

ФЕДЕРАЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ «ГОСУДАРСТВЕННЫЙ РЕГИОНАЛЬНЫЙ ЦЕНТР СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И ИСПЫТАНИЙ В Г. МОСКВЕ» (ФБУ «РОСТЕСТ – МОСКВА»)

УТВЕРЖДАЮ

Заместитель генерального директора

ФБУ «Ростест-Москва»

Е.В. Морин

« 14 » октября 2016 г.

Государственный региональный центр метрологии

Государственная система обеспечения единства измерений

Расходомеры вихревые Foxboro

Методика поверки РТ-МП-3930-449-2016

СОДЕРЖАНИЕ

1 ОБЩИЕ ПОЛОЖЕНИЯ	3
2 ОПЕРАЦИИ ПОВЕРКИ	
3 СРЕДСТВА ПОВЕРКИ	
4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ	
5 УСЛОВИЯ ПРОВЕДЕНИЯ ПОВЕРКИ	4
6 ПРОВЕДЕНИЕ ПОВЕРКИ	
7 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ	

1 ОБЩИЕ ПОЛОЖЕНИЯ

- 1.1 Настоящая методика поверки распространяется на расходомеры вихревые Foxboro (далее расходомеры), изготовленные фирмой «Invensys Systems Inc.», США и устанавливает объём и методы их первичной и периодической поверок.
 - 1.2 Интервал между поверками 4 года.

2 ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки должны выполняться операции, указанные в таблице 1.

Таблипа 1

	Номер пункта	Проведение операции при:	
Наименование операции	методики	первичной	периодической
	поверки	поверке	поверке
1. Внешний осмотр	6.1.	да	да
2. Проверка герметичности	6.2.	да	да
3. Опробование	6.3.	да	да
4. Проверка метрологических	6.4.	ПО	ПО
характеристик	0.4.	да	да

3 СРЕДСТВА ПОВЕРКИ

3.1 Основные и вспомогательные средства поверки, указаны в таблице 2.

Таблица 2 – Основные и вспомогательные средства поверки

Номер пункта методики поверки	Наименование и тип основных средств поверки			
6.4.1	При поверке на жидкости - рабочий эталон 2-го разряда по ГОСТ 8.510-2002, погрешность $\pm 0,15$ %; при поверке на газе - рабочий эталон 1-го разряда по ГОСТ Р 8.618-2014, погрешность $\pm 0,33$ %			
Калибратор многофункциональный МС5-R, Госреестр № 22237- диапазон воспроизведения частоты от 10 до 100 Гц, амплитуда до 10 погрешность ± 0,1 %, диапазон измерений силы постоянного тока от 4 20 мА, погрешность ± 0,1 %				
6.4.2 Штангенциркуль ABSOLUTE DIGIMATIC серий 500, 550, 551, 552, 57 Госреестр № 49805-12, диапазон измерений от 0 до 300 мм				
6.2 Стенд для проверки герметичности с образцовым манометром, диапазон измерений до 40 МПа				
	тускается применение аналогичных средств поверки, обеспечивающих погических характеристик поверяемых средств измерений с требуемой			

3.2 Средства поверки должны быть поверены и иметь действующие свидетельства о поверке.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

При проведении поверки должны выполняться следующие требования безопасности:

- к проведению поверки допускаются лица, прошедшие инструктаж по технике безопасности на рабочем месте и имеющие группу по технике электробезопасности не ниже второй;
 - вся аппаратура, питающаяся от сети переменного тока, должна быть заземлена;

- все разъёмные соединения линий электропитания и линий связи должны быть исправны;
- соблюдать требования безопасности, указанные в технической документации на расходомеры, применяемые средства поверки и вспомогательное оборудование;
- поверитель должен соблюдать правила пожарной безопасности, действующие на предприятии;
- монтаж и демонтаж расходомеров должны производиться при отсутствии давления в измерительной линии.

5 УСЛОВИЯ ПРОВЕДЕНИЯ ПОВЕРКИ

- 5.1 При проведении поверки расходомеров должны быть соблюдены следующие условия:
 - относительная влажность окружающего воздуха от 30 % до 95 %;
 - атмосферное давление от 84 до 106 кПа;
 - температура окружающей среды (20 ± 5) °C;
 - изменение температуры среды во время поверки не более 1 °C;
- подготавливают к работе поверяемый расходомер и средства поверки в соответствии с эксплуатационной документацией.
 - 5.2 Длины прямых участков:
 - до расходомера: 15 Ду;
 - после расходомера: 5 Ду.
- 5.3 Перед проведением поверки необходимо выдержать расходомер в условиях поверки не менее 3 часов.

6 ПРОВЕДЕНИЕ ПОВЕРКИ

6.1 Внешний осмотр

При внешнем осмотре проверяется:

- соответствие комплектности расходомера требованиям эксплуатационной документации;
 - отсутствие механических повреждений, не позволяющих провести поверку;
 - отсутствие дефектов, препятствующих чтению надписей, маркировки, индикатора;
 - наличие значения рекомендуемого К-фактора шильдике расходомера.

Проверить соответствие идентификационных данных программного обеспечения (ПО). Для этого необходимо выполнить следующее:

- в меню расходомера считать номер версии.

Таблица 3 – Идентификационные данные ПО расходомеров

Идентификационные данные (признаки)	84S Low Power	84S	84CF, 84CW
Идентификационное наименование ПО	20BAACL_G	20BAACT_E	20BAACY_B
Номер версии (идентификационный номер) ПО	2.011	2.011	1.223.087
Цифровой идентификатор ПО (контрольная сумма)	0xB568	0xB568	0x5B5AE67

Расходомеры, не прошедшие внешний осмотр, к дальнейшей поверке не допускаются.

6.2 Проверка герметичности

Герметичность проверяют давлением, создаваемым в проточной полости расходомера, превышающим рабочее давление измеряемой среды в 1,5 раза. Давление следует плавно поднимать в течение 1 мин.

Результат проверки считается положительным, если в течение 15 минут не наблюдается: каплепадения или течи воды, не наблюдается падение давления по манометру.

6.3 Опробование

Опробование проводится на расходомерных установках.

До начала проведения проверки необходимо проверить направление потока, отсечку расходов, сверить значение коэффициента преобразования на шильде (или в свидетельстве о предыдущей поверке) и в меню расходомера.

Подключить средства поверки к расходомеру согласно руководствам по эксплуатации. Настроить расходомер согласно руководству по эксплуатации.

При опробовании задается расход от 0,45·Q_{max} до 0,55·Q_{max}.

где Q_{max} – максимальный расход испытуемого расходомера, $M^3/4$.

Расходомеры считаются прошедшими проверку по данному пункту, если в рабочем режиме расходомер генерирует выходной сигнал, пропорциональный текущему расходу. В рабочем режиме при неизменном расходе отображаемое значение текущего расхода должно быть неизменно, а отображаемое значение суммарного объёма должно увеличиваться с течением времени.

Допускается совместить данный пункт с п. 6.4.

6.4 Проверка метрологических характеристик

Проверка метрологических характеристик может быть проведена на жидкости или газе. Допускается расходомеры, предназначенные для измерения расхода газа и пара, поверять на жидкостных расходомерных установках. Проверка метрологических характеристик допускается проливным или имитационным методом.

6.4.1 Проливной метод

До начала проведения проверки необходимо проверить направление потока, отсечку малых расходов, сверить значение коэффициента преобразования на шильдике (или в свидетельстве о предыдущей поверке) и в меню расходомера.

Подключить средства поверки к расходомеру согласно руководствам по эксплуатации. Настроить расходомер согласно руководству по эксплуатации.

В зависимости от наличия каналов и условий применения расходомера по требованию потребителей поверяются все каналы или некоторые из них.

При поверке на жидкости установить расход, равный 0,9 верхнего предела измерения расхода в течение 5 минут с целью удаления воздуха из системы. Значения диапазонов расхода на данный диаметр расходомера указаны в руководстве по эксплуатации.

Определение относительной погрешности измерений объёмного расхода провести на расходомерной установке на расходах $(0,9...1)\cdot Q_{max}$, $(0,45...0,55)\cdot Q_{max}$, $(0,2...0,3)\cdot Q_{max}$ и (1,1...1) $\cdot Q_{\min}$.

Для каждого значения расхода провести не менее трёх измерений. Время проведения одного измерения должно быть не менее 120 секунд.

Относительную погрешность измерений объёма и объёмного расхода δ_0 , %, рассчитать по формуле

$$\delta_{\mathcal{Q}} = \frac{V - V_0}{V_0} \times 100, \tag{1}$$

 V_0 — расход (объём), измеренный расходомерной установкой, м³/ч (м³); V — расход (объём), измеренный расходомером, м³/ч (м³). где

Значение тока на выходе Ірасч, мА, в зависимости от заданного расхода рассчитать по формуле

$$I_{pacy} = I_{\text{max}} - \left(\frac{Q_{\text{max}} - Q_0}{Q_{\text{max}}}\right) \times \left(I_{\text{max}} - I_{\text{min}}\right), \tag{2}$$

где $I_{\rm max}$ — значение тока, равное 20 мА, соответствующее максимальному расходу расходомера, м³/ч;

 I_{\min} — значение тока, равное 4 мA, соответствующее минимальному расходу расходомера, м³/ч;

 Q_{max} — максимальное значение расхода расходомера, м³/ч;

 Q_0 – расход, измеренный расходомерной установкой, м³/ч.

Относительную погрешность измерений объёмного расхода по токовому выходу δQ_I , %, рассчитать по формуле

$$\delta Q_I = \frac{I_{u_{3M}} - I_{pac_4}}{I_{pac_4}} \times 100, \qquad (3)$$

Результат проверки считается положительным, если значения относительной погрешности измерений объёма и объёмного расхода δQ не превышают значений, указанных в таблице 4.

Таблица 4

Наименование параметра	Значение
Пределы допускаемой относительной основной погрешности	
измерений объёма и объёмного расхода, %, в зависимости от расхода	
(критерия Рейнольдса, Re):	
- жидкости с Re ≥ 30000 (для 84S Ду50 Re ≥100000, для 84S Ду80 Re	
≥38000)	$\pm 0,5$
 - жидкости 30000 (100000 для 84S Ду50, 38000 для 84S Ду80) > Re ≥	
20000	$\pm 1,0$
– жидкости с 20000 > Re ≥ 5000	$\pm 2,0$
– газа и пара с Re ≥ 20000	±1,0
- газа и пара с 20000 > Re ≥ 5000	±2,0
Пределы допускаемой относительной основной погрешности измерений массового расхода насыщенного пара (для 84CF, 84CW), %	±1,4

Критерий Рейнольдса, Re, %, рассчитать по формуле

$$Re = \frac{V_{\tau} \times D \times \rho}{\eta} = \frac{V_{\tau} \times D}{v} = \frac{Q \times D}{v \times S} = \frac{14400 \times Q}{v \times \pi},$$
 (4)

где V_{π} – скорость потока среды, м/с;

D - внутренний диаметр проточной части расходомера, м;

 η — динамическая вязкость среды, $\Pi a \cdot c \times 10^{-8}$;

v – кинематическая вязкость среды, $M^2/c \times 10^{-6}$;

 ρ – плотность среды, кг/м³;

 π – число Пи;

S – площадь сечения трубы, M^2 ;

Q – объёмный расход среды, м³/ч.

6.4.2 Имитационный метод

6.4.2.1 До начала проведения проверки необходимо проверить направление потока, отсечку малых расходов, сверить значение коэффициента преобразования на шильдике (или в свидетельстве о предыдущей поверке) и в меню расходомера. Определение геометрических размеров первичного преобразователя.

Определить геометрические размеры первичного преобразователя (рисунок 1), которые должны соответствовать приведённым в таблице 5. Внутренний диаметр измеряется в двух взаимно перпендикулярных направлениях штангенциркулем не менее двух раз в каждом из

направлений.

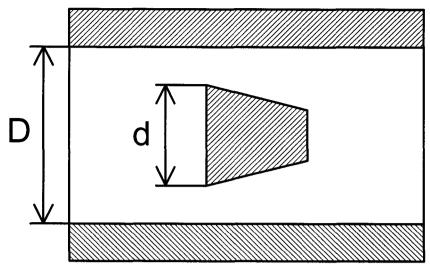


Рисунок 1

За действительное значение внутреннего диаметра следует принимать среднее арифметическое значение результатов измерений. Расчёт диаметра, мм, провести по формуле

$$D = \frac{\sum_{i=1}^{n} D_i}{n},$$

(5)

где

 D_i — значение диаметра при *i*-ом измерении, мм;

п – общее число измерений.

Расчёт тела обтекания провести аналогично.

Таблица 5.1 – Геометрические размеры Flanged Meter, M84 Style-B

Ду, мм	Schedule	Внутренний диаметр D , мм	Допуск на внутренний диаметр D , мм	Размер тела обтекания, <i>d</i> , мм	Допуск на размер тела обтекания, <i>d</i> , мм
20		18,8	±0,4	5,84	±0,13
25	80	24,3	±0,4	7,11	±0,13
40		38,1	±0,4	10,54	±0,13
50		49,2	±0,4	13,46	±0,25
80		72,9	±0,4	19,91	±0,25
100		97,2	±0,4	26,54	±0,25
150	80	146,3	±0,9	40,01	±0,25
200		193,7	±1,1	47,24	±0,25
250	1	242,9	±3,8	65,02	±0,25
300		288,9	±4,4	77,72	±0,25
50		42,8	±0,4	11,68	±0,25
80	160	66,7	±0,4	18,16	±0,25
100		87,3	±0,4	26,54	±0,25
150		131,8	±0,9	36,07	±0,25
200		173,1	±1,1	47,24	±0,25

Таблица 5.2 – Геометрические размеры Flanged Meter, M84 Style-A

Ду, мм	Schedule	Внутренний диаметр D , мм	Допуск на внутренний диаметр D , мм	Размер тела обтекания, <i>d</i> , мм	Допуск на размер тела обтекания, <i>d</i> , мм
20		18,8	±0,5	5,84	±0,13
25		24,3	±0,4	7,11	±0,13
40		38,1	+0,3 -0,5	10,54	±0,13
50		49,2	±0,4	13,46	±0,25
80	80	72,9	±0,4	19,91	±0,25
100		96,7	±0,5	26,54	±0,25
150		146,3	±2,7	39,88	±0,25
200		193,7	±3,2	52,58	±0,25
250		247,7	±3,2	65,02	±0,25
300		298,5	±3,2	77,72	±0,25

Таблица 5.3 – Геометрические размеры Wafer Meter, M84

Ду, мм	Schedule	Внутренний диаметр D , мм	Допуск на внутренний диаметр D , мм	Размер тела обтекания, <i>d</i> , мм	Допуск на размер тела обтекания, <i>d</i> , мм
20		18,8	±0,4	5,84	±0,13
25		24,3	±0,4	7,11	±0,13
40		38,1	+0,3 -0,5	10,54	±0,13
50	80	49,2	±0,4	13,46	±0,25
80		72,9	±0,4	19,91	±0,25
100		96,7	±0,5	26,54	±0,25
150		146,3	±0,5	39,88	±0,25
200		193,5	±0,5	52,58	±0,25

Таблица 5.4 – Геометрические размеры Sanitary, M83/84

Ду, мм	Schedule	Внутренний диаметр D , мм	Допуск на внутренний диаметр D , мм	Размер тела обтекания, <i>d</i> , мм	Допуск на размер тела обтекания, <i>d</i> , мм
50	10	47,5	+0,05 -0,28	12,98	0,08
80	10	72,9	+0,08 -0,30	19,89	0,10

Результат поверки считается положительным, если средние значения внутреннего диаметра и тела обтекания не превышают допусков.

Разбирать расходомер согласно руководству по эксплуатации. После измерений тела обтекания и сборке расходомера, провести проверку на герметичность согласно п. 6.2.

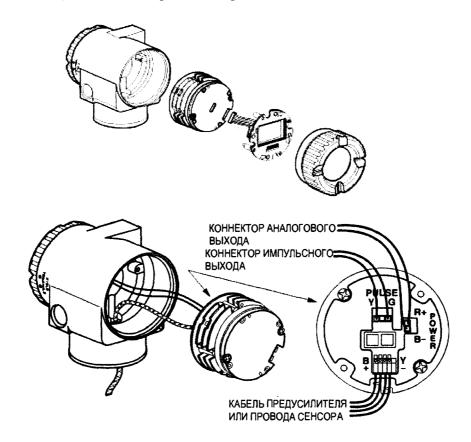
6.4.3 Определение относительной погрешности измерений объёмного расхода.

В соответствии с Руководством по эксплуатации разобрать электронный блок и подключить генератор и частотомер к соответствующим коннекторам электронного модуля.

Задать параметр Pulse Max Freq в меню расходомера или HART-коммуникатором.

Подать на клеммы "В+" и "Y-" частоту (или импульсы со скважностью 2) амплитудой

от 1 до 5 В с внешнего генератора, равную 20 %, 50 %, 100 % от заданного значения Pulse Max Freq. Считать значения частоты частотомером с выходов PULSE "G" и "Y". Для каждого значения выполнить не менее трёх измерений.


Относительную погрешность измерений объёмного расхода δ_{QF} , в процентах, рассчитать по формуле

$$\delta_{Q_F} = \frac{F_{u_{3M}} - F_{\mathfrak{I}}}{F_{\mathfrak{I}}} \times 100,\tag{6}$$

где $F_{\mathfrak{d}}$ – частота, заданная внешним генератором, Γ ц;

 $F_{u_{3M}}$ — частота на выходе расходомера, Γ ц.

Результат поверки считается положительным, если значения относительной погрешности измерений объёмного расхода δ_{QF} не превышают значений, указанных в технической документации на расходомер.

Р и с у н о к 2 – Назначение коннекторов электронного блока.

6.5.3. Определение относительной погрешности измерений объёмного расхода по токовому выходу

Определение относительной погрешности измерений объёмного расхода по токовому выходу допускается проводить одновременно с определением относительной погрешности измерений объёмного расхода.

Подключить генератор к клеммам "B+" и "Y-" и миллиамперметр к "R+" и "B-" в соответствии с Руководством по эксплуатации. Подать частоту с внешнего генератора, равную 20 %, 50 %, 100 % от заданного значения Pulse Max Freq. Для каждого значения выполнить не менее трёх измерений. Считать значения тока.

Значение тока на выходе I_{pacy} , мА, в зависимости от частоты и К-фактора рассчитать по формуле

$$I_{pac4} = \frac{URV - F/(K \times C_x)}{URV} \times 16 + 4, \tag{7}$$

где F – частота, заданная внешним генератором, Γ ц;

K – K-фактор расходомера;

 C_x – коэффициент преобразования единиц (из американского галлона в секунду в требуемую);

URV – верхний предел диапазона расхода расходомера.

Относительную погрешность измерений объёмного расхода по токовому выходу δ_{QI} , в процентах, рассчитать по формуле

$$\delta_{Q_I} = \frac{I_{u_{3M}} - I_{pacu}}{I_{pacu}} \times 100$$
(8)

где $I_{u_{3M}}$ — ток, измеренный миллиамперметром, мА.

Результат поверки считается положительным, если значения относительной погрешности измерений расхода по токовому выходу расходомера не превышают значений, указанных в технической документации на расходомер.

7 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

7.1 При положительных результатах поверки оформляют свидетельство о поверке и пломбируют расходомер в соответствии с рисунком 3.

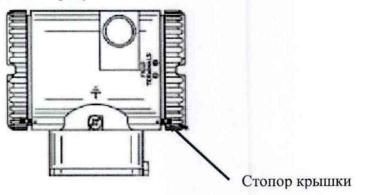


Рисунок 3 - Схема расположения пломбируемого стопора крышки.

7.2 При отрицательных результатах поверки расходомер к эксплуатации не допускают, свидетельство о поверке аннулируют, поверочные клейма гасят и выдают извещение о непригодности с указанием причин.

Разработали:

Начальник лаборатории № 449 ФБУ «Ростест – Москва»

А.А. Сулин

Инженер по метрологии 1 категории лаборатории № 449 ФБУ «Ростест – Москва»

И.В. Беликов