УТВЕРЖДАЮ

Первый заместитель генерального директора – заместитель по научной работе ФГУП «ВНИИФТРИ»

А.Н. Щипунов

2016 г.

ВНИМОТРИ

ВНИМОТРИ

ВНИМОТРИ

В 103000 г.

В 1

инструкция

СИСТЕМА ЕДИНОГО ВРЕМЕНИ ДИСПЕТЧЕРСКОГО ПУНКТА ЭЛЕК-ТРОСНАБЖЕНИЯ КОСМОДРОМА ТСЮИ.403511.016

Методика поверки

ТСЮИ.403511.016 МП

СОДЕРЖАНИЕ

1. Операции поверки	3
2. Средства поверки	4
3. Требования к квалификации поверителей	4
4. Требования безопасности	5
5. Условия поверки	5
6. Подготовка к поверке	5
7. Проведение поверки	6
8. Оформление результатов поверки	10

Настоящая методика поверки распространяется на систему единого времени диспетчерского пункта электроснабжения космодрома ТСЮИ.403511.016 (далее – СЕВ-ДПЭК) и устанавливает методы и средства первичной, периодической и внеочередной поверок.

Интервал между поверками 1 год.

1. ОПЕРАЦИИ ПОВЕРКИ

1.1 Метрологические характеристики СЕВ-ДПЭК, подлежащие поверке и операции поверки, приведены в таблице 1.

Таблица 1

Наименование операции	Номер	Обязательно	параметров при		
	пункта	первичной поверке		периодической	
	методики поверки	при выпуске	после ремонта	поверке	
1 Внешний осмотр	7.1	да	да	да	
2 Опробование	7.2	да	да	да	
3 Определение (контроль) метрологи- ческих характеристик	7.3				
3.1 Определение номинальных значений частоты выходных сигналов 1 Гц и 5 МГц на нагрузках 50 Ом	7.3.1	да	да	да	
3.2 Определение среднего квадратического значения (СКЗ) напряжения выходных сигналов 5 МГц на нагрузке 50 Ом	7.3.2	да	да	да	
3.3 Определение параметров импульсного сигнала частотой 1 Гц на нагрузке 50 Ом	7.3.3	да	да	да	
3.4 Определение относительной погрешности по частоте в режиме синхронизации по сигналам КНС ГЛО-HACC/GPS	7.3.4	да	да	да	
3.5 Определение абсолютного смещения собственной шкалы времени (ШВ) относительно ШВ UTC(SU) в режиме синхронизации по сигналам КНС ГЛОНАСС/GPS	7.3.5	да	да	да	
3.6 Определение среднего квадратического отклонения (СКО) результатов сравнения собственной ШВ со ШВ UTC(SU) в режиме синхронизации по сигналам КНС ГЛОНАСС/GPS	7.3.6	да	да	да	

^{1.2} При получении отрицательных результатов поверки по любому пункту таблицы 1 СЕВ-ДПЭК бракуется и направляется в ремонт.

2. СРЕДСТВА ПОВЕРКИ

2.1 Рекомендуемые средства поверки приведены в таблице 2.

Таблица 2

Наименование	Требуемые техні	ические характеристики	Рекомендуе-	Номер
средств поверки	средств поверки		мое средство	пункта ме-
	диапазон	погрешность	поверки (тип)	тодики по-
	измерений			верки
1 Аппаратура на-	Номинальное	Предел допускаемого	NV08C	7.3.4 - 7.3.6
вигационно-	значение часто-	среднего квадратическо-		
-	ты 1 Гц	го отклонения случай-		
бителей глобаль-		ной составляющей ин-		
ных навигацион-		струментальной по-		
ных спутниковых		грешности синхрониза-		
систем ГЛО-		ции ШВ к ШВ UTC(SU),		
HACC/GPS		UTC(USNO), системным		
		ШВ систем ГЛОНАСС и		
		GPS не более 15 нс		
2 Частотомер уни-	Диапазон изме-	Пределы допускаемой	CNT-90	7.3.1, 7.3.4 –
версальный	ряемых интерва-	абсолютной погрешно-		7.3.6
	лов времени от	сти измерения интерва-		
	5 нс до 10 ⁶ с	лов времени ±0,62 нс		
		(для интервалов време-		
		ни не более 100 мкс)		
3 Осциллограф	Диапазон рабо-	Пределы допускаемой	DSO-	7.3.2, 7.3.3
цифровой	чих частот от 0	абсолютной погрешно-	X3012A	
	до 1 ГГц; диапа-	сти измерений напряже-		
	зон измерений	ния		
	напряжения ±5 В	$\pm 0.02 \cdot 8$ [дел]·К _{откл} [В/дел],		
		где К _{откл} - коэффициент		
		отклонения		
4 Нагрузочные	$(50\pm0,3)~{ m Om}$		Вспомога-	7.3.1 - 7.3.6
сопротивления			тельное обо-	
			рудование	

- 2.2 Вместо указанных в таблице 2 средств поверки допускается применять другие аналогичные средства поверки, обеспечивающие определение метрологических характеристик с требуемой точностью.
- 2.3 Все средства поверки должны быть исправны, поверены и иметь свидетельства о поверке или знак поверки на приборе или в технической документации.

3. ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ.

3.1 Поверка должна осуществляться лицами, имеющими опыт в области радиочастотных измерений и аттестованными в качестве поверителей.

4. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 4.1 При проведении поверки должны быть соблюдены требования безопасности в соответствии с ГОСТ 12.2.091-2012
- 4.2 К поверке СЕВ-ДПЭК допускается персонал, имеющий квалификационную группу не ниже третьей для электроустановок с напряжением до 1000 В.

5. УСЛОВИЯ ПОВЕРКИ

- 5.1 При проведении операций поверки должны соблюдаться следующие нормальные условия:

 - атмосферное давление, кПа
 от 84 до 106;

6. ПОДГОТОВКА К ПОВЕРКЕ

- 6.1 Поверитель должен изучить руководство по эксплуатации поверяемого СЕВ-ДПЭК и руководства по эксплуатации используемых средств поверки.
 - 6.2 Перед проведением операций поверки необходимо:
 - проверить комплектность поверяемого СЕВ-ДПЭК;
- проверить комплектность рекомендованных (или аналогичных им) средств поверки, заземлить (если это необходимо) средства измерений и включить питание заблаговременно перед очередной операцией поверки (в соответствии со временем установления рабочего режима, указанным в технической документации).

Перед проведением поверки необходимо подготовить к работе СЕВ-ДПЭК в соответствии с разделом 6 документа «Система единого времени диспетчерского пункта электроснабжения космодрома. Руководство по эксплуатации. ТСЮИ.403511.016 РЭ» (далее - РЭ).

7. ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Внешний осмотр

- 7.1.1 Произвести внешний осмотр СЕВ-ДПЭК, убедиться в отсутствии внешних механических повреждений и неисправностей, влияющих на работоспособность СЕВ-ДПЭК.
 - 7.1.1.1 При проведении внешнего осмотра проверить:
 - сохранность пломб;
 - чистоту и исправность соединителей;
 - отсутствие внешних механических повреждений корпуса, мешающих работе с прибором, и ослабления элементов конструкции;
 - сохранность органов управления.
 - 7.1.2 СЕВ-ДПЭК, имеющие дефекты (механические повреждения), бракуют и направляют в ремонт.

7.2 Опробование

- 7.2.1 Опробование провести в соответствии с п. 6.2.3 РЭ.
- 7.2.2 Результаты опробования считать положительными, если по истечении 10 секунд не включается звуковая аварийная сигнализация, а индикаторы «ИСПРАВ.» не гаснут и (или) засвечиваются индикаторы «ОТКАЗ».

7.3 Определение (контроль) метрологических характеристик

- 7.3.1 Определение номинальных значений частоты выходных сигналов 1 Гц и 5 МГц на нагрузке 50 Ом
- 7.3.1.1 Определение номинальных частот выходных сигналов произвести с помощью частотомера универсального CNT-90.
- 7.3.1.2 Настроить «вход А» частотомера универсального CNT-90 в соответствии с параметрами входных сигналов 1 Гц и 5 МГц.

Поочередно подать на вход «вход А» выходные сигналы от СЕВ-ДПЭК.

7.3.1.3 Результаты поверки считать положительными, если номинальные значения частоты находятся в пределах:

```
(1,000 000±0,000 005) Гц;
(5 000 000, 000 00±25) Гц.
```

- 7.3.2 Определение СКЗ напряжения выходного сигнала 5 МГц на нагрузке 50 Ом
- 7.3.2.1 Измерения провести с помощью осциллографа DSO-X3012A и нагрузочных сопротивлений.

Для этого включить осциллограф DSO-X3012A в соответствии с его Руководством по эксплуатации и прогреть его в течении 30 мин. Подключить на вход осциллографа выходной сигнал частотой 5 МГц на нагрузке 50 Ом. Произвести синхронизацию входного сигнала.

- 7.3.2.2 Результаты поверки считать положительными, если значение СКЗ выходного сигнала 5 МГц на нагрузке 50 Ом находится в пределах $(1,0\pm0,2)$ В.
 - 7.3.3 Определение параметров импульсного сигнала 1 Гц на нагрузке 50 Ом.
 - 7.3.3.1 Определению подлежат следующие параметры импульсного сигнала:
 - уровень напряжения импульсного сигнала 1 Гц;
 - длительность импульсного сигнала 1 Гц;
 - длительность переднего фронта импульсного сигнала.
- 7.3.3.2 Определение параметров импульсного сигнала 1 Гц произвести с помощью осциллографа DSO-X3012A.
- 7.3.3.3 Включить осциллограф DSO-X3012A в соответствии с его Руководством по эксплуатации и прогреть его в течении 30 мин. Подать выходной сигнал 1 Гц с выхода СЕВ-ДПЭК на вход осциллографа при сопротивлении нагрузки 50 Ом. Произвести синхронизацию входного сигнала. Определить параметры импульсного сигнала 1 Гц.
- 7.3.3.4 Результаты поверки считать положительными, если параметры сигнала удовлетворяют требованиям:
 - уровень напряжения импульсного сигнала 1 Гц от 3,5 до 4,5 B;
 - длительность импульсного сигнала 1 Гц от 1,9 до 2,1 мкс;
 - длительность переднего фронта импульсного сигнала не более 10 нс.
- 7.3.4 Определение относительной погрешности по частоте в режиме синхронизации по сигналам КНС ГЛОНАСС/GPS
- 7.3.4.1 Определение относительной погрешности частоты $\frac{\Delta f}{f}$ (f номинальное значение частоты; $\Delta f = f_y f_x$) провести методом сравнения ШВ СЕВ-ДПЭК со ШВ UTC(SU) частото-

Время прогрева СЕВ-ДПЭК должно составлять не менее 1 суток.

мером универсальным CNT-90 по схеме, приведенной на рисунке 1.

7.3.4.2 Включить аппаратуру навигационно-временную потребителей глобальных навигационных спутниковых систем ГЛОНАСС/GPS NV08C в соответствии с его Руководством по эксплуатации и прогреть в течении установленного времени.

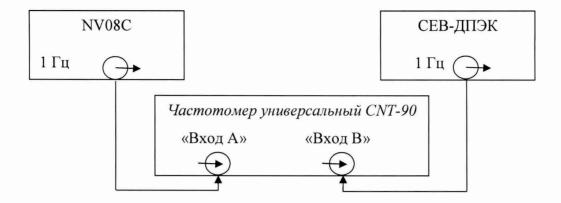


Рисунок 1 – Схема определения относительной погрешности по частоте

- 7.3.4.3 На вход «Вход А» частотомера CNT-90 подать сигнал 1 Гц от NV08C, на вход «Вход В» сигнал 1 Гц от СЕВ-ДПЭК с блока формирования ШВ.
- 7.3.4.4 Запустить измерения интервала времени при минимальном интервале времени наблюдения 100 с. По истечении указанного времени зафиксировать среднее значение смещения ШВ СЕВ-ДПЭК относительно ШВ UTC(SU).
- 7.3.4.5 По истечении интервала времени наблюдения 10^5 с (немногим более 28 ч) повторить п. 7.3.4.3-7.3.4.4.
- 7.3.4.6 Вычислить изменение смещения ШВ СЕВ-ДПЭК $\Delta \tau$. Рассчитать относительную погрешность по частоте по формуле (1):

$$\frac{\Delta f}{f} = \Delta \tau / 10^5 \tag{1}$$

- 7.3.4.7 Результаты поверки считать положительными, если значения относительной погрешности по частоте в режиме синхронизации по сигналам КНС ГЛОНАСС/GPS находятся в пределах $\pm 1,0\cdot 10^{-10}$.
- 7.3.5 Определение абсолютного смещения собственной ШВ относительно ШВ UTC(SU) в режиме синхронизации по сигналам КНС ГЛОНАСС/ GPS
- 7.3.5.1 Абсолютное смещение собственной ШВ относительно ШВ UTC(SU) в режиме синхронизации по сигналам КНС ГЛОНАСС/GPS определить с помощью аппаратуры навигационно-временной потребителей глобальных навигационных спутниковых систем ГЛО-HACC/GPS NV08С и частотомера универсального CNT-90 по схеме, приведенной на рисунке 2.

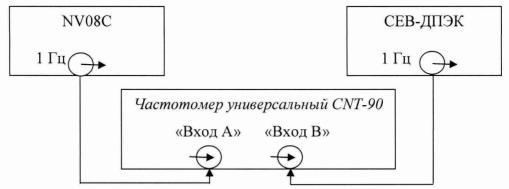


Рисунок 2 — Схема определения абсолютного смещения собственной ШВ относительно ШВ UTC(SU) в режиме синхронизации по сигналам КНС ГЛОНАСС/GPS

- 7.3.5.2 На вход частотомера «Вход В» подать импульсный сигнал 1 Гц от СЕВ-ДПЭК, на вход частотомера «Вход А» подать импульсный сигнал 1 Гц от аппаратуры навигационновременной потребителей глобальных навигационных спутниковых систем ГЛОНАСС/GPS NV08C. Частотомер универсальный СNТ-90 установить в режиме измерений интервалов времени. Настроить входы «А» и «В» в соответствии с параметрами импульсных сигналов 1 Гц:
 - импульсный сигнал;
 - измерения по переднему фронту;
 - входная нагрузка 50 Ом;
 - уровень напряжения точки привязки по переднему фронту 0,5 В.
- 7.3.5.3 Произвести не менее 100 измерений интервала времени между импульсными сигналами 1 Гц от СЕВ-ДПЭК и NV08C (абсолютного смещения собственной ШВ относительно ШВ UTC (SU)).
- 7.3.5.4 Результаты поверки считать положительными, если значения абсолютного смещения собственной ШВ относительно ШВ UTC(SU) в режиме синхронизации по сигналам КНС ГЛОНАСС/GPS находятся в пределах ± 200 нс.
- 7.3.6 Определение СКО результатов сравнения собственной ШВ со ШВ UTC(SU) в режиме синхронизации по сигналам КНС ГЛОНАСС/GPS
- 7.3.6.1 СКО результатов сравнения собственной ШВ со ШВ UTC(SU) в режиме синхронизации по сигналам КНС ГЛОНАСС/GPS определить с помощью аппаратуры навигационновременной потребителей глобальных навигационных спутниковых систем ГЛОНАСС/GPS NV08С и частотомера универсального CNT-90 по схеме, приведенной на рисунке 2.
 - 7.3.6.2 Повторить п. 7.3.5.2.
- 7.3.6.3 На частотомере универсальном CNT-90 запустить измерения на интервале времени наблюдения 1 сут. По окончании измерений частотомер универсальный CNT-90 автоматиче-

ски выдаст значение СКО результатов сравнения собственной ШВ со ШВ UTC(SU) в режиме синхронизации по сигналам КНС ГЛОНАСС/GPS.

7.3.6.4 Результаты поверки считать положительными, если значение СКО результатов сравнения собственной ШВ со ШВ UTC(SU) в режиме синхронизации по сигналам КНС ГЛОНАСС/GPS не более 100 нс.

8 Оформление результатов поверки

- 8.1 При положительных результатах поверки оформить «Свидетельстве о поверке», в соответствии с приложением 1 к «Порядку проведения поверки средств измерений, требований к знаку поверки и содержанию свидетельства о поверке, утвержденному приказом Министерства промышленности и торговли РФ от 2 июля 2015 г. N 1815».
- 8.2 При отрицательных результатах поверки СЕВ-ДПЭК к применению не допускается и на него выдается извещение о непригодности установленного образца.

Заместитель начальника ГМЦ ГСВЧ (НИО-7) ФГУП «ВНИИФТРИ»

А.С. Гончаров

Инженер I категории отд. № 78 ФГУП «ВНИИФТРИ»

(подинсь)

С.А. Семенов