Для этого визуально или с помощью переносного компьютера через оптопорт считывают показания счетчика по активной и реактивной электрической энергии и сравнивают эти данные (с учетом коэффициентов трансформации измерительных трансформаторов), с показаниями зарегистрированными в центральном компьютере (сервере БД) системы. Расхождение не должно превышать две единицы младшего разряда.

При обнаружении несоответствий по п. 9.8 дальнейшие операции по поверке ИК прекращаются, ИК АИИС КУЭ бракуется и выписывается извещение о непригодности.

10. ПОДТВЕРЖДЕНИЕ СООТВЕТСТВИЯ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

- 10.1 Проводится проверка соответствия заявленных идентификационных данных программного обеспечения указанных в описании типа:
 - наименование программного обеспечения;
 - идентификационное наименование программного обеспечения;
 - номер версии (идентификационный номер) программного обеспечения;
 - цифровой идентификатор программного обеспечения (контрольная сумма исполняемого кода);
 - алгоритм вычисления цифрового идентификатора программного обеспечения.
 - 10.2 Идентификация ПО СИ реализуется следующими методами:
- с помощью ПО СИ или аппаратно-программных средств, разработанных организацией разработчиком СИ (ПО СИ);
- с использованием специальных протестированных (аттестованных, сертифицированных) аппаратно-программных средств и/или протестированного (аттестованного, сертифицированного) ΠO .

11 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

11.1 На основании положительных результатов по пунктам раздела 9 выписывают свидетельство о поверке АИИС КУЭ в соответствии с приказом Минпромторга России № 1815 от 02.07.2015 г. «Об утверждении Порядка проведения поверки средств измерений, требований к знаку поверки и содержанию свидетельства о поверке». В приложении к свидетельству указывают перечень ИК.

11.2 При отрицательных результатах поверки хотя бы по одному из пунктов методики поверки АИИС КУЭ признается негодной к дальнейшей эксплуатации и на нее выдают извещение о непригодности в соответствии с приказом Минпромторга России № 1815 от 02.07.2015 г. «Об утверждении Порядка проведения поверки средств измерений, требований к знаку поверки и содержанию свидетельства о поверке» с указанием причин.

личная полпись

личная подпись

Зам. начальника отдела 206.1 ФГУП «ВНИИМС»

С.Ю. Рогожин

инициалы, фамилия

Научный сотрудник ФГУП «ВНИИМС»

Е.В. Громочкова

инициалы, фамилия