

ФЕДЕРАЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ «ГОСУДАРСТВЕННЫЙ РЕГИОНАЛЬНЫЙ ЦЕНТР СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И ИСПЫТАНИЙ В Г. МОСКВЕ» (ФБУ «РОСТЕСТ – МОСКВА»)

УТВЕРЖДАЮ

Заместитель генерального директора

ФБУ «Ростест - Москва»

Е.В. Морин

« 25 » мая 2016 г.

Государственная система обеспечения единства измерений

Счётчики холодной и горячей воды тахометрические GROEN cepuu Dual, WR, DR, WT

Методика поверки РТ-МП-3443-449-2016

СОДЕРЖАНИЕ

СБЩИЕ ПОЛОЖЕНИЯ	3
ОПЕРАЦИИ ПОВЕРКИ	
СРЕДСТВА ПОВЕРКИ	
ГРЕБОВАНИЯ БЕЗОПАСНОСТИ	
УСЛОВИЯ ПРОВЕДЕНИЯ ПОВЕРКИ	
ПОДГОТОВКА К ПОВЕРКЕ	
ПРОВЕДЕНИЕ ПОВЕРКИ	4
ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ	7
риложение А	
риложение Б	9

1 ОБЩИЕ ПОЛОЖЕНИЯ

- 1.1 Настоящая методика поверки распространяется на счётчики воды тахометрические GROEN серии DUAL, WR, DR, WT (далее счётчики), изготавливаемые OOO «Энергобыт», Россия, и «CHONGQING GROEN IMP.& EXP. CO., LTD», КНР, и устанавливает объём и методы их первичной и периодической поверок.
 - 1.2 Интервал между поверками:
 - 4 года для счётчиков горячей воды;
 - 6 лет для счётчиков холодной воды.

2 ОПЕРАЦИИ ПОВЕРКИ

2.1 При проведении поверки должны выполняться операции, указанные в таблице 1.

Таблица 1 – Операции поверки

	Номер пункта	Проведение операции при:			
Наименование операции	методики поверки	первичной поверке	периодической поверке		
1. Внешний осмотр	7.1.	Да	Да		
2. Проверка герметичности	7.2.	Да	Да		
3. Опробование	7.3.	Да	Да		
4. Проверка открытия и закрытия переключающего устройства в диапазоне заданных расходов для счётчиков серии DUAL	7.4.	Да	Да		
5. Определение относительной погрешности счётчиков	7.5.	Да	Да		
6. Проверка импульсного дистанционного сигнала (при наличии)	7.6.	Да	Да		

3 СРЕДСТВА ПОВЕРКИ

3.1 При проведении поверки применяют средства поверки и вспомогательное оборудование, указанные в таблице 2.

Таблица 2 – Средства поверки и вспомогательное оборудование

Наименование	Требуемые характеристики
Установка для поверки счётчиков воды	Рабочий эталон 2-го разряда по ГОСТ 8.374-2013
Термометр	Диапазон измерений от 10 до 30 °C, погрешность ±0,5 °C
Гидравлический стенд	Создание давления до 2,5 МПа

- 3.2 Средства поверки должны быть поверены и иметь действующие свидетельства о поверке.
- 3.3 Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых средств измерений с требуемой точностью.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 4.1 При проведении поверки должны выполняться следующие требования безопасности:
- вся аппаратура, питающаяся от сети переменного тока, должна быть заземлена;
- все разъёмные соединения линий электропитания и линий связи должны быть исправны;
- поверитель должен соблюдать требования безопасности, указанные в технической документации на применяемые средства поверки и вспомогательное оборудование;
- поверитель должен соблюдать правила пожарной безопасности, действующие на предприятии.

5 УСЛОВИЯ ПРОВЕДЕНИЯ ПОВЕРКИ

- 5.1 При проведении поверки системы должны быть соблюдены следующие условия:
- относительная влажность окружающего воздуха от 30 % до 80 %;
- атмосферное давление от 84 до 106 кПа;
- температура окружающей среды от 15 до 25 °C;
- рабочая жидкость вода питьевая по СанПин 2.1.4.1047-01;
- температура рабочей жидкости от 10 до 30 °C;
- изменение температуры рабочей жидкости за время поверки не более 5 °C;
- вибрация, тряска, удары отсутствуют;
- рабочее положение счётчика горизонтальное.

6 ПОДГОТОВКА К ПОВЕРКЕ

- 6.1 Перед проведением поверки выполнить следующие подготовительные работы:
- 6.1.1 Подготовить к работе поверочную установку и вспомогательные средства измерений согласно требованиям эксплуатационной документации.
- 6.1.2 Счётчики установить на поверочной установке по одному или последовательно по несколько штук. Число счётчиков в группе должно обеспечивать возможность их поверки при значениях расходов, равных Q_n . Счётчики должны быть однотипными и иметь одинаковый диаметр условного прохода (Ду).
- 6.1.3 Счётчики присоединить к трубопроводу поверочной установки через переходные или промежуточные патрубки, длина которых должна обеспечивать длину прямого участка до счётчика и после него согласно требований эксплуатационной документации.
- 6.1.4 Проверить герметичность соединений счётчиков с трубопроводами и между собой. Проверку производить давлением воды в системе при открытом запорном устройстве перед счётчиком и закрытом после него.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Внешний осмотр

При проведении внешнего осмотра установить соответствие поверяемого счётчика следующим требованиям:

- комплектность соответствует указанной в паспорте;
- номер счётчика соответствует номеру в паспорте;
- целостность пломбировки не нарушена;
- маркировка счётчика содержит всю необходимую информацию, все надписи и обозначения четкие;
- наружные поверхности чистые, без отслоений лакокрасочного покрытия и очагов коррозии.

При не соответствии указанным требованиям счётчик к дальнейшей поверке не допускают.

7.2 Проверка герметичности

Герметичность счётчиков проверить на гидравлическом стенде путём создания в рабочей полости давления $(2,4\pm0,1)$ МПа и выдержкой при этом давлении не менее 15 мин. Значение давления контролируют по манометру.

Счётчики считаются выдержавшими проверку, если отсутствует падение давления по манометру, а в местах соединений и на наружных поверхностях счётчиков не наблюдается отпотеваний, каплевыделений и течи рабочей жидкости.

7.3 Опробование

- 7.3.1 Пропустить рабочую жидкость через поверяемые счётчики при наибольшем поверочном расходе с целью удаления пузырей воздуха из системы поверочной установки.
- 7.3.2 Изменяя расход рабочей жидкости в пределах рабочего давления счётчика, следить за изменением показаний индикаторного устройства и счётчика импульсов.

Допускается совместить опробование с определением относительной погрешности счётчиков. Счётчики считаются выдержавшими проверку, если при увеличении (уменьшении) расхода наблюдается увеличение (уменьшение) скорости изменения показаний индикаторного устройства и счётчика импульсов.

7.4 Проверка открытия и закрытия переключающего устройства в диапазоне заданных расходов для счётчиков серии DUAL

Диапазоны срабатывания переключающего устройства при закрытии и открытии приведены в таблице 3.

Т а б л и ц а 3 – Диапазоны срабатывания переключающего устройства счётчиков серии DUAL

Диаметр условного прохода счётчика, Ду, мм	50/15	50/20	65/20	80/20	100/20	150/40
Диапазон срабатывания						
переключающего устройства	0,71,4	0,71,4	0,81,8	0,81,8	1,22,1	4,26,0
при закрытии и открытии, $M^3/4$						

Увеличивая значение расхода на поверочной установке, установить требуемое значение согласно таблице 3.

Визуально определить открытие переключающего устройства, которое характеризуется следующими параметрами:

- резкое уменьшение числа оборотов сигнальной звездочки вспомогательного счётчика;
- включился в работу основной счётчик, двигаются стрелочные указатели его индикаторного устройства.

Уменьшить расход поверочной установки до требуемого значения согласно таблице 3.

Визуально определить закрытие переключающего устройства, которое характеризуется следующими параметрами:

- резкое увеличение числа оборотов сигнальной звездочки вспомогательного счётчика;
- остановка вращения стрелочных указателей индикаторного устройства основного счётчика.

Счётчики считаются выдержавшими проверку, если открытие и закрытие переключающего устройства происходит при расходах, указанных в таблице 3.

7.5 Определение относительной погрешности счётчиков

Относительную погрешность счётчиков для счётчиков серии DUAL определить на пяти значениях поверочных расходов, которые приведены в таблице 4, и Q_{min} + 10 %, Q_t ± 10 %, Q_n ± 10 % для счётчиков серии WR, DR, WT.

Относительную погрешность счётчиков определить по результатам измерения одного и того же объёма воды, пропущенного через счётчик и эталонную меру поверочной установки.

Объём воды, измеренный счётчиком, определить как сумму показаний основного и вспомогательного счётчиков по формуле

$$V_c = V_o + V_\theta, \tag{1}$$

где V_o – объём воды, измеренный основным счётчиком (разность показаний счётчика в конце и в начале измерений), м³;

 $V_{\it в}$ — объём воды, измеренный вспомогательным счётчиком (разность показаний счётчика в конце и в начале измерений), м³.

Для счётчиков серии WR, DR, WT $V_e = 0$.

Относительную погрешность счётчика, δ , в процентах, определить по формуле

$$\delta = \frac{V_{\tilde{n}} - V_{\tilde{y}\tilde{n}}}{V_{\tilde{y}\tilde{n}}} \times 100, \tag{2}$$

где V_c — суммарный объём воды, прошедший через поверяемый счётчик, м³; $V_{\mathfrak{d}.c.}$ — объём воды, по эталонному средству измерений, м³.

Если объём V_c , м³, прошедший через поверяемые счётчики, определяется с использованием оптоэлектронного узла съёма сигнала, суммарный объём вычислить по формуле

$$V_c = K_o \cdot N_o + K_s \cdot N_s, \tag{3}$$

где K_o – передаточный коэффициент основного счётчика, м³/имп. (указан в паспорте счётчика);

 N_o — число импульсов, зарегистрированное счётчиком импульсов с основного счётчика;

 $K_{\rm g}$ — передаточный коэффициент вспомогательного счётчика, м³/имп. (указан в паспорте счётчика);

 $N_{\it e}$ — число импульсов, зарегистрированное счётчиком импульсов с вспомогательного счётчика.

Для счётчиков серии WR, DR, WT $N_s = 0$.

Таблица 4 – Значения поверочных расходов для счётчиков серии DUAL

					дов для с		- A	JULIE		
1		Поверочный расход, м ³ /ч								
Тип счётчика	$\geq n$	Предель- ное от- клонение	<i>Q</i> ₁ (вблизи зоны переключения)	Предель- ное от- клонение	Q ₂ (в зоне переклю-чения)	Предель- ное от- клонение	Q _t	Предель- ное от- клонение	Qmin	Предель- ное от- клонение
50/15	15	±4,5	1,4	+0,14	0,7	-0,07	0,12	+0.012	0,03	+0,003
50/20	15	±4,5	1,4	+0,14	0,7	-0,07	0,2	+0.012	0.05	+0,003
65/20	25	±6,0	1,8	+0,18	0,8	-0,08	0,2	+0,02	0,05	+0,005
80/20	40	±10,0	1,8	+0,18	0,8	-0,08	0,2	+0,02	0,05	+0,005

Продолжение таблицы 4

100/20	60	±15,0	2,1	+0,21	1,2	-0,12	0,2	+0,02	0,05	+0,005
150/40	150	±25,0	6,0	+0,6	4,2	-0,42	0,8	+0,08	0,2	+0,02

Ориентировочные значения минимального времени измерений на каждой точке расхода приведены в таблице 5, но при этом минимальный объём воды, прошедшей через счётчик, должен быть не менее 1/20 от наименьшей цены деления счётчика.

Таблица 5 – Значения минимального времени измерений на каждой точке расхода

Диаметр условного прохода счётчика, Ду, мм	Значение минимального времени измерения на расходе Q_n , с, не менее	Значение минимального времени измерения на расходе $1,1\cdot Q_t$, с, не менее	Значение минимального времени измерения на расходе Q_{min} , с, не менее
от Ду 10 до Ду 150	120	360	720

Если в результате поверки получены значения погрешностей, не превышающие:

- \pm 5 % в диапазоне расходов от Q_{min} до Q_t ;
- $\pm~2~\%$ в диапазоне расходов от Q_t до Q_n включительно, то счётчик признается пригодным к дальнейшей эксплуатации.
 - 7.6 Проверка импульсного дистанционного сигнала (при наличии)

Проверку соответствия числа импульсов дистанционного выходного сигнала счётчиков проводить с помощью комбинированного прибора (ампервольтметра), подключаемого к выходным контактным зажимам узла съёма информации. Проверку можно осуществить непосредственно на поверочной установке при любом расходе от Q_{min} до Q_n .

По изменению показаний индикаторного устройства и счётчика импульсов судить о работоспособности узла съёма информации.

Результат проверки считается положительным, если объём по индикаторному устройству счётчика V_c , м³, и рассчитанный по формуле (3) равны.

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 8.1 Результаты поверки оформить протоколом, рекомендуемая форма которого приведена в приложении А настоящей методики.
- 8.2 При положительных результатах поверки знак поверки наносится на пломбу, в виде оттиска поверительного клейма (Приложение Б), а также на свидетельство о поверке или в паспорт.
- 8.3 При отрицательных результатах поверки свидетельство о поверке аннулировать, клеймо о предыдущей поверке погасить и выдать извещение о непригодности.

Разработали:

Начальник лаборатории № 449 ФБУ «Ростест – Москва»

А.А. Сулин

Главный специалист по метрологии лаборатории № 449 ФБУ «Ростест – Москва»

alf

О.И Овчинников

ПРИЛОЖЕНИЕ А (рекомендуемое)

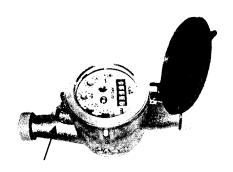

	ПРОТО	ЭКОЛ №	
поверки счётчика воды	NT «	»	201 г
принадлежащего			
Методика поверки			
Основные средства поверки:			
Условия проведения измерений: $T_{\text{окр.среды}} = _{\text{сс}} ^{\circ}C;$ $T_{\text{воды}} = _{\text{сс}} ^{\circ}C.$			
Результат внешнего осмотра:			
Испытания на герметичность:			
Проверка импульсного дистанционн	ого сигнал	a:	

]	Результаты изме	рений	
Тип с	чётчика,				
зав.	номер				
М3/ч	$V_{\text{осн}}$, дм ³				
\ ₹	$V_{\text{осп}}$, дм ³				
	$V_{\text{осп}}$, дм ³ $V_{\text{оум}}$, дм ³				
1 11	$V_{\text{эт}}$, дм ³				
M^3/H $Q_n=$	$V_{\text{эт}}$, дм ³ δ , %				
Ъ/	$V_{\rm och}$, дм ³				
\mathbb{X}_3	$V_{\rm ocn}$, дм ³				
	$V_{\text{сум}}$, дм ³				
1 11	$V_{\text{cym}}, \text{дm}^3$ $V_{\text{3T}}, \text{дm}^3$ $\delta, \%$				
70	δ, %				
M^3/q $Q_t=$	$V_{\text{осн}}$, дм ³				
×	$V_{\rm всп}$, дм ³				
	$V_{\text{всп}}$, дм ³ $V_{\text{оум}}$, дм ³				
= [$V_{\text{эт}}$, дм ³ δ , %				
M^3/H $Q_I =$	δ , %				
3/H	$V_{\text{осн}}$, дм ³				
×	$V_{\text{осн}}$, дм 3 $V_{\text{осн}}$, дм 3				
	V_{OVM} , ДМ				
2=	$V_{\text{от}}$, дм ³ δ , %				
M^3/H $Q_2=$	δ, %				
3/4	$V_{\text{осн}}$, дм ³				
Σ	$V_{\text{осп}}$, дм 3 $V_{\text{оум}}$, дм 3				
	$V_{\text{оум}}$, дм				
\widetilde{j}	$V_{\rm эт}$, дм ³				
2	δ, %				
Заключе	ение: епригоден				
тоден/не	пригоден				l

Поверитель		
_	(подпись, дата)	

ПРИЛОЖЕНИЕ Б (обязательное)

Места пломбировки счётчика



место пломбировки

Рисунок Б.1. – Мокроходный многоструный счётчик воды серии WR.

Р и с у н о к Б.2. – Мокроходный одноструйный счётчик воды серии WR.

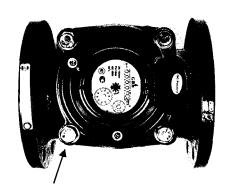

место пломбировки

Рисунок Б.3. – Мокроходный многоструный счётчик воды серии WR, модификация GL

место пломбировки

Р и с у н о к Б.4. – Сухоходный многоструйный счётчик воды серии DR.

место пломбировки

Р и с у н о к $\,$ Б.5. - Турбинный счётчик воды серии $\,$ WT.

Рисунок Б.б. – Комбинированный счётчик воды серии Dual.

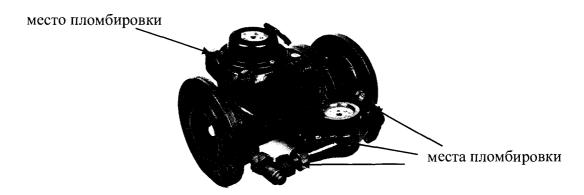


Рисунок Б.7. – Комбинированный счётчик воды серии Dual BY.