

Анализаторы биохимические полуавтоматические BTS-350, Y-350

Методика поверки

Москва

2016

СОДЕРЖАНИЕ

1 Операции поверки	3
2 Средства поверки	3
3 Требования безопасности	4
4 Условия поверки	4
5 Подготовка к поверке	4
6 Проведение поверки	4
7 Оформление результатов поверки	7
Приложение А (<i>справочное</i>) Общий вид анализатора	8

Настоящая методика устанавливает методы и средства первичной и периодической поверки анализаторов биохимических полуавтоматических BTS-350, Y-350 (далее – анализаторы), производства фирмы BioSystems S.A. (Испания).

Интервал между поверками – 1 год.

1 ОПЕРАЦИИ ПОВЕРКИ

1.1 При проведении поверки должны быть выполнены операции, указанные в таблице 1.

Таблица 1

Наименование операции	Номер пункта методики поверки	Обязательность проведения операции при	
		первичной	периодической
		поверке	поверке
1 Внешний осмотр	6.1	+	+
2 Опробование	6.2	+	+
3 Определение метрологических харак-	6.3	+	+
теристик:			
- определение систематической состав-			
ляющей абсолютной погрешности изме-		1	d.
рений оптической плотности		+	-
- определение случайной составляющей			
(СКО) измерений оптической плотности			
4 Оформление результатов поверки	7	+	+

2 СРЕДСТВА ПОВЕРКИ

2.1 При проведении поверки должны быть применены средства поверки, указанные в таблице 2

Таблица 2

Номер пункта МП	Наименование средства поверки
6.2	Контрольный реагент производства фирмы BioSystems S.A. (Испания)
6.3 6.4	Комплект светофильтров КНС-10.2, диапазон измерений: длин волн (260-930) нм; СКНП 0,02-0,92; пределы допускаемых абсолютных погрешностей измерений СКНП в диапазоне значений: от 0,02 до 0,2 $\pm 0,15$ %; от 0,21 до 0,92 $\pm 0,25$ %

Примечание - Допускается замена средств измерений аналогичным, не уступающим указанным в таблице 2 по метрологическим характеристикам.

3 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

3.1 При проведении поверки должны соблюдаться требования безопасности, указанные в Руководстве по эксплуатации.

4 УСЛОВИЯ ПОВЕРКИ

- 4.1 При проведении поверки должны соблюдаться следующие условия:
- температура окружающего воздуха, °С

 20 ± 5 :

- относительная влажность воздуха, %

от 50 до 80;

- атмосферное давление, кПа (мм.рт.ст.)
- от 84 до 106,7 (от 630 до 800);
- 4.2 В помещении, где проводится поверка, не должно быть повышенных уровней электромагнитного излучения, шума и вибрации.
 - 4.3 Не допускается попадание прямых солнечных лучей.

5 ПОДГОТОВКА К ПОВЕРКЕ

- 5.1 Подготовить анализатор к работе в соответствии с разделом 2.1 Руководства по эксплуатации.
 - 5.2 Включить анализатор и прогреть его в течение 30 минут.
- 5.3 Подготовить к работе комплект светофильтров КНС-10.2 в соответствии с его эксплуатационной документацией.

6 ПРОВЕДЕНИЕ ПОВЕРКИ

6.1 Внешний осмотр

При внешнем осмотре должно быть установлено:

- отсутствие механических повреждений корпуса, ручек управления и соединительных проводов;
 - наличие четких надписей на клавишах управления и сигнальных элементах;
- наличие маркировки (наименование или товарный знак завода-изготовителя, тип и заводской номер прибора).

6.2 Опробование

- 6.2.1 При опробовании должно быть установлено:
- правильность работы анализатора
- подтверждение соответствия программного обеспечения.
- 6.2.2 Опробование правильности работы анализатора проводят путем выполнения теста по контрольному реагенту (например, глюкозе).
- 6.2.2.1 Подготовить образец контрольного реагента в соответствии с предусмотренной для него методикой выполнения измерений.
- 6.2.2.2 Запрограммировать параметры тестов (раздел 2.2.5 Программирование в Руководстве по эксплуатации), необходимые для данного анализа сыворотки.
- 6.2.2.3 Провести выбранный тест контрольного реагента в соответствии с разделом 2.3 Руководство по эксплуатации.

Результаты опробования считаются положительными, если измеренная концентрация теста контрольного реагента лежит в пределах, указанных в паспорте для данного образца контрольного реагента.

- 6.2.3 Подтверждение соответствия программного обеспечения
- 6.2.3.1 Включить прибор. После прохождения инициализации на экране ПК появляется информация о наименовании и версии программы.
- 6.2.3.2 Результаты считаются положительными, если идентификационные данные программного обеспечения соответствуют заявленным:

Идентификационные данные (признаки)	Значение			
BTS-350				
Идентификационное наименование ПО	BTS-350			
Номер версии (идентификационный номер) ПО	1.X.Y			
Цифровой идентификатор ПО	4			
Y-350				
Идентификационное наименование ПО	Y-350			
Номер версии (идентификационный номер) ПО	2.X.Y			
Цифровой идентификатор ПО	-			

6.3 Определение метрологических характеристик

- 6.3.1 Определение абсолютной погрешности измерений оптической плотности проводят с помощью комплекта светофильтров КНС-10.2.
- 6.3.2 Включаем анализатор, нажав кнопку Вкл/Выкл (рисунок А.1) и удерживая ее несколько секунд до включения экрана.
- 6.3.3 На клавиатуре нажимаем знак ВВОД (рисунок А.1). На экране анализатора появляется Главное меню.
- 6.3.4 В Главном меню выбираем опцию АБСОРБЦИЯ опция измерения оптической плотности. Нажимаем знак ВВОД.
 - 6.3.5 На экране появится подменю:

Метод измерения Измерительный фильтр Объем пробы Время стабилизации Температура

В опции «Измерительный фильтр» устанавливаем длину волны 340 нм, в опции «Температура» устанавливаем температуру 25 °С. Нажимаем кнопку ВВОД.

- 6.3.6 В кюветное отделение (рисунок А.1) вставляем пустой светофильтр из комплекта светофильтров КНС-10.2.
- 6.3.7 Нажимаем функциональную кнопку (рисунок А.1) под надписью «Базовая линия», находящуюся в нижней части экрана. Анализатор начинает термостатирование кюветы до температуры 25 °C. При этом на анализаторе над заборной трубкой зажигается индикатор (рисунок А.1) красного цвета. Когда цвет индикатора станет зеленым, термостатирование закончено.
- 6.3.8 Нажимаем кнопку ПОМПА (рисунок А.1), находящуюся под заборной трубкой. Происходит измерение оптического нуля анализатора. После окончания измерений на экране появляется «0,000» и надпись «Поставь образец».
- 6.3.9 Открываем крышку кюветного отделения, вынимаем пустой светофильтр и вставляем светофильтра № 1 из комплекта светофильтров КНС-10.2, нажимаем на кнопку

ПОМПА, происходит измерение оптической плотности. На экране появляется значение измеренной оптической плотности.

- 6.3.10 Повторяем измерение оптической плотности светофильтра № 1 из комплекта светофильтров КНС-10.2 по пункту 6.3.9 пять раз, при этом каждый раз вынимая светофильтр из кюветы и вставляя его обратно.
- 6.3.11 Проводим измерения по пунктам 6.3.9 6.3.10 для остальных светофильтров из комплекта светофильтров КНС-10.2.
- 6.3.12 Нажимаем функциональную кнопку под надписью «Параметры измерений», находящуюся в нижней части экрана. На экране появится подменю пункта 6.3.5. В опции «Измерительный фильтр» устанавливаем длину волны 405 нм. Повторяем измерения по пунктам 6.3.6-6.3.11.
 - 6.3.13 Проводим измерения также для длин волн 560, 670 нм.
- 6.3.14 После окончания измерений нажимаем кнопку ВЫХОД (рисунок А.1), на экране появится Главное меню. Нажимаем кнопку Вкл/Выкл. На экране появляется меню подтверждения выхода (ДА/НЕТ). Выбираем строчку «ДА» и нажимаем кнопку ВВОД. Анализатор отключается.
- 6.3.15 Рассчитываем для каждого светофильтра n для данной длины волны λ_j среднее арифметическое значение оптической плотности $D_{ncp}(\lambda_j)$ по формуле:

$$D_{ncp}(\lambda_j) = \frac{\sum_{i=1}^{5} D_{ni}(\lambda_j)}{5}$$

где n — номер светофильтра из комплекта светофильтров КНС-10.2;

j — номер длины волны;

i - номер измерения для светофильтра n на длине волны λ_i .

6.3.16 Рассчитываем для каждого светофильтра n для данной длины волны λ_j систематическую составляющую абсолютной погрешности измерений оптической плотности $\Delta_n(\lambda_j)$ по формуле:

$$\Delta_n(\lambda_j) = D_{ncp}(\lambda_j) - D_{n0}(\lambda_j)$$

где $D_{n0}(\lambda_j)$ — действительное значение оптической плотности светофильтра n из комплекта светофильтров КНС-10.2 на длине волны λ_j , указанное в свидетельстве о поверке комплекта.

Для значений оптической плотности в диапазоне от 1 до 2,5 Б рассчитываем систематическую составляющую относительной погрешности измерений оптической плотности $\delta_n(\lambda_i)$ по формуле:

$$\delta_n(\lambda_i) = 100 \cdot \Delta_n(\lambda_i) / D_{n0}(\lambda_i)$$

6.3.17 Рассчитываем для каждого светофильтра n для данной длины волны λ_j среднее квадратическое отклонение (СКО) оптической плотности $S_n(\lambda_j)$, характеризующее случайную составляющую погрешности измерений оптической плотности.

$$S_n(\lambda_j) = \sqrt{\frac{\sum_{i=1}^{5} \left[D_{ni}(\lambda_j) - D_{n_{cp}}(\lambda_j) \right]^2}{4}}$$

6.3.18 Результаты поверки считаются положительными, если

- систематическая составляющая погрешности измерений оптической плотности не превышает в диапазоне измерений, Б:

от 0,02 до 1,0 вкл.

 $\pm 0.040 \, \mathrm{F}$

свыше 1,0 до 2,5

± 4 %

- случайная составляющая погрешности измерений оптической плотности (СКО) не превышает 0,005 Б.

7 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 7.1 При положительных результатах поверки анализатора выдается Свидетельство о поверке установленной формы в соответствии с Приказом Минпромторга России от 02 июля 2015 г. № 1815 «Порядок проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке».
- 7.2 При отрицательных результатах поверки анализатор к дальнейшей эксплуатации не допускается, на него выдается извещение о непригодности.

Приложение A (справочное)

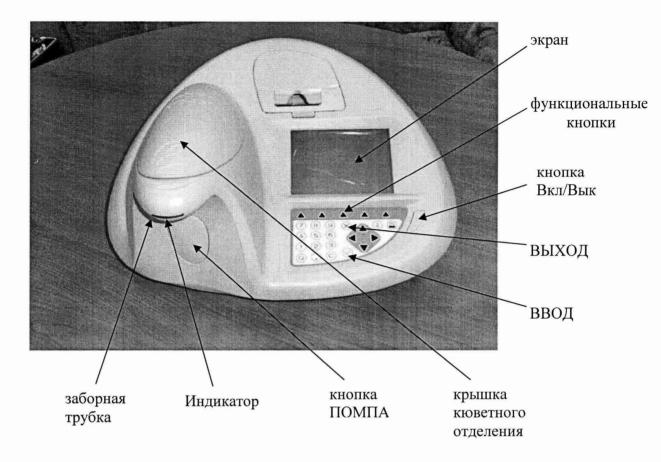


Рисунок А.1 – Общий вид анализатора